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Abstract— This paper presents analysis of kinematic data of
tremor patients while performing different tasks with Ensemble
Empirical Mode Decomposition (EEMD), a novel noise–assisted
data analysis method. EEMD automatically separates raw
kinematic data into three components: 1) noise from various
sources, 2) tremulous movement, and 3) voluntary movement.
Comparison of this technique with other decomposition meth-
ods such as recursive forth and back filters or Empirical Mode
Decomposition (EMD) shows a better performance; EEMD
separation of tremor diminishes EMD error in a 45.2 %
(mean error 0.041± 0.036 rad/s). Moreover, postprocessing of
EEMD separated tremor allows the calculation of the Hilbert
spectrum, a high resolution time–energy–frequency distribution
that improves analysis of tremors.

I. I NTRODUCTION

Tremor, defined as a rhythmic oscillatory activity of body
parts [1], constitutes the most extended movement disorder.
Although tremor is not life threatening, it is source of
both functional disability and social embarrassment. It is
accepted that tremor is generated by different combinations
of four physiologic mechanisms: 1) oscillations due to central
generators, 2) oscillations because of distorted feedbackor
feedforward loops, 3) oscillations based on reflexes, and
4) mechanical oscillations, [1]. Nevertheless, the specific
pathophysiology of the different disorders that cause tremor
is yet far from completely understood, making misdiagnosis
exceedingly common, [2]. This fact encourages research in
novel analysis and modeling techniques.

From a data analysis perspective, tremor time series are
typically studied employing methods based on Fourier anal-
ysis. This approach has many drawbacks related to the lin-
earity and stationarity hypotheses inherent to Fourier spectral
analysis, because tremors constitute time varying phenomena
[3], which can be formulated as nonlinear stochastic pro-
cesses, [4]. Traditional assessment with amplitude spectra
may yield confusing results because, for example, it is hard
to interpret whether different peaks represent coexistence
of separate tremor mechanisms, or appear due to frequency
fluctuations, [5]. Alternate approaches such as spectrograms
built upon overlapping Short Time Fourier Transforms, or
the Weighted Frequency Fourier Linear Combiner [6], yield
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more reliable results; the former provides a time–amplitude–
frequency representation of the signal, whereas the latter
tracks instantaneous tremor amplitude and frequency adapt-
ing to their variations, but assuming that tremor is due to an
unique oscillator.

In a recent work, [3], we have proposed the use of
Empirical Mode Decomposition (EMD) as a novel technique
for the study of kinematic tremor data. EMD is a data driven
sifting (decomposition) technique that makes no a priori
assumptions on the input signals [7], thus it is suitable for
the analysis of nonlinear and non–stationary processes. The
output of EMD is a number of intrinsic mode functions
(IMFs) that admit well–behaved Hilbert transform, allow-
ing for precise representation in the time–energy–frequency
domain, the so called Hilbert spectrum. In [3], it was demon-
strated that EMD automatically separates joint rotation into
concomitant voluntary and tremulous components with very
small discrepancy when compared to manual decomposition
with recursive forth and back filters.

This article presents the application of Ensemble Empirical
Mode Decomposition (EEMD), a new improvement to the
original EMD algorithm that relies on sifting an ensemble
of white noise–added signal [8]. This approach overcomes
mode mixing, understood as: 1) having IMFs that consist
of signals of widely disparate scales, or 2) a signal of a
similar scale residing in different IMF components. The latter
phenomenon is of pivotal importance when analyzing some
tasks carried out by tremor patients, because wrist motion
during activities of daily living (ADL) may have a part
of their energy around 4–5 Hz, close to tremor frequency,
which typically lies between 3 and 12 Hz [1] (although the
predominant peak of voluntary movements during ADL is
between 0.48 and 2.47 Hz [9]).

Hence, here we present decomposition of tremor time
series with EEMD, and compare the results obtained with
those provided by EMD. Our results indicate that EEMD out-
performs EMD by decreasing the Filtered Mean Square Error
with Delay correction,FMSEd, a metric for quantification of
tremor estimates [10] by a 45.2 %, yielding a mean error of
0.041± 0.036 rad/s. We also found a discrepancy with the
results in [3]: tremor decomposition with EEMD typically
indicates that tremor appears in more than one component,
which may be related to the presence of different oscillators
in the tremor genesis.

II. M ATERIALS

This paper presents data from four patients, two of them
suffering from Essential tremor (ET), one from Parkinson’s
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Fig. 1. Wrist rotation recorded during continuous execution of the finger to nose test by patient A. Fig. (a) shows the original signal together with the
first four components provided by EEMD, whereas (b) shows components five to nine, both included.

disease (PD), and one from Extrapyramidal Syndrome (ES).
Both ET patients (patients A and B) had unilateral postural
and kinetic tremor of mild severity, i.e. grade 2 according to
Faher scale. The PD patient (patient C) had bilateral rest and
postural tremor of grades 3 and 1 respectively. Finally, theES
patient (patient D) had bilateral rest and postural tremor of
grades 2 and 1 respectively. Medications were continued at
the time of the recordings. The Ethical Committee at Hôptial
Erasme gave ethical approval for this study.

During the measurements, patients were comfortably
seated on a chair. Each patient performed three repetitions
of four tasks; three of them selected because they activate
different types of tremor, while the last one was included
regarding functional analysis. The tasks were: 1) holding
both arms against gravity (AG), 2) resting the arm on the
lap (RE), 3) touching the nose and knee alternatively with
the fingertip (NK), and 4) pouring water from a bottle into
a glass (WG). Average task duration was∼ 30 s.

Wrist tremor was assessed with inertial sensors. We em-
ployed differential measurement of hand and forearm rotation
to obtain wrist flexion extension, as described in previous
works, [11], [3]. Inertial sensors employed (TechMCS, Tech-
naid S.L., Madrid, Spain) have small size (27 x 35 x 13 mm)
and low weight (27 g), fundamental requirements for this
kind of application.

III. D ATA ANALYSIS

EMD is an iterative technique that sifts an input signal into
a finite number of IMFs, a series of functions that satisfy
two conditions derived from the notion of instantaneous
frequency as defined in [7]: 1) in the whole data set the
number of extrema and zero crossings must be the same

or differ by one, and 2) at every point, the mean value
of the envelop defined by the local maxima and the local
minima must be zero. As the so called sifting process is
iterative, once the first IMF is extracted, the residual is sifted
to generate the second IMF. This procedure continues until a
certain stop criterion is fulfilled, typically defined as thesize
of the standard deviation of two consecutive sifting results
[7], [3].

EEMD extends EMD by incorporating the concept of
noise–assisted data analysis, understood as adding white
noise with a certain covariance to the input signal. The effect
of this added white noise is to provide a uniform reference
frame in the time-frequency space [8]. This operation obvi-
ously yields noisier results, but the ensemble mean obtained
after repeating it a number of times (typically a few hundred
times) cancels out the added noise, thus providing the true
answer. The improvement with respect to EMD is that by
adding finite noise, EEMD eliminates mode mixing while
preserving the uniqueness of decomposition. Note that the
components provided by EEMD are not necessarily IMFs,
as they are obtained as the ensemble mean of a number of
IMFs. Therefore, to analyze the resulting components with
the Hilbert transform, postprocessing with EMD is required
[8].

EEMD has two parameters that need to be selected, the
number of ensemble,N , and the noise amplitude,ǫ. The
former indicates how many siftings of white noise added data
are executed before obtaining the ensemble mean, whereas
the latter defines the covariance of the added noise. Both
parameters provide the final standard deviation of error,ǫn:

ǫn = N
−

1

2 ǫ (1)
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Fig. 2. EEMD decomposition of raw motion (top plot) in concomitant
tremorous (middle plot) and voluntary movements (bottom plot), during
a finger to nose test performed by patient A. Noise originatedfrom the
technique itself, sensor noise and skin fixation is removed by not considering
the first three sifted components.

This work evaluates EEMD for automatic extraction of
tremor sources embedded in joint rotations during execution
of a certain task, and compares it with EMD. To allow
for a reliable comparison, in both techniques the same
Cauchy type stoppage criterion is used [7], [8]. Assessment
is based on theFMSEd [10], a figure of merit specifically
designed to assess tremor filters. TheFMSEd consists in first
aligning the estimated tremor with the reference signal, and
afterwards computing the delay corrected estimation error
(2). Reference tremor is obtained by executing a non causal
recursive forth and back filter as in [3].

FMSEd = E

[

sk − t
k−d̂k

]2

(2)

Where sk represents the reference tremor signal to be
estimated, andt

k−d̂k
stands for the delay compensated

tremor estimation. Instantaneous delayd̂k is calculated by
means of an adaptive algorithm that minimizes the mean
square error function based on a LMS like recursion.

In this study, we analyse both with EMD and EEMD
data of all four patients executing the tasks described above.
EEMD parameters are set to:N = 100, ǫ = 0.2, which
yields very small standard deviation of error,ǫn = 0.02.

IV. RESULTS

Fig. 1 shows decomposition of wrist motion with EEMD
during continuous execution of the finger to nose test by pa-
tient A. We observe that the three first components are related
to noise originated from: 1) the white noise added because
of the noise assisted nature of the technique, and 2) intrinsic
gyroscope noise (which is also modeled as white noise, [12]).
We hypothesize that component three also captures artifacts
due to skin fixation, as evident peaks appear only at certain
moments during execution of voluntary movement. Addition
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Fig. 3. Comparison of EMD and EEMD sifting of the signal shownin
Fig. 1. The top plot shows reference tremor, whereas the middle and bottom
panels depict EMD and EEMD sifting (blue) and their correspondent errors
(red).

TABLE I

PERFORMANCE OFEMD AND EEMD FOR AUTOMATIC DECOMPOSITION

OF TREMOR KINEMATIC DATA IN TERMS OF AVERAGEFMSEd (RAD/S).

Patient Technique Task
AG NK RE WG

A EMD 0.038 0.187 0.021 0.109
EEMD 0.022 0.139 0.009 0.064

B EMD 0.060 0.094 0.021 0.113
EEMD 0.030 0.072 0.013 0.057

C
EMD 0.011 0.045 0.028 0.113
EEMD 0.007 0.034 0.016 0.057

D
EMD 0.024 0.190 0.090 0.056
EEMD 0.014 0.082 0.015 0.027

of components four to six represents tremor, whereas the
sum of all the remaining ones (components seven to fifteen,
some of them not shown here) yields concomitant voluntary
motion, Fig. 2. Noise introduced by the technique itself and
by the measurement setup is filtered out automatically by
EEMD, because it corresponds to the first three components.

Comparison of EMD and EEMD for the same example,
indicates that sifting of the signal with EEMD outperforms
EMD, Fig. 3. In this case, EEMD provides aFMSEd =

0.132 rad/s, versus 0.222 rad/s for EMD. Table I summarizes
theFMSEd per patient and task for both techniques. We ob-
serve that EEMD performs better than EMD as it diminishes
theFMSEd by a 45.2 %, yielding a mean error of 0.041±
0.036 rad/s.

V. D ISCUSSION

Previous sections presented analysis of tremor kinematic
data with EEMD, a recent extension of EMD that consists
in sifting an ensemble of noise added signal. The major
advantage of this approach is that it avoids mode mixing,
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Fig. 4. Hilbert Spectrum (b) of the postprocessed EEMD tremor estimation
during continuous execution of the finger to nose test by patient B (a).

which is of pivotal importance when analyzing relatively fast
tasks carried out by tremor patients. As a matter of fact, mode
mixing makes EMD identify fast voluntary movements as
a constituent of moderate frequency tremors, degrading the
performance of the method. A task that exemplifies this in
our protocol is the finger to nose test (NK): Fig. 3 shows
that EMD includes a relatively fast voluntary movement
in the intrinsic mode function that describes tremor, IMF1

(time ∼ 10 s), while EEMD ignores it and thus yields
a better decomposition of movement. Similar phenomena
are observed in all repetitions of this task, and also during
the pouring water into a glass test (WG); Table I shows
significant reduction in theFMSEd for both of them. General
improvement of EEMD based separation with respect to
EMD is also due to the intrinsic ability of the former to
handle data containing white noise, because the ensemble
mean not only removes the added noise, but also sensor noise
and small vibrations due to skin fixation. These constituents
are included in the first three EEMD components, Fig. 1.

Data analysis yields that, on the contrary to EMD, EEMD
estimation of tremor is contained not in one, but in three
components. We hypothesize that this may be related to
different oscillators underlying tremor generation [13].We
plan future research on this topic.

As mentioned in Section III, analysis of EEMD separated
tremor with the Hilbert transform requires previous sifting
with EMD to generate IMFs. We have thus postprocessed
the sum of the three components that cause tremor to obtain
the Hilbert Spectrum (HS). Fig. 4 shows the HS during a
finger to nose test carried out by patient B. Fluctuations
in tremor frequency are well captured by the postprocessed
EEMD tremor estimation. We observe that high frequency
intervals coincide with movements (when kinetic tremor
appears), whereas low frequency intervals are related to the
maintenance of a posture, i.e. when the finger is touching the
nose tip. This agrees with the neurological examination that
reports 3 Hz postural tremor and 7 Hz kinetic tremor. The

example illustrates the potential of analyzing EEMD tremor
with the Hilbert transform.

VI. CONCLUSIONS

This paper presented the analysis of tremor kinematic data
with EEMD, a recent improvement to EMD, and compared
their performance when separating tremor from concomitant
voluntary movement. Evaluation with data from four tremor
patients shows that EEMD outperforms EMD by reducing
the FMSEd, a figure of merit to assess the performance
of tremor estimation algorithms, by a 45.2 %, yielding an
average error of 0.041± 0.036 rad/s. We believe that the
cause of this is twofold: first, the intrinsic noise–assisted
nature of EEMD makes it remove noise from the original
signal, therefore eliminating it from the tremor estimation;
second, EEMD avoids mode mixing, which is troublesome
in tasks that involve relatively fast voluntary movements,
as the finger to nose test. Postprocessing of EEMD tremor
components allows computation of the HS, a time–energy–
frequency representation of the signal that provides better
resolution than traditional analysis based on spectrograms.
In our opinion, this technique may help to understand better
the components of tremors.
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