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[1] An eleven‐month deployment of 25 ocean bottom
seismometers provides an unprecedented opportunity to
study low‐magnitude local earthquakes in the complex
transpressive plate boundary setting of the Gulf of Cadiz,
known for the 1755 Lisbon earthquake and tsunami. 36
relocated earthquakes (ML 2.2 to 4.8) concentrate at 40–
60 km depth, near the base of the seismogenic layer in
∼140 Ma old oceanic mantle lithosphere, and roughly
align along two perpendicular, NNE‐SSW and WNW‐
ESE striking structures. First motion focal mechanisms
indicate compressive stress for the cluster close to the
northern Horseshoe fault termination which trends
perpendicular to plate convergence. Focal mechanisms for
the second cluster near the southern termination of the
Horseshoe fault indicate a strike‐slip regime, providing
evidence for present‐day activity of a dextral shear zone
proposed to represent the Eurasia‐Africa plate contact. We
hypothesize that regional tectonics is characterized by slip
partitioning. Citation: Geissler, W. H., et al. (2010), Focal me-
chanisms for sub‐crustal earthquakes in the Gulf of Cadiz from a
dense OBS deployment, Geophys. Res. Lett., 37, L18309,
doi:10.1029/2010GL044289.

1. Introduction

[2] Within the EU‐funded NEAREST project (Integrated
observations fromNEAR shore sourcES of Tsunamis: towards
an early warning system), a network of 24 broadband ocean
bottom seismometers (OBS) from the German DEPAS pool
(Deutscher Geräte‐Pool für amphibische Seismologie/German
instrument pool for amphibian seismology) and the multi‐
parameter deep sea observatory GEOSTAR were deployed in
the Gulf of Cadiz and offshore Cape St. Vincent (Portugal) for
11 months starting from the end of August 2007 (Figure 1 and
Table S1 of the auxiliarymaterial) [Carrara et al., 2008].1 This
area has a well‐documented history of strong earthquakes and

destructive tsunamis, including the famous Mw ∼ 8.6, 1755
Lisbon earthquake, and represents one of the most important
tsunamigenic areas in Europe [Baptista and Miranda, 2009,
and references therein]. So far, it is not well understood along
which fault zone(s) such very large earthquakes occur. The
NEAREST experiment investigates lithospheric structure and
seismotectonics in this complex plate boundary setting and
the feasibility of a tsunami early warning system. The OBSs
consist of three‐component Guralp CMG‐40T‐OBS seism-
ometers and HighTech HTI‐04‐PCA/ULF hydrophones. A
wide range of signals was recorded, including teleseismic,
regional and local earthquakes, and low‐frequency (∼20 Hz)
vocalization of fin whales [e.g., Rebull et al., 2006].
[3] Present day tectonic deformation in the area is con-

ditioned by oblique WNW‐ESE convergence of the Nubian
and European plates at a rate of 4‐5 mm/year [Serpelloni et
al., 2007]. According to present knowledge, most of the area
is underlain by either oceanic crust or exhumedmantle of Late
Jurassic to Early Cretaceous age that has been reactivated in
a transpressive deformation style since the Late Cretaceous
[Sartori et al., 1994;Rovere et al., 2004; Zitellini et al., 2009],
leading to rough bathymetry with alternating abyssal plains
and submarine ridges (Figure 1). Seismicity is more intense in
the northern part, spanning from the Gorringe Bank to the
Guadalquivir Bank Fault at the SW Iberian continental mar-
gin (Figure 1). To the south, the most seismically active areas
seem to be limited by a set of sub‐parallel dextral strike‐
slip faults that form a narrow band of deformation (SWIM
Fault Zone), proposed to represent a nascent plate‐boundary
developing between Eurasia andAfrica [Zitellini et al., 2009].
Available earthquake focal mechanisms show a high degree
of heterogeneity with mainly reverse and strike‐slip faulting
style and average P‐axes orientation near NW‐SE [Grimison
and Chen, 1986; Buforn et al., 1988; Stich et al., 2005, 2010;
Serpelloni et al., 2007].
[4] In the study area, intermediate deep seismicity is re-

ported in earthquake catalogues, consistent with the expected
mechanical coupling between crust and uppermost mantle in
old oceanic lithosphere [McKenzie et al., 2005]. However,
earthquake locations from distant land stations usually give
poorly constrained depths. First conclusive evidence for sub‐
crustal seismicity down to ∼50–55 km depth in the region
came from the analysis of primary body wave reflections
(depth phases) in teleseismic P‐waves [Grimison and Chen,
1986; Engdahl et al., 1998; Stich et al., 2007], as well as
intermediate period regional waveformmodeling [Stich et al.,
2005]. These techniques are limited to moderate‐to‐large
earthquakes that generate high quality recordings at distant
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sensors. We use the OBS network to obtain accurately con-
strained focal depths for small to moderate local earthquakes
and invert double‐couple focal mechanisms from first motion
polarities.We have approximately tripled the focal mechanism
inventory for upper mantle earthquakes in the area, which
allowed us to identify two different deformation patterns,
leading to a consistent interpretation of regional tectonics.

2. Earthquake Relocation and Focal Mechanism
Inversion

[5] We selected to relocate and retrieve the focal mecha-
nism of the 36 largest events (Table S2) previously located
within the OBS network by IM (Instituto de Meteorologia,
Portugal) through routine analysis of land stations [Carrilho
et al., 2004]. This selection corresponds to the best quality
data set made of recordings with good signal to noise ratio at
short epicentral distances and with good azimuthal coverage.
For relocation, P and S wave arrivals were picked on the
three‐component seismometer and hydrophone recordings.
The internal clocks of the OBS data loggers were synchro-
nized with GPS time before deployment and again after
recovery. A linear time drift correction was applied. We used
the SEISAN software package [Havskov and Ottemöller,

2005] to analyze waveforms and compute earthquake loca-
tions with HYPOCENTER. The velocity model (Table S3) is
based on the work by González et al. [1996] [see Carrara et
al., 2008]. Magnitudes were calculated according to equation
(1) following Carrilho and Vales [2009].

ML ¼ logA� 1:287 logDþ 0:0061D� 2:147 ð1Þ

When comparing the epicenter locations that include OBS
arrival times to the purely land‐based locations published by
several agencies (Figure 2 and Table S4) a large dispersion
is observed and discrepancies exceeding 20 km are not
uncommon. This means that a very cautious interpretation of
routine hypocenter catalogues for this area is essential. The
earthquakes we analyzed concentrate in two distinct clusters
close to the northern and southern terminations of the
Horseshoe fault (Figure 4), which is thought to be a moder-
ately inclined thrust fault [Zitellini et al., 2004]. The northern
cluster shows a general trend close to NNE‐SSW, parallel to
the Horseshoe fault, while the southern cluster shows roughly
a perpendicular, WNW‐ESE trend, corresponding to a strong
spatial and directional consistency with the dextral shear zone
marked by the SWIM lineaments. However, internally the
northern and southern clusters show also sub‐clusters with
WNW‐ESE and NNE‐SSW orientation, respectively.

Figure 1. Swath bathymetry (on top of ETOPO2) and faults [after Zitellini et al., 2009], positions of OBS and land stations
(white triangles), GEOSTAR deep sea observatory (red diamond), and epicenters listed in the bulletin of the Institute of
Meteorology Lisbon (http://www.meteo.pt/en/publicacoes/tecnico‐cientif/noIM/boletins/). GB, Guadalquivir Bank; CSV,
Cape San Vincent; HSF, Horseshoe Fault; MPF, Marquês de Pombal Fault; PB, Portimão Bank; SFZ, SWIM Fault Zone.
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[6] The hypocenter depth was checked for each event by
a systematic RMS‐versus‐depth search with steps of two
kilometers (Figure 2c). Relocated events are systematically
deeper than reported in the IM catalogue, more than 30 km
in several cases. Therefore, previous assumptions on the
relationship of earthquakes and active crustal faults [e.g.,
Zitellini et al., 2001; Neves and Neves, 2009] are not sup-
ported by the new offshore data. We found that for our
selection of earthquakes all except three events occurred in
the oceanic upper mantle, most of them close to 50 km
depth (Table S2). The variation of ±5% of the velocity
model used for earthquake location has minor influence on
the absolute depths of the deep events (<4 km), but a large
effect on the depth estimates for the three shallow events
(∼27 km for event #8).
[7] We compute double‐couple focal mechanisms using

the FOCMEC routine [Snoke et al., 1984] and the maximum
likelihood algorithm (MECSEI) of Brillinger et al. [1980],
based on first motion polarities of the P‐wave interpreted on
the OBS and Portuguese land stations. Using between 8 and
32 polarity picks, we could obtain reasonably‐ and well‐
constrained solutions for 31 events (Figure 3). Faulting
orientations appear heterogeneous, but reproduce the known
general tendencies of NW‐SE oriented P‐axes and predom-
inately reverse and strike‐slip faulting style observed previ-
ously [Grimison and Chen, 1986; Buforn et al., 2004; Stich et
al., 2010]. For the two largest earthquakes (Jan 11 and May

10, 2008), regional moment tensor solutions are available
[Stich et al., 2010]. Moment tensor inversion was based on
land stations only because OBS recordings for strong local
events show severe distortions due to non‐linear instrument
behavior, presumably related to seafloor properties and
coupling problems of the OBS on soft sediments. Source
geometries (Figure 3) agree reasonably well between the two
methodologies. We found two cases of nearly pure normal
faulting in the upper mantle (including the May 10, 2008
earthquake), corroborating similar mechanisms reported
previously [Stich et al., 2005]. Unfortunately, as of yet we
have no explanation for this occurrence.

3. Discussion and Conclusion

[8] Relocation of local earthquakes within the OBS net-
work leads to well‐constrained depth estimates, showing a
pronounced peak at ∼50 km. This is close to the 600°C
isotherm in Late Jurassic to Early Cretaceous oceanic litho-
sphere [McKenzie et al., 2005], which is expected to mark the
base of brittle deformation and the seismogenic layer. In fact,
all except seven earthquakes (Figure 4) concentrate between
40 and 55 km, the depth range of the deepest earthquakes
reported in previous studies [Grimison and Chen, 1986;
Engdahl et al., 1998; Stich et al., 2005, 2007]. Three earth-
quakes are shallow (≤20 km) and four events fall within 55
and 60 km, pushing the seismicity limit slightly downward

Figure 2. (a) Seismogram of the Jan 11, 2008 00:21 event showing P onsets. Phase quality codes 4 and 9 denote onshore
stations not used for event relocation and OBS with clock synchronization problems (only S‐P difference time used), respec-
tively. (b) Epicenters from different agencies in comparison to NEAREST solution. (c) Plot of RMS versus depth used to
determine focal depths. A focal depth around 48 km is inferred from this plot.
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Figure 3. P polarity readings and focal mechanisms for (a) northern and (b) southern clusters. (c) Focal mechanism for two
events east of the Horseshoe Fault.
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compared to previous studies. In our relocations there is a
striking absence of seismicity between 20 and 40 km depth,
compared to more continuous depth distributions reported
previously. We cannot decide yet if the bimodal distribution
is observed by chance due to the mere nature of seismicity
during the OBS deployment period, or if it is a long‐term
characteristic that has been blurred before due to depth errors
of land based locations. Rheological conditions or bending
stresses [Fukao, 1973;Neves and Neves, 2009] might provide
an explanation for the concentration of seismicity at the base
of the brittle layer.
[9] The local OBS network allows estimation of focal

mechanisms also for small magnitude events down to ML
2.2. They are mostly consistent with previous solutions for
moderate to large earthquakes, showing reverse and strike‐slip
faulting and NW‐SE to NNW‐SSE shortening. Significant
heterogeneity of the mechanisms is possibly a consequence
of fault orientation and interaction. There are differences in
the focal mechanism populations between the northern and
southern seismicity clusters, i.e., a more northerly average
P‐axes orientation and a less compressive character in the
southern population (Figure 4). We quantify differences
between the two populations by estimating the average stress
tensors most consistent with observed fault slip orientations,
using a grid search approach (FMSI code) [Gephart, 1990].
The southern cluster is characterized by a strike‐slip regime
with almost N‐S compression (s1 with orientation N351°E/
12°, strike/plunge), E‐W extension (s3 N81°E/2°) and an
axis ratio R = (s1 − s2)/(s1 − s3) of 0.7. Average rotational
misfit for this solution is 2.2°. The northern cluster corre-

sponds to an obliquely oriented compressive regime, with s1
at N103°E/26°, s3 at N221°E/43°, axis ratio R = 0.3, and
average misfit of 4.6°.
[10] The different characteristics of the two seismicity

clusters indicate different roles of either activity in accom-
modating regional transpressive strain. Compression acts in
the northern cluster, trending perpendicular to present‐day
plate convergence and placed beneath the SW Iberian con-
tinental margin. A strike‐slip regime acts in the southern
cluster, trending parallel to plate convergence. These dif-
fering regimes have two interesting implications for regional
tectonics. Firstly, location, trend and stress conditions for the
southern cluster provide evidence for present‐day activity of
a steep dextral shear zone associated with the recently dis-
covered SWIM lineaments [Zitellini et al., 2009], which have
been proposed to represent the Eurasia‐Africa plate contact.
Secondly, our findings suggest that regional tectonics is
characterized by slip partitioning. That is, oblique shortening
due to African‐Eurasian plate convergence is accommodated
by an interplay of shortening approximately parallel to the
relative plate motion (capable of loading large reverse faults
like the Horseshoe fault, and generating large tsunamogenic
events like the 1755 earthquakes), and strike slip motion
approximately parallel to the plate boundary (loading strike
slip faults and generating less tsunamigenic earthquakes).
More work is needed in order to assess the validity of our
conclusion.
[11] The study shows the necessity to study the seismic

activity of lithospheric‐scale oceanic fault zones by means
of OBS networks, since detailed information can be gained

Figure 4. Double‐couple focal mechanisms linked with new epicenter locations. Focal depths <20 km (yellow dots), 40 to
55 km (red), and >55 km (pink) are indicated. Ellipses outline the discussed clusters. Bathymetry and faults after Zitellini et
al. [2009]. Insets: stereographic misfit plots of the grid‐search for s1 for the northern (N) and southern (S) clusters; blue
triangles mark the best solutions for s1.
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on hypocenter locations and fault kinematics. We report
activity of deep lithospheric structures, providing comple-
mentary information to our understanding of shallow faults
zones interpreted from swath bathymetry and reflection
seismic studies. Different faulting styles associated with slip
partitioning, and seismogenic mantle rheology should have
consequences on the future risk evaluation and early warn-
ing strategies in the Eastern Atlantic.
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