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Photonic crystals with controlled disorder
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1Instituto de Ciencia de Materiales de Madrid (CSIC) and Unidad Asociada CSIC-UVigo, Cantoblanco E-28049, Madrid, Spain
2European Laboratory for Nonlinear Spectroscopy & CNR-INO, 50019 Sesto Fiorentino, Florence, Italy

(Received 5 November 2010; published 10 August 2011)

Photonic crystals are extremely sensitive to structural disorder even to the point of completely losing their
functionalities. While, on one side, this can be detrimental for applications in traditional optical devices, on the
other side, it gives also rise to very interesting new physics and maybe even new applications. We propose a route
to introduce disorder in photonic crystals in a controlled way by creating a certain percentage of vacancies in the
lattice. We show how the method works and what type of materials can be obtained this way. Also, we use this
system to probe the role of disorder on the resulting transport properties from various points of view, including
measurements of the transport and scattering mean free path and the diffusion constant.
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I. INTRODUCTION

Numerous applications of photonic crystals [1,2] have
been proposed based on their ability to control ballistic light
transport. In practice, most photonic crystals contain a certain
amount of intrinsic disorder which gives rise to multiple light
scattering and light diffusion [3]. An extraordinary progress
has been made in the fabrication of nanophotonic structures
with many novel optical properties [4]. Using engineered
disorder by introducing defects of controlled amount, position,
shape, and other morphological characteristics can, however,
lead to interesting new functionalities [5,6]. The extreme case
of disorder is that of a photonic glass in which the building
blocks are perfect spheres which are distributed randomly
[7]. In such systems, light undergoes multiple resonant Mie
scattering due to the equal shape and size of its scatterers [8].

While light propagation in photonic crystals is described
by Bloch modes, transport in photonic glasses is dominated
by random multiple scattering. Random systems also exhibit
interference effects of which maybe the most dramatic is that
of Anderson localization of light waves, in which interference
brings light transport to a complete halt [9]. The combination
of a photonic crystal and a certain amount of random multiple
scattering is believed to be the key to observe optical Anderson
localization [2]: the presence of a photonic band structure
can lead to a strongly reduced diffusion constant compared to
an equivalent random system without the underlying periodic
backbone [10]. While transverse localization has already been
observed in photonic lattices [11], the interplay between order
and disorder is mostly unknown, even at low refractive index,
far away from the predicted Anderson localization transition.

In this paper we show a method to obtain structures in
between a photonic crystal and a photonic glass by adding a
small amount of controlled defects and we characterize the
optical properties of the resulting topology. The novelty here
is the possibility to effectively tune the disorder parameter

*Present address: DTU Fotonik, Department of Photonics Engi-
neering, Technical University of Denmark, rsteds Plads 343, DK-
2800 Kgs. Lyngby, Denmark.
†Present address: ICFO-Institut de Ciencies Fotoniques, Mediter-

ranean Technology Park, E-08860 Castelldefels, Barcelona, Spain.

in 3D photonic crystal which allow us to probe the optical
properties of structures in between order and disorder. By
doing so, we are able to study how the controlled introduction
of disorder progressively destroys the periodic backbone thus
engineering the number of scattering events light suffers
across an actual sample of any given thickness and tuning the
scattering parameters as the mean free path and the diffusion
constant. The paper is organized as follows: In Sec. II we
will show how to introduce extrinsic disorder in photonic
crystals as vacancies in the lattice and how to analyze the
topological disorder of such structures. In Sec. III we will show
measurements of the static transport properties, in particular
the scattering mean free path. In Sec. IV we will report on
measurements of the diffusion constant in photonic crystals as
a function of the density of vacancies. In Sec. V we will show
total white light transmission measurements from photonic
glasses and photonic crystals with a high amount of vacancies.

II. VACANCY-DOPED PHOTONIC CRYSTALS

A. Sample preparation

An alloy photonic crystal [12–14] is grown with a binary
colloid that consists of spheres of two types. Compared to the
crystals which are composed by single-specie spheres, binary
crystals exhibit a rather rich phase behavior that depends
on the volume fractions of the constituents, in particular
on their diameter ratio. If the constituents are chemically
different but of the same diameter, it is possible to also obtain
a regular lattice of which, after crystal growth, one of the
constituents can be chemically removed. The one constituent
that is removed acts in that sense as a dopant, since it
introduces vacancies in the lattice. Figures 1(a), 1(b), 1(d),
and 1(e) schematize the process. Binary colloidal suspensions
of polymethyl-methacrylate (PMMA) and polystyrene (PS)
spheres were ordered by vertical deposition [15]. This method
allows us to grow large homogenous 3D alloys with fcc crys-
talline structure and appreciable thickness. While the growth
process fixes the crystalline structure, with this method we
introduce disorder without altering the particular crystalline
structure, by adding a controlled amount of vacancies in
the lattice. The total colloidal concentration in the liquid is
typically set fixed at 0.15 wt %, and the density of dopants
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FIG. 1. (Color online) (a) The diagram schematizes the film
growth by vertical deposition when polystyrene spheres (PS, red) and
polymethyl-methacrylate spheres (PMMA, gray) are mixed together
in the initial colloidal suspension with different diameters. The
structure that forms depends on the diameter ratio of the spheres and
is generally random. By etching with cyclohexane the PS spheres can
be removed (b). In (c) a SEM image is shown of such structure. (d),
(e), and (f) schematize the same process when both PS and PMMA
spheres have the same diameter. In that case a regular lattice is formed
with a controlled number of vacancies. In (f) a sample is shown that
was grown by using PS and PMMA spheres with diameters 237 nm.

(PS spheres, in this case) is tuned by changing the partial PS
concentration in the initial colloidal suspension. For example,
if a 10% final vacancy density is needed, a partial PS spheres
concentration of 0.015 wt % and PMMA concentration of
0.135 wt % will be mixed to obtain a total 0.15 wt % colloidal
suspension. Once the alloy colloidal crystal is grown, the
PS spheres are removed by selective chemical etching by
immersing the samples in 99% pure cyclohexane for at least
4 h. This very easy procedure completely removes the PS
spheres, leaving the PMMA spheres undisturbed. Scanning
electron microscopy (SEM) image Fig. 1(f) shows a colloidal
crystal realized with 30% of PS spheres and 70% of PMMA
spheres after PS etching. In that case, both PMMA and PS
spheres had the same diameter d = 237 nm, with an error
included in the polydispersity of each of the spheres (<2% of
the sphere diameter).

The selective etching of PS spheres can be conveniently
monitored optically during the etching process. At low ener-
gies, far from the first stopband, the sample can be considered
as a homogenous thin layer with effective refractive index neff .
This neff can be measured by recording the spectral separation
of the Fabry-Perot fringes in the transmittance or reflectance
spectra, which depend on the optical thickness of the sample
and thereby both on its physical thickness and refractive index.
A Fourier transform infrared spectrometer (Bruker IFS-66/S)
was used to record the optical reflectance of the samples at
normal incidence in a wide spectral range. A microscope
attached to the spectrometer with a ×4 objective featuring a
0.1 numerical aperture, that is, ±6◦ angular aperture, was used
to focus and collect the light. Local reflectance maxima of the

Fabry-Perot fringes will appear at (for an opal on a substrate
with a refractive index higher than that of the opal [16])

mλm = 2Lneff =⇒ 1

λm

= m

2Lneff
, (1)

where m is the resonance order, L is the sample thickness, and
λm is the wavelength of the m resonance. A linear relation
is obtained by plotting the inverse of λm as a function of m,
which slope yields the inverse of the sample thickness and
neff . The initial neff of the alloy crystal, composed by PS
and PMMA spheres [Fig. 1(d)], can be calculated from the
partial concentration of each type of spheres, their refractive
index nPS = 1.59 and nPMMA = 1.4, and the total filling
fraction of spheres in the crystal f = 0.74. This gives us a
precise estimation of the sample thickness, which remains
constant during the etching process. The evolution of the
etching can then be followed by monitoring the value of
neff with time, using Eq. (1) with this initial value of L.
Figure 2 shows the effective refractive index for a thin film
initially composed of 60% of PMMA spheres and 40% of
PS spheres, both of diameter d = 237 nm. Figure 2 reveals
that the etching is complete after a few minutes, when neff

reaches a constant value. The inset of Fig. 2 shows the
reflectance spectrum from the composite before (black solid
curve) and after (red dashed curve) complete PS removal.
Apart from the disappearance of the reflectance peak related
to the first stopband in the � L direction (which will be the
object of attention in the following section), a blue shift in
the Fabry-Perot fringes clearly shows the significant change
in neff . The final vacancy-doped photonic crystals [Fig. 1(f)]
have typically the same dimensions as a thin photonic crystal

FIG. 2. (Color online) Effective refractive index (neff ) of the
system as a function of PS etching time The concentration of PS
and PMMA spheres are known and the thickness of the sample L
can be then calculated from the Fabry-Perot fringes in the reflectance
spectrum (black solid curve in the inset of the figure) By dissolving
the PS spheres, neff reduces and its variation is accounted for by
the blueshift in the Fabry-Perot fringes The evolution of neff can be
estimated with the help of L and the Fabry-Perot fringes of the etched
sample (red dashed curve in the inset of the figure) The PS removal
has a characteristic time of about few minutes for which neff reaches
a constant value.
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film, that is, they have a thickness of several microns and
can be several centimeters wide. The vacancies are distributed
homogeneously throughout the structure.

B. Optical characterization

As a first characterization of our samples, we have recorded
standard angular dependent reflection and transmission spec-
tra. In particular, we recorded the specular reflectance R and
transmittance T of light with wavelength from 400 nm to 3 μm

in the direction perpendicular to the sample surface (� L)
and in the low-energy range (a/λ < 1, where a is the lattice
parameter). This measurement directly gives the amount of
light lost from this particular direction which, due to elastic
scattering, propagates in other directions different than the
incident one. By increasing the amount of vacancies in the
crystal lattice, the amount of light scattering increases as we
will discuss later.

The analysis carried out in the present section will tackle
the measurement of the amount of remaining order in the
bulk of the structure. The magnitude R + T can be used to
estimate the amount of remaining order [17,18] if absorption
and higher order Bragg scattering can be neglected. In that
case, the diffuse light intensity D is simply D = 1 − R − T ,
which accounts for the losses due to elastic light scattering
from the lattice vacancies acting as the scatterers [19]. Note
that one expects the diffuse intensity to also be nonzero for
samples without intentionally introduced defects (our samples
with zero percent vacancies), due to residual polydispersity
and various sample imperfections that are common for even
the most accurately prepared photonic crystal opals [3].

Figures 3(a) and 3(b) show R and T measurements from
samples doped with 0% and 40% vacancies, respectively. The
disappearance of the reflectance (transmittance) peak (dip)
related to the pseudogap in the � L direction is the first
and most evident effect of increased disorder. Figure 3(c)
plots D, proportional to the light loses, which presents the
usual features for a finite opal [17]: a monotonic increase
for frequencies outside the gap, attributed to Rayleigh-Gans
type of scattering, the presence of a dip at a/λ ∼ 0.6 for
polymeric spheres which accounts for a reduction of scattering
losses inside the gap, and two peaks at the band edges which
represents an increase of scattering at these spectral positions.
Here we are measuring light which is lost from the initial
direction and diffuses through the crystal. Therefore, the
asymmetry between the high- and the low-energy band edges
can be explained by examining the photonic band structure
in other crystallographic directions close to the incident one.
For light incident in the � L direction, scattered photons in the
low-energy band edge find allowed states in adjacent directions
when a small momentum is acquired. At the high-energy band
edge, the additional momentum needed for a scattered photon
to couple to a Bloch mode in other directions is larger and
the process for this energy becomes less probable than the
former. This is the reason which, qualitatively, explains this
asymmetry. For a high amount of vacancies, Fig. 3(d) reveals
the disappearance of any hint of gap or band-edges features
and shows the increase of scattering losses for all frequencies.
The higher the relative concentration of PS, the more abrupt
the transition is when increasing disorder, constructive and

(a) (b)

(c) (d)

FIG. 3. (Color online) (a) and (b) The reflectance and transmit-
tance spectra measured from samples with 0% and 40% vacancy
density, respectively. Diffuse light intensity from the corresponding
samples (c) before and (d) after PS removal. Notice the presence
(disappearance) of the gap before (after) PS spheres removal. The
insets in (c) and (d) show a schematical drawing of the corresponding
samples.

destructive interference is averaged out giving rise to an
effective medium behavior and losses increase monotonically
with energy.

III. STATIC MEASUREMENTS: SCATTERING
MEAN FREE PATH

The measurements of the reflectance and transmittance
coefficient, as reported in the previous section, can also be used
to determine the scattering mean free path �s , defined as the
length over which a light beam can propagate inside the sample
before it is scattered due to randomness [23]. To that end, the
reflectance and transmittance are recorded in the way described
in Sec. II B, now studied versus the thickness of the sample
(see Fig. 4). Specular R and T [similar to those from Figs. 3(a)
and 3(b)] are taken in adjacent regions in a set of samples
with a vacancy density from 0% to 40%. Adjacent regions
have a different amount of stacked layers and are visible
by optical microscope inspection as terraces on the sample
surface. The thickness of such films is assessed by measuring
the density of Fabry-Perot fringes, which is crucial to provide
the exact thickness L of the tested region. The thickness can
also be determined in an alternative and independent way by
simply counting the terraces on the photonic crystal, since each
terrace corresponds to a thickness increase by one layer [see
Fig. 4(b)]. The accuracy in the determination of the thickness
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FIG. 4. (Color online) (a) Scheme of the scattering mean free
path measurement setup. Specular reflectance and transmittance are
measured along the � L direction (perpendicularly to the sample
surface) in adjacent terraces with known thickness. (b) Optical
image made combining eight images of the opal surface from a
microscope in which the different layers are distinguishable as
terraces. The measurements have been performed from 1 to 25 layers,
which are clearly distinguishable from each other by eye inspection
with the help of the microscope, on adjacent areas, along horizontal
lines perpendicular to the crystal growth direction.

is in that case limited by the cumulative effect of the sphere
polydispersity (<2%).

The analysis of the thickness dependence of reflectance
and transmittance spectra has to take into account the fact
that light impinging on a photonic crystal can be transmitted,
(specularly) reflected, diffracted, absorbed, or (diffusely)
scattered. Considering energies below the onset of diffraction
(a/λ ∼ 1.12) [17], diffraction can be disregarded. Absorption
is also negligible for the considered frequencies for PS
and PMMA spheres. Elastic scattering is then the only loss
mechanism and the Lambert-Beer law can be written as

R(L) + T (L) = exp

(
− L

�s

)
. (2)

Figure 5(a) shows the measurement of ln(T + R) for four
different vacancy density at a wavelength λ1 = 1.6 μm for
spheres with diameter d = 630 nm (a/λ1 = 0.56). In this
type of representation, the slope yields directly (−�s)−1

according to Eq. (2). Figure 5(c) shows the variation of �s

with the vacancy density in the passband [λ1, see Fig. 5(b)].
We observe how the optical thickness of the sample L/�s

(where L is the sample thickness) increases with ρv . Table I
shows this evolution and also gives the average number of
scattering events light performs before exiting the sample,
given by N = (L/�s)2. This number is below one (0.2) in
the case of the most perfect opal-based photonic crystal which
is comparable to other very high quality opals [24] and it
becomes as large as 28 in the case of ρv = 40%. This last value
is comparable to opals grown by centrifugation [25] which
show an average number of scattering events of ∼15. The
very high quality of the crystals is of paramount importance
to access the different light transport regimes of our samples:
near-single scattering in the case of nondoped crystals up to
diffusion in the highest doping case of ρv = 40%.

(a)

(b)

(c)

FIG. 5. (Color online) Measurement of the scattering mean free
path in photonic crystals. (a) Plot of ln(R + T ) as a function of the
sample thickness L at λ1 = 1.67 μm for different vacancy density
(from 0% to 40%). These photonic crystals are made of PMMA
spheres of 630 nm diameter and refractive index n = 1.4. The
inverse of the slope yields directly the scattering mean free path.
(b) Calculated group index ng for an ideal photonic crystal of 40
layers thickness along the � L direction for the case of ρv = 0%.
The scattering mean free path �s is measured in the passband
(a/λ1 = 0.56, black squares) and at the band edge (a/λ2 = 0.59, red
circles) as a function of the vacancy density ρv . In (c), the scattering
mean free path is plotted vs vacancy density and compared to the
Bragg length (LB , shaded area) in the case of ρv = 0%. The variation
of �s is smaller at the band edge than in the passband. The black
dashed curve represents the fit of �s vs ρv at the passband.

From Figs. 5(b) and 5(c) it is clear that the dependence of
the scattering mean free path is very different at a wavelength
at the band edge (λ2 in Fig. 5) than it is at wavelengths far away
from the stopband (λ1 in Fig. 5). At the band edge the density
of states is high and the group velocity low, which increases
the amount of scattering and hence reduces the scattering mean
free path [23,26]. This explains the large difference between
�s at the two wavelengths, for ρv = 0%. At increasing ρv , the
effect of the photonic crystal diminishes and at ρv = 40% there
is no difference in the value of the scattering mean free path
for the two wavelengths. At wavelengths far away from the
stopband, we do not expect strong effects from the photonic
crystal and the inverse of the scattering mean free path should
simply depend linearly on the density of scattering elements.
If we distinguish between the scattering that is intrinsically
present in the photonic crystal (expressed in terms of a density
ρ0 and cross section σ0 that represents the average of all

TABLE I. Optical thickness.

ρv (%) LB (μm) �s (μm) L/�s N

0 8 ± 1 53 ± 4 0.4 0.2
5 22 ± 2 1 1
20 7.0 ± 0.7 3 9
40 4.0 ± 0.4 5.3 28
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intrinsic scattering, for example, due to polydispersity of the
spheres, cracks, staking faults, and so on), and the scattering
introduced by the vacancies (with vacancy density ρv and
vacancy scattering cross section σv), we can write the inverse
of the scattering mean free path as

�−1
s = ρ0σ0 + ρvσv (3)

assuming independent scattering from the vacancies. Equa-
tion (3) allows us to fit �s(ρv) and extract the value σv =
(0.057 ± 0.002) μm2. Note that at both wavelengths λ1 and
λ2 the mean free path becomes smaller than the Bragg length
for ρv > 20% [shaded area in Fig. 5(c)], which means that
above those vacancy densities the Bloch approximation fails
to give an accurate description of the propagation process.

IV. DYNAMIC MEASUREMENTS: DIFFUSION CONSTANT

The static measurements presented in Sec. III reveal how
sensitive �s is to the vacancy density. In order to get information
on the behavior of the diffusion constant, one has to resort
to time-resolved measurements. In this section we will use a
nonlinear optical gating technique to analyze the time-resolved
response of transmitted diffuse light through photonic crystals
with vacancies [27]. This will allow us to measure the diffusion
constant as a function of wavelength and disorder.

Most regular disordered systems are isotropic, meaning
that the diffusion constant and mean free path are angular
independent. In (partially disordered) photonic crystals it is,
on the contrary, crucial to take into account directionality. The
photonic band edge of a stopband, for instance, occurs for a
wavelength which will change when varying angle, hence its
effect on the diffuse transport of light can also be anisotropic.
The technique that we use in this section to measure the
time evolution of the transmitted diffuse light is sensitive
to the component of the diffusion constant in the direction
perpendicular to the slab, which is also the direction in which
�s has been determined in the static measurements described
in the previous section.

Figure 6 shows time-resolved transmission through thin
film opals, thickness 21 μm (∼40 layers), grown with PMMA
spheres (diameter d = 630 nm) for ρv = 0%. The measure-
ments have been performed at a/λ1 = 0.56 (black dotted
curve) and a/λ2 = 0.59 (red dotted curve). The reference pulse
is plotted with a blue solid curve in both figures to compare it
with the diffuse decay. The value of the diffusion constant is
obtained by fitting the experimental time profile of T (t) with
the dynamical solution to the diffusion equation [28]. At the
band edge we obtainD(λ2) = 220 m2/s while in the passband,
at λ1, the transmitted pulsed through the sample is of the order
of the probe pulse (150 fs, blue solid curve). This is due to the
fact that D(λ1) is larger than the maximum diffusion constant
we can measure with our setup (Dmax ∼ 700 m2/s).

The optical thickness of the sample L/�s is wavelength
dependent at ρv = 0%, as shown in the previous section. In
the passband, �s(λ1) acquires a very large value compared to
L and D(λ1) becomes very large as well. At this wavelength,
scattering becomes dominantly single and low-order scattering
so that it is actually not meaningful anymore to define a
diffusion constant in the first place. The observed strong
wavelength dependence diminishes at increasing disorder.

(a)

(b)

FIG. 6. (Color online) Plot of the time-resolved diffuse transmis-
sion through photonic crystals composed by PMMA spheres with
n = 1.42 and a diameter d = 630 nm with ρv = 0% at the passband,
a/λ1 = 0.56 black dotted curve (a), and at the band edge, a/λ2 = 0.59
(b) red dotted curve. The blue solid curve is the time-resolved
transmission of the pulse reference. The black dashed line represents
the fit of the experimental measurement with the diffusion equation.

This is shown in the inset of Fig 7 and is expected, as
the photonic crystal correlations disappear. This behavior is
clearly observed in the inset of Fig. 7 where D is plotted at
ρv = 40%.

The complete measurement of D(λ2) as a function of ρv

is plotted in Fig. 7. It shows a fivefold decrease of the value
of D as a consequence of disorder from D(0%) = 220 m2/s

to D(40%) = 43 m2/s. The diffusion constant already reaches
its minimal value at 20% vacancy density and increasing the
vacancy density beyond that point seems not to reduce the
diffusion constant further. The total decrease of D at λ2 is
comparable to the decrease of �s at the same wavelength.

The diffusion constant in regular isotropic disordered
systems is given by

D = 1
3�tve, (4)

where ve is the energy velocity [29] and �t is the transport mean
free path. This relation remains valid in isotropic systems for
each Cartesian coordinate if we take the appropriate values
for D, �t , and ve in those directions. As mentioned above, our
experimental technique is sensitive to the value of the diffusion
constant in the direction perpendicular to the slab, which is also
the direction in which we have determined the other optical
properties of our samples.

If we now assume, to first order, �t ≈ �s (which is
reasonable for our system) we can use the values of �s(40%)
and D(40%) to estimate ve, which yields ve(40%) ∼ 0.25c

(where c is the speed of light in vacuum). This value is small
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FIG. 7. (Color online) Diffusion constant D as a function of the
vacancy density ρv measured at the band edge a/λ2 = 0.59. The
red dashed curve represents the expected value of D when assuming
a constant energy velocity and using the vacancy dependence of
the mean free path �s(ρv) as found before. One can see that the
values at high and low vacancy density are correctly predicted this
way, but the diffusion constant at intermediate vacancy densities is
overestimated. The error bars are normally assigned varying the initial
parameters of the fit, such as the sample thickness, in agreement
with the experimental uncertainty, and recording correspondingly the
interval of possible values for D. They typically present a relative
error of 5 ± 40%. In the inset of the figure the measured D is plotted
as a function of energy for ρv = 40% (the position of the pseudogap
is represented by the dashed area).

compared to the phase velocity in an equivalent homogeneous
system with the same average refractive index as our materials,
which lies between 1.3 and 1.4, and also much smaller then
the transport velocity that one would expect for the equivalent
fully disordered system.

In Fig. 7 we have also plotted the vacancy density
dependence of the diffusion constant if we assume the transport
velocity to remain constant, using only the vacancy depen-
dence of the mean free path �s(ρv) as found before. We see that
the overall variation of the diffusion constant of a factor of 5 can
be entirely explained in that case by the vacancy dependence
of �s(ρv). However, at intermediate vacancy values the such
obtained curve overestimates D. Currently there is no theory
available that can describe accurately the behavior of the
transport velocity in partially disordered photonic crystals, and
this would be an interesting topic to look into in the future.

V. TOTAL WHITE LIGHT TRANSMISSION: FROM
CRYSTALS TO GLASSES

In the previous sections we have shown via static and
dynamic measurements how a high amount of vacancies gives
rise to strong multiple scattering in photonic crystals. In this
section we want to compare these highly doped photonic
crystals with photonic glasses. To this purpose, we measured
total light transmission from 400 to 900 nm wavelength

(a)

(b)

(c)

FIG. 8. (Color online) Total light transmission through photonic
crystals with 40% vacancies (black solid curves) compared to
photonic glasses made with the same spheres (red dashed curves) with
diameters (a) d = 237 nm, (b) d = 630 nm, and (c) d = 780 nm.

through photonic crystals with ρv = 40% with an integrating
sphere (the setup is shown elsewhere [22]) on large areas of
∼1 mm2.

Figure 8 compares total light transmission through photonic
crystals with ρv = 40% vacancies and through photonic
glasses made with the same PMMA spheres for three different
diameters: (a) d = 237 nm, (b) d = 630 nm and (c) d =
780 nm. The three figures show that the total transmission
presents a very similar behavior in both cases, including the
occurrence of very similar resonances. The transport mean
free path measured in photonic glasses, �t � 3 μm [8] is com-
parable to the one measured in natural-sedimented photonic
crystals [30] and to the value of �s obtained previously for our
photonic crystals with ρv = 40% vacancies �s � 4 μm. The
occurrence of the same resonances in the total transmission
for photonic glasses and photonic crystals with vacancies is
noteworthy. In photonic glasses these resonances originate
from the (Mie) resonances in the single scattering coeffi-
cient of the monodisperse constituent spheres. In the doped
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photonic crystals, the scattering originates from vacancies and
apparently, at high vacancy density, the Mie resonances of
the spheres that constitute the photonic crystal emerge as
dominant when the spatial correlations of the photonic crystal
are strongly attenuated. The remarkable similarity of the curves
shown in Fig. 8 is a clear indication of the convergence of a
photonic crystal into a photonic glass with disorder.

VI. CONCLUSIONS

In this paper we report on the realization of photonic crystals
with a controlled amount of, well-defined, disorder, the number
density of vacancies. We characterize the optical properties of
such materials in various ways and determine the degree of
scattering at various wavelengths and doping concentrations.
In particular, our measurements show that it is possible to
control and fine tune the amount of multiple scattering in
a photonic crystal by adding vacancies and hence without
altering the crystal structure. In the highly vacancy doped
photonic glass we observe a resonant behavior, analogous
to that observed due to Mie scattering in photonic glasses.
Our materials might therefore be useful to explore Fano-like

interactions [31] between the extended Bloch mode of the
photonic crystal and spatially confined Mie modes.

The possibility of controlling light scattering and diffusion
in photonic crystals has important implications to test and
understand better the quality of photonic crystal-based devices.
The use of high refractive index materials like Si [32] may
amplify the effect presented here becoming proper candidates
to observe and control Anderson localization of light in 3D
[33], as already observed in slightly disordered 1D photonic
crystal wave guides [34,35] and for the spectral control of
lasing emission from ordered or disordered active media.
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A. Blanco, C. López, Adv. Mater. 23, 30 (2011).
[5] P. V. Braun, S. A. Pruzinsky, and F. Garcia-Santamaria, Adv.

Mater. 18, 2665 (2006).
[6] Y. Akahane, T. Asano, B. Song, and S. Noda, Nature (London)

425, 944 (2003).
[7] P. D. Garcia, R. Sapienza, and C. Lopez, Adv. Mater. 22, 12

(2010).
[8] R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco,

L. Vina, C. Lopez, and D. S. Wiersma, Phys. Rev. Lett. 99,
233902 (2007).

[9] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[10] C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma,

Phys. Rev. Lett. 101, 123901 (2008).
[11] T. Schwartz, G. Bartal, S. Fishman, and S. Mordechai, Nature

(London) 446, 52 (2007).
[12] K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van

Blaaderen, Science 296, 106 (2002).
[13] V. Kitaev and G. Ozin, Adv. Mater. 15, 75 (2003).
[14] D. Wang and H. Moehwald, Adv. Mater. 16, 244 (2004).
[15] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem.

Mater. 11, 2132 (1999).
[16] M. Born and E. Wolf, Principles of Optics (Pergamon, New

York, 1986).
[17] J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez,

and C. Lopez, Phys. Rev. B 68, 115109 (2003).
[18] V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M.

Whittaker, and P. N. Pusey, Phys. Rev. B 66, 165215 (2002).
[19] This consideration is valid for our samples, since PS and PMMA

absorbance is negligible for the considered frequencies [20,21],
confirmed also by measurements of the absorption length

(�a ∼ 10 m) in the visible range for a photonic glass composed
by the same polymer spheres [22]. Higher order scattering is
also negligible compared to the scattering losses.

[20] T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams,
Phys. Rev. B 15, 3243 (1977).

[21] M. A. Khashan and A. Y. Nassif, Opt. Commun. 188, 129 (2001).
[22] P. D. Garcia, R. Sapienza, J. Bertolotti, M. D. Martin, A. Blanco,

A. Altube, L. Vina, D. S. Wiersma, and C. Lopez, Phys. Rev. A
78, 023823 (2008).

[23] P. D. Garcia, R. Sapienza, L. S. Froufe-Perez, and C. Lopez,
Phys. Rev. B 79, 241109(R) (2009).

[24] J. J. Baumberg, O. L. Pursiainen, and P. Spahn, Phys. Rev. B 80,
201103(R) (2009).

[25] M. D. Birowosuto, Otto L. Muskens, A. Femius Koenderink,
and Willem L. Vos, Phys. Rev. B 83, 155101 (2011).

[26] L. S. Froufe-Perez, R. Sapienza, P. D. Garcia, and C. Lopez,
(in preparation).

[27] R. Sapienza, P. Costantino, D. S. Wiersma, M. Ghulinyan, C. J.
Oton, and L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003).

[28] M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28,
2331 (1989).

[29] M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A. Tip,
Phys. Rev. Lett. 66, 3132 (1991).

[30] A. F. Koenderink, M. Megens, G. van Soest, W. L. Vos, and
A. Lagendijk, Phys. Lett. A 268, 104 (2000).

[31] M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev,
M. J. Steel, G. Yushin, and M. F. Limonov, Phys. Rev. Lett.
103, 023901 (2009)

[32] M. Ibisate, D. Golamayo, and C. Lopez, Adv. Mater. 21, 2899
(2009).

[33] S. John and M. J. Stephen, Phys. Rev. B 28, 6358 (1983).
[34] L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka,

and P. Lodahl, Science 327, 1352 (2010).
[35] P. D. Garcia, S. Smolka, S. Stobbe, and P. Lodahl, Phys. Rev. B

82, 165103 (2010).

023813-7

http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.91.213902
http://dx.doi.org/10.1103/PhysRevLett.91.213902
http://dx.doi.org/10.1002/adma.201000356
http://dx.doi.org/10.1002/adma.200600769
http://dx.doi.org/10.1002/adma.200600769
http://dx.doi.org/10.1038/nature02063
http://dx.doi.org/10.1038/nature02063
http://dx.doi.org/10.1002/adma.200900827
http://dx.doi.org/10.1002/adma.200900827
http://dx.doi.org/10.1103/PhysRevLett.99.233902
http://dx.doi.org/10.1103/PhysRevLett.99.233902
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.101.123901
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1126/science.1067141
http://dx.doi.org/10.1002/adma.200390016
http://dx.doi.org/10.1002/adma.200305565
http://dx.doi.org/10.1021/cm990080
http://dx.doi.org/10.1021/cm990080
http://dx.doi.org/10.1103/PhysRevB.68.115109
http://dx.doi.org/10.1103/PhysRevB.66.165215
http://dx.doi.org/10.1103/PhysRevB.15.3243
http://dx.doi.org/10.1016/S0030-4018(00)01152-4
http://dx.doi.org/10.1103/PhysRevA.78.023823
http://dx.doi.org/10.1103/PhysRevA.78.023823
http://dx.doi.org/10.1103/PhysRevB.79.241109
http://dx.doi.org/10.1103/PhysRevB.80.201103
http://dx.doi.org/10.1103/PhysRevB.80.201103
http://dx.doi.org/10.1103/PhysRevB.83.155101
http://dx.doi.org/10.1103/PhysRevLett.91.263902
http://dx.doi.org/10.1364/AO.28.002331
http://dx.doi.org/10.1364/AO.28.002331
http://dx.doi.org/10.1103/PhysRevLett.66.3132
http://dx.doi.org/10.1016/S0375-9601(00)00153-5
http://dx.doi.org/10.1103/PhysRevLett.103.023901
http://dx.doi.org/10.1103/PhysRevLett.103.023901
http://dx.doi.org/10.1002/adma.200900188
http://dx.doi.org/10.1002/adma.200900188
http://dx.doi.org/10.1103/PhysRevB.28.6358
http://dx.doi.org/10.1126/science.1185080
http://dx.doi.org/10.1103/PhysRevB.82.165103
http://dx.doi.org/10.1103/PhysRevB.82.165103

