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Chaos and anomalous diffusion of adatoms on solid surfaces

R. Guantes, J. L. Vega, and S. Miret-Arte´s
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The microscopic diffusional dynamics of Na adatoms on a Cu~001! surface is modeled by the classical
deterministic motion of a particle from a two-dimensional periodic potential previously fitted to the experi-
ment. Depending on the energy of the particle, a series of chaotic transitions take place determining transport
properties of the system. Two different regimes of diffusion, anomalous and normal, are reported and related to
the chaotic dynamics. Simple periodic orbits are responsible for frustrated vibrational motions as well as
unusual high rate of migration paths along particular directions. The connection between Le´vy flights and the
principal periodic orbits of the system is established, as well as the validity of some statistical models proposed
to describe the anomalous diffusion process. The influence of noise and dissipation on this dynamics is also
briefly discussed.
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I. INTRODUCTION

One of the most important elementary dynamical p
cesses occurring on surfaces is the diffusional motion
atomic and molecular adsorbates. Diffusion of adsorbate
a preliminary step in more complicated surface phenom
such as, for example, associative desorption and heter
neous catalysis, and strongly affects their overall efficien
A detailed knowledge of the diffusion mechanisms, as w
as the influence of the potential energy surface~PES! on the
vibrational and diffusional dynamics of the adsorbates is
important question that needs increasing efforts both at
perimental and theoretical level.

Present day technology allows for accurate experime
determination of diffusion coefficients as well as vibration
frequencies of adsorbates. Experimental techniques w
can directly probe the microscopic dynamics, such as fie
ion microscopy and scanning tunneling microscopy, ha
good atomic resolution but are restricted to relatively lo
diffusion mobilities (D;1029 cm2/s). Recently, the tech
nique of quasielastic helium-atom scattering~QHAS!1 has
emerged as a valuable and alternative tool for studying
dynamics of adsorbates. This method could be considere
the counterpart surface technique of the well-known met
of quasielastic neutron scattering2 used to study diffusion in
the bulk, and allows one to follow the atomic motion co
tinuously on an atomic length- and time-scale by probing
diffusing species with a beam of helium atoms. In analo
with the theory of liquids, the ensemble of diffusing classic
particles is described by a time-dependent pair-correla
function3 whose Fourier transform, the dynamic structu
factor, is directly provided by the QHAS experiment leadin
therefore, to a complete information on the dynamical beh
ior of the system. Additional dynamical aspects can also
extracted from such measurements in order to discrimin
diffusion mechanisms and establish the role of long jump
the diffusion process.

The diffusion of Na atoms at low coverages on a Cu~001!
surface has been recent and extensively investigated ex
mentally with the QHAS technique, as well as theoretica
within the Langevin and Fokker-Planck formalisms.4,5 We
think that this system could be considered as a good pr
0163-1829/2001/64~24!/245415~11!/$20.00 64 2454
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type for further developments and investigations of t
theory. At low coverage of Na atoms, the adsorba
adsorbate interactions can be disregarded and the c
sponding experimental features have been interpreted on
terms of the adsorbate-substrate interaction governed b
nonseparable PES, whose parameters were fitted to ex
mental results using molecular dynamics simulations.5 In the
first theoretical treatments of this system,4,6 a simple sepa-
rable cosine potential was chosen for the PES which co
not explain all the experimental findings, in particular, t
marked anisotropy in diffusion along different directions.

On the other hand, the study of transport properties
Hamiltonian systems is being the subject of increasing in
est and fast developments.7,8 It has been widely demon
strated that a deterministic chaotic dynamics can mimic
dynamics of a rich variety of stochastic processes. Amo
many other important questions, the connection between
phase space structure of a Hamiltonian system and the
servation of anomalous diffusion processes and Le´vy flights
is one of the most interesting topics.9 Anomalous diffusion is
characterized by mean squared displacements diver
faster than linearly in time and it is a generic phenomen
appearing in conservative as well as dissipative systems.
cesses occurring in fluid dynamics and semiconductor mic
structures are some examples where anomalous diffusion
been shown to play an important role.9,10 The term Lévy
flight is used to indicate a random walk in a continuo
n-dimensional space displaying a stable or Le´vy distribution
of jump lengths and an average finite time between jum
Opposite to the Brownian motion, which relies on the cent
limit theorem establishing a Gaussian distribution as the l
iting distribution of the sum of a very high number of ind
pendent and identically distributed random variables, the
called Weierstrass random walk is characterized by limit
stable or Le´vy distributions,11 whose distinguishing property
is the presence of long-range power law tails which may le
to a divergence of even the lowest-order moments.

In this paper our aim is threefold. First, to carry out
detailed investigation of the classical regular and chaotic
namics of the Na particles~neglecting friction and therma
effects! on the Cu~001! surface to establish some basic m
croscopic mechanisms by which deterministic diffusion p
©2001 The American Physical Society15-1
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ceeds. Second, to reconsider the importance of long ju
and the high rate of diffusion paths along the direction di
onal to the saddle point barrier, as suggested by the exp
ments, in the light of the classical dynamics. And third, fo
lowing studies of deterministic diffusion in other period
potentials12–14 we will show that, in the Na/Cu~001! poten-
tial, anomalously enhanced diffusion can take place due
the existence of long jumps influenced by a hierarchy
stable periodic orbits associated to diffusive motions of
adparticles. Depending on the energy regime considered
stabilities of some simple periodic orbits originate a com
tition between long free motions which promote the diffusi
and trapped vibrational motions inside the potential we
and this makes the adparticles behave in a similar manne
a Weierstrass random walk.

The paper is organized as follows. In the next section,
describe very briefly the basic theory relating the diffusi
coefficient to observables such as the dynamic structure
tor and the power spectrum, as well as the model emplo
in the calculations. In Sec. III, a detailed analysis of t
classical dynamics of the system as we change the ener
carried out. The calculation of mean squared displacem
and velocity power spectra shows the existence of dist
diffusion mechanisms giving rise to anomalous and norm
diffusion. Some statistical models proposed to explain
anomalous diffusive dynamics in terms of Le´vy flights are
also tested. Finally, in Sec. IV, a physical discussion relat
our findings to the actual knowledge of this system, wher
complete study has been carried out in Ref. 5, and so
conclusions are reported.

II. THEORY AND MODEL POTENTIAL

A. Theoretical formulation for atom-surface diffusion

The quantity measured in QHAS experiments is the d
ferential reflection probability~the probability of a projectile
helium atom to be scattered from the diffusing collective in
a certain solid angleV with an energy exchange\v) which
is given by the following expression:1

d2R~DK ,v!

dVdv
5ndF2E E G~R,t !ei (DK•R2vt)dRdt, ~1!

whereDK is the wave vector transfer parallel to the surfa
nd the diffusing particle concentration on the surface, andF
the atomic form factor depending on the interaction poten
between the He atoms and the adparticles. The double
gral in the right part of Eq.~1! is the dynamic structure facto
S(DK ,v). The dynamical information is contained in th
time-dependent pair correlation functionG(R,t) which is the
ensemble averaged probability density of finding an atom
the positionR at timet, given that an atom was at the orig
at some arbitrary timet50. At low adatom concentrations
when interactions between adsorbates can be neglected
G function is only described by the so-called ‘‘self-part
that is, the dynamics for a single diffusing particleG(R,t)
[Gs(R,t). Then Gs(R,t) obeys a Fokker-Planck equatio
for one particle moving in a periodic potential under t
influence of temperature and friction~a Klein-Kramers
24541
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equation15! or, equivalently, the dynamics of the individua
atoms is also given by a Langevin equation of the type

mR̈52¹V~R!2hṘ1Fr~ t ! ~2!

with m the mass of the adparticles,h the friction coefficient,
Fr(t) a random fluctuating force with zero mean and del
correlated in time andV(R) the adiabatic adsorption poten
tial. A procedure employed to obtain such a potential h
consisted in starting with a model potential containing so
adjustable parameters, and solving the above Langevin e
tion for different friction coefficients to reproduce the expe
mental QHAS measurements.5 For this end the dynamic
structure factor is better expressed as

Ss~DK ,v!5E dte2 ivt^e2 iDK•R(t)eiDK•R(0)&

5E dte2 ivtI s~DK ,t !, ~3!

where the brackets in the integral denote an ensemble a
age. The intermediate scattering function for the self-p
I s(DK ,t) is just the spatial Fourier transform ofGs(R,t).
Scattering at smallDK provides information on long dis
tance correlations and He atoms are mainly sensitive to
macroscopic continuous diffusional motion of the adatom
Assuming a random continuous motion on a flat surfa
corresponding to a Brownian dynamics, the time-depend
pair correlation functionGs(R,t) is a Gaussian distribution
~the solution of a diffusion equation! for which the dynamic
structure factor gives a Lorentzian function

Ss~DK ,v!5
1

p

DDK2

v21D2DK4
~4!

and the diffusion coefficientD can be extracted from the ful
width at half maximum~FWHM! G52DuDK2u. It is worth
noting that strictly speaking the dynamic structure fac
comes from the solution of a Klein-Kramers equation. Th
has been numerically solved for one-dimensional and tw
dimensional periodic potentials6,16 and, under some approxi
mations, the dynamic structure factor can still be conside
as Lorentzian but the FWHM has a more complicated fu
tional form than theDK2 dependence. Assuming a jump di
fusion model,17 this functional form can be related to th
total jump rate and jump probabilities. This model is va
whenever the diffusion is a thermally activated process.
the low friction and low temperature regimes, the Lange
equation~2! reduces to Newton’s classical equations of m
tion, and the diffussion becomes a process controlled
Hamiltonian dynamics, which will give rise to different dif
fusion mechanisms as explained in the next section.

Another quantity directly related to the diffusion coeffi
cient is thevelocity power spectrum, or Fourier transform of
the velocity autocorrelation function defined as

Z~v!5E
2`

`

^v~ t !•v~0!&e2 ivtdt. ~5!

The diffusion coefficient is simply~in two dimensions!
5-2
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D5
1

2
Z~v50!. ~6!

When diffusion is normal, the velocity power spectrum
should converge to a finite value asv tends to zero. On the
other hand, a divergence of the power spectrum likev2a

with 0,a<1 is the fingerprint ofanomalousdiffusion.9

Anomalous diffusion can also be identified from differe
quantities such as the mean squared displacement~MSD!
which asymptotically grows faster than linearly in tim
^R2(t)&;t11a. The velocity power spectrum is convenie
since it can be simply related to the self dynamic struct
factor. It has been shown3 that the velocity autocorrelation
function and the intermediate ‘‘self-scattering’’ function fu
fill the following expression:

^v~ t !•v~0!&52 lim
DK→0

1

DK2

d2I s~DK ,t !

dt2
~7!

and by Fourier transforming both sides we obtain the rela

Z~v!5v2 lim
DK→0

Ss~DK ,v!

DK2
. ~8!

Note that, for normal diffusion, the limitDK→0 of the ratio
Ss(DK ,v)/DK2 should behave asD/v2 for smallv accord-
ing to Eq. ~6!. The Lorentzian function in Eq.~4! gives the
expected limitD/v2. For anomalous diffusion, Eqs.~4! and
~8! above should be generalized taking into account t
Gs(R,t) is not a Gaussian distribution, as explained in S
III B.

B. Potential energy surface

The systematic or adiabatic force representing the in
action of the Na atoms with the Cu surface is derived from
semiempirical potential as given in Ref. 5, whose m
features we describe here. Since the vibrations of the
adatoms normal to the surface have a much hig
frequency18 than those parallel to the surface~the frustrated
translational mode orT mode!, the perpendicular coordinat
z can be fixed and the PES has been considered as b
averaged over the normal vibrations. Therefore the poten
is a two-dimensional function of only the in-plane coord
natesx andy.

From theoretical calculations of the dynamic structu
factor at differentDK and temperatures as measured by
QHAS technique,5 a periodic potential has been fitted to th
form

V~x,y!5V0~x,y!1V1~x,y!1V2~x,y!. ~9!

The first term is a simple separable cosine potential

V0~x,y!5V0@22cos~2px/a!2cos~2py/a!#, ~10!

where a is the lattice constant of the Cu~001! surface (a
52.557 Å), andV0541.4 meV. The second term is adde
to produce a lowering of the potential barrier at on-top si
according to the observations
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V1~x,y!52A(
m,n

expX2bH Fx/a2S m1
1

2D G2

1Fy/a2S n1
1

2D G2J C ~11!

with A52V0 andb511.8. Finally, the third term is a non
separable part which serves to alter the curvature near
minima and vary the difference between the potential at
minima and the bridge positions

V2~x,y!5CV0p2(
m,n

@~x/a2n!21~y/a2m!2#

3exp@2~x/a2m!22~y/a2n!2# ~12!

with C520.2. Note that for a periodic potential, the sums
Eqs. ~11! and ~12! must run over the entire set of intege
pairs (m,n). In practice, for the classical trajectory simul
tions, we reduce the dynamics to a single Wigner-Seitz
by imposing periodic boundary conditions and the sum o
Gaussians is truncated up to some few terms~typically m and
n vary between210 and 10!. In Fig. 1 we show a 3D plot of
the corresponding PES. Thex and y directions are taken
along the azimuths with Miller indices@11̄0# and @110#, re-
spectively. The energy zero is taken at the minima of
potential wells corresponding to hollow sites. The sad
point barrier along thex or y directions is at 74.64 meV, an
the saddle point barrier along the diagonal@100# or @010#
azimuths is at 84.49 meV. The small minima on the poten
truncated hills correspond to on-top sites above the cop
atoms and are at energy 82.74 meV. As will be shown la
they will be responsible for the anomalously high rate
migration paths along the diagonal@100# direction detected
in the experiment.5 The maxima at the top hills are located
85.51 meV.

An important feature of the present PES is its nonsepa
bility, as opposed to a previous PES used to reproduce
experiments.4 The nonseparability of the adiabatic potent

FIG. 1. Two-dimensional semiempirical potential. The zero
the energy axis is taken at the energy of the hollow sites min
(x5y50,6a, . . . ). Thex,y directions correspond to the@11̄0# and
@110# azimuths, respectively, and the barrier for motion along t
direction is 74.64 meV. The diagonal directions have Miller indic
@100# and @010# and the energy barrier is at 84.49 meV.
5-3
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can influence considerably the occurrence of long jumps
the dependence of the diffusion coefficient with friction.19

III. DETERMINISTIC DIFFUSION

A. Chaotic dynamics

Here we analyze in detail the classical dynamics of
system at different energies. Below the saddle-point bar
at Es574.64 meV, we have only localized, intra-well mo
tions. Between this energy value and the maximum at on
sites Emax585.51 meV, Na atoms diffuse along thex or y
directions with a predominance of long paths interrupted
episodes where the particle is trapped for a while insid
well. ForE.Emax, the particle can in principle diffuse freel
although we will also see that coexistence of long jum
with trapped motions persist for some ranges of energy. W
increasing energies,E@Emax, an integrable~free particle!
problem is approached. This will happen to be the case
energies greater than 200 meV. Indeed, what is observed
energies not too high aboveEmax is a more irregular dynam
ics than those for energies closer to the saddle-point bar

The study of the phase space structure begins usually
the analysis of the Poincare´ surface of section, which is a
mapping of the phase space obtained by means of kee
fixed one of the dynamical variables at a constant value.
Poincare´ surface of section gives a qualitative idea of t
degree of irregularity at a given energy. To obtain a m
complete view of the dynamics at any energy, one can loc
the most relevant periodic orbits of the system and foll
their evolution~changes of stability and bifurcations! with
energy.20 The main families of periodic motion usuall
emerge from the equilibrium points of the potential.21 As we
vary the energy, a periodic orbit can bifurcate~generate new
periodic motions! and change its stability. The stabilities o
the periodic motions are important since they determine
behavior of the nearby classical trajectories, thus dividing
phase space into regular and chaotic regions. It is w
known that the dynamics of hyperbolic chaotic systems~all
periodic orbits are unstable! is equivalent to a usual random
walk dynamics~Brownian motion!7 and then diffusion is ex-
pected to be normal. Coexistence of regular and chaotic
namics can give rise to different diffusion regimes, includi
anomalous diffusion, and the completely regular or in
grable situation is expected to produce ballistic diffusion~the
MSD grows asymptotically ast2) since the trajectories fol
low almost unperturbed straight paths.

The stability and possible bifurcations of a periodic or
can be found by calculating the trace of the so-called sta
ity or monodromy matrixM ~the Jacobian matrix of the dy
namical evolution relating the position and momentum va
ables at timet with the corresponding at the origin of time!.22

A periodic orbit is said to be stable ifuTrM u<2, and unstable
if uTrM u.2. The trace of the stability matrix aftern iterations
of the Poincare´ map can be related to the trace for one ite
tion as23

TrMn52 cosFnH arccos Tr
M1

2 J G ~13!
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for stable orbits, whereas for the unstable ones the co
function is replaced by the hyperbolic cosine function. B
cause a new periodic orbit of periodn can appear~or one
existing dissappear! only when TrMn52, from Eq.~13! we
have that the possible bifurcations of periodn from a single
period motion are given when

TrM152 cos
2pm

n
~14!

with m an integer number such that the argument of
cosine is modulop. Unstable orbits do not bifurcate but the
can change their stability. The possible types of bifurcatio
for two-dimensional Hamiltonian systems are only five24 but,
for our purposes, the most important one is the peri
doubling bifurcation (TrM1522) which changes the stabil
ity of the period 1 motion.

Three principal periodic motions arise from the minima
the potential wells at hollow sites. They are depicted
illustration in Fig. 2 atE580 meV~above the diffusion bar-
rier! restricted to the Wigner-Seitz cell. One is an orbit p
allel to thex direction or, equivalently, they direction~due to
the symmetry of the potential, all periodic orbits with a r
flection symmetry by the planex50 have their counterpar
in orbits with reflection symmetry byy50). For energies
below the saddle-point barrier, this orbit represents a fr
trated parallel translation, but forE.Es it describes free
drifting motions along thex or y directions. Because the
frequencies of these two modes are degenerated, they ca
added or substracted to give also two normal modes al
the @100# or @010# azimuths~the diagonal directions!. Note
that the PES has also a reflection symmetry by thex5y or
x52y planes. This periodic orbit is localized forE
,84.49 meV and free above this energy. Finally, a circu
type orbit, analogous to a frustrated rotation, also starts fr
the hollow minimum. This orbit describes a localized moti
inside the potential well even at energies greater thanEmax,
and it is responsible for the intrawell dynamics. We can u
derstand the motion of the circular orbit at low energies a
combination of the frustrated translations alongx andy with
different phases, in analogy with the problem of norm

FIG. 2. The main period 1 periodic orbits of the system atE
580 meV, restricted to the Wigner-Seitz cell. The equipoten
line at this energy is also shown.
5-4
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FIG. 3. Trace of the stability matrix of the
principal motions as a function of the energy.~a!
Circular orbit. A sequence of bifurcations~from
period doubling at TrM1522 until period 15! is
marked with solid thin lines. The arrows indicat
the opening of energetic barriers (Es574.6 and
Emax585.5). ~b! Parallel drifting motion. The en-
ergy Es is marked with an arrow.~c! Diagonal
diffusive motion. The arrow points to the energ
of the on top saddles at 84.49 meV. In all of the
the stable orbits are plotted with solid lines an
the unstable ones with dashed lines.~d! Poincare´
surface of section atx50, E580 meV showing
the stability region originated by the stable circ
lar orbit ~left and right islands regions! and by the
parallel diffusive motion~center islands chain!.
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modes of vibration.25 The parallel and circular orbits ar
stable inside the well, but the diagonal one is unstable.

Close to the potential minima the system is nearly in
grable, and information about the fundamental frequency
localized motions can be obtained by semiclassical quan
tion of the parallel translations. The Einstein-Brillouin-Kell
quantization condition can be expressed as26

1

2p R
C
~pxdx1pydy!5\S n1

m

4 D , n50,1,2, . . . ,

~15!

where the action integrals are calculated along topologic
independent closed paths defining a torus in phase space
m is the Maslov index which depends only on the topolo
of the classical orbit (m52 in our case!. For the parallel
translations, one of the momenta is always zero and the p
lem is reduced to one dimension, therefore the periodic o
is semiclassically quantized by calculating its action integ
along one period as we change the energy. When the q
tization condition is matched forn50, this will give an es-
timate of the fundamental frequency fromv052E/\. The
value obtained isv056.4 meV which agrees well with the
experimentally determined frequency of theT mode5 ~6
meV!. Note that by calculating energy differences at diffe
ent values ofn in Eq. ~15!, we could also obtain an estima
tion of the anharmonicity by fitting to a first order anha
monic expansion the potential along thex or y directions.
Although experimental measurements of anharmonicity h
not been reported for this problem, such simple models h
been shown to work well for adsorption of CO on a Cu~001!
surface.27

For all of the three periodic motions, the trace of th
stability matrices has been followed with the energy in or
to detect their bifurcations and changes of stability which
reflected in Fig. 3. For the circular orbit,~a! panel, the open-
ing of energetic barriers~indicated by arrows! does not seem
to affect significantly its stability. Indeed, the orbit is qui
stable~solid line! until E;101 meV where it suddenly un
24541
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dergoes a series of bifurcations of decreasing periods. AE
.101.6 meV, a period doubling bifurcation has turned t
orbit very unstable~dashed line!. No more stable localized
motions inside a potential well are visible at higher energi
This is intuitively expected since localization is exclusive
due to the effect of the potential wells and as we increase
energy the trajectories should follow more straight pat
However, it is interesting to see that about 15 meV abo
Emax localized motions are still stable.

For the straight motions along thex, y, or diagonal direc-
tions @~b! and ~c! panels, respectively#, the opening of ener-
getic barriers change their character from localized to diff
ing, although the topology of the orbit remains the same.
the motion along the@11̄0# and @110# azimuths, the orbit is
localized and stable untilE5Es , where it becomes a free
drifting motion. This change in the PES originates an abr
bifurcation@marked with an arrow in Fig. 3~b!# and the sud-
den onset of an infinite sequence of periodic orbits of
periods as the trace of the stability matrix approaches
value 2 @see Eq.~14!#. Diffusing orbits along thex or y
directions with all possible periods are created. Because
main orbit remains stable an island around island structur
expected in the Poincare´ surface of section@see Fig. 3~d! and
Fig. 7#. This will originate a self-similar hierarchy of neste
cantori which has been shown to be a possible mechan
for anomalous diffusion in Hamiltonian systems.12 After the
transition region of abrupt bifurcation, the main orbit conti
ues to be stable untilE589.7 meV, where it suffers a perio
doubling bifurcation. Between this energy andE
5110 meV it remains unstable, and no stable drifting m
tions are seen to occur in the Poincare´ surface of section.
Above 110 meV it turns again to stable and remains so
expected from the approaching to the integrable limit.

For the diagonal motion along the@100# azimuth @Fig.
3~c!# a similar situation is expected, the difference being t
due to the nonseparable term of the potentialV2(x,y) around
the minima, the motion is highly nonlinear in the diagon
direction and the orbit is unstable. The interesting situatio
5-5
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that, when the energetic barrier is open for this orbit to
diffusing ~at E584.5 meV), it coalesces with an orbit of th
same topology originated at the small minima of the on-
sites and which in this case is stable. The abrupt bifurca
originating drifting diagonal motions of all periods is se
again, and the main diagonal orbit isstabilized by the
minima so that for 87.8 meV<E<97.5 meV it is stable, and
then becomes unstable until, atE.150 meV, it starts ap-
proaching the integrable limit. The stabilization of this dia
onal motion will originate long jumps along the@100# and
@010# azimuths, and this is consistent with the experimen
observation that a high rate of diffusing paths along this
rection also exists in addition to the paths across the sa
points along@110# or @11̄0# azimuths.

We note that inside the small potential wells at the on-
sites the same three periodic motions described above
present, but now the parallel frustrated modes are unst
and the diagonal ones are stable. The rotational frustr
motion is also stable only for energies below the on-
maxima~between 82.74 and 85.51 meV!. When this barrier
is opened the motion turns unstable, opposite to what h
pened in the potential wells at the hollow sites. By semicl
sically quantizing the~stable! diagonal periodic motion, we
obtain a fundamental frequencyv0

top;2.4 meV. Although
for the present system the experimental results cannot
clude about the existence of on-top site adsorption, it is
triguing to see that a weaker mode at approximately half
frequency of theT mode has been reported.4 Indeed, there
have been observations of stable on-top bound states fo
tassium on Cu~111! and Ni~111!.28

B. Power spectra and anomalous diffusion

In this section we will analyze velocity power spectra
several energies discriminated by the different dynamical
haviors discussed in the preceding section. Our finding
that, for the small range of energies between the bar
saddle and the top (74.6<E<85.5), anomalous diffusion
dominates due to a trapping mechanism of trajecto
around islands of stability due to long drifting motions. Aft
a transition region around 90 meV in which the transp
properties cannot be unambiguously assigned as norma
enhanced diffusion, normal diffusion takes place due to
increasing chaoticity of the phase space and remains so
E;125 meV. Then we have weakly enhanced diffusi
while approaching the integrable limit where the ballis
diffusion regime readily settles~close to 200 meV!. One of
the aims of the present section is also to relate the anoma
diffusion process to Le´vy flights, testing some statistica
models proposed to analyze chaotic systems. The us
Lévy distributions has also consequences for theDK depen-
dence of the dynamic structure factor.

At 75,E<89.5 meV, both the circular bounded orb
and the open parallel motion along thex andy directions are
stable. Due to this fact, the typical picture of a chaotic t
jectory at these energies will be that of a random wal
performing long free paths alongx or y, interrupted by more
or less long periods of localization inside a unit cell. A tr
jectory at 84 meV is shown in Fig. 4. Such random wa
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have been analytically described by several statistical mo
and shown to lead to Le´vy type distributions and anomalou
transport.29,30 To see that this is also the situation in o
system, we have propagated until long times ensemble
chaotic trajectories~chosen randomly inside the stochas
regions of the phase space! at different energies. Several re
evant correlation functions were calculated, in particular,
velocity autocorrelation function and the MSD, both direc
related to the diffusion constant. In Fig. 5, we present
velocity power spectra as obtained from Eq.~5! at two dif-
ferent energies inside this regime,~a! E584 meV and~b!
E580 meV. At small frequencies~the frequencies have
been rescaled by the harmonic frequency of the poten
well v052pAV0 /ma2), we observe the predicted behavi

FIG. 4. A chaotic trajectory atE584 meV, run until t
;19000 ps. Shown in the inset there is a magnification of the r
angular box.

FIG. 5. Velocity power spectra and MSD~in the insets!, at two
different energies:~a! E584 meV and~b! E580 meV. The fre-
quencies are given in units of the harmonic frequencyv0

52pAV0 /ma2.
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for anomalous diffusionZ(v);v2a with a;1/2 anda;3/4
for 84 and 80 meV, respectively. The MSD and the veloc
autocorrelation function are related at long times by

^R2~ t !&;2tE
0

t

^v~0!•v~t!&dt. ~16!

Therefore for a divergence of the power spectrum at smav
as v2a, the MSD should diverge at long times as^R2(t)&
;t11a, 0,a,1, or ^R2(t)&;t2 ~ballistic diffusion! for
a>1. The numerically calculated MSD are shown in the
sets of Fig. 5, together with the predicted values oft11a

form, demonstrating the consistency of the numerical val
for the slope of the power spectra discussed above. Basic
two models have been employed in a theoretical descrip
of anomalous diffusion based on Le´vy statistics. The theory
by Geiselet al.12,13,29uses a renewal formalism, and assum
that a random walker performs statistically independent f
paths of constant velocityv0 whose durationst ~or lengthsl )
are distributed according to an inverse power law

f~ l !; l 2b. ~17!

Other authors have employed a continuous time rand
walk formalism14,30 in which particles move at constant ve
locity for a given time, then stop and choose a new direct
and time of sojourn at random according to given probab
ties. The central quantity isc( l ,t), the probability density to
move a distancel at time t in a single motion event. This
quantity can be expressed as

c~ l ,t !5p~ l ut !f~ l !, ~18!

wherep( l ut) is the conditional probability for a transition a
time t, given that the displacement isl, andf( l ) is the jump
length probability. When assuming an inverse power law
f( l ) as in Eq.~17!, and p( l ut)5d(t2u l u/v0) both theories
give the same result29 for the behavior of the MSD and there
fore the power spectra. In particular, for the MSD the p
dicted asymptotic behavior is12,29,30

^R2~ t !&;5
t2 1,b<2,

t42b 2,b,3,

t ln t b53,

t b.3.

~19!

In order to verify the validity of the statistical models
our system, we have calculated the jump length probabili
f( l ) at energies where anomalous diffusion was observ
At these energies, the potential barriers constraint the d
sive motion to thex or y directions, and we can define th
beginning of a jump inx or y when a trajectory crosses th
activation barrier along one of these directions, finishing
jump when the momentum in this direction is reversed. B
tween two jumps generally there is a waiting time inside
given unit cell where the trajectory executes chaotic mot
and looses memory of the initial conditions, therefore t
consecutive jumps are statistically independent. This pic
is consistent with the models discussed above. Note that,
to the symmetry of the PES, the distribution of jumps inx or
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y is identical. At higher energies, the particle can move fre
along any direction and the criterium for the termination o
free jump is not so clear. We have found a more conven
way to count jumps by calculating the Gaussian curvature
every integration step of a trajectory defined as

k5
uẋÿ2 ẍẏu

~ ẋ21 ẏ2!3/2
~20!

and the end~beginning! of a jump is considered to be th
point of the trajectory where the radius of curvaturer
5k21 is less than some critical valuerc . This value is
somewhat arbitrary and we chose it empirically at every
ergy to agree with our intuitive notion of a flight. The cu
vature criterium was proposed by Sholl and Skodje in
investigation of Le´vy flights in the Xe/Pt diffusion system.31

At energies below the top of the hill, for instance, we ha
found identical jump distributionsf( l ) by using the first
criterium of momentum change and the curvature criteri
choosingrc50.15a0.

To have a good statistics it is better to calculate the in
grated jump distribution as

f̄~ l !5E
l

`

f~ l 8!dl8 ~21!

and the correspondingf( l ) is obtained by differentiation of
f̄( l ). In Fig. 6 we present the integrated jump length pro
abilities ~using as discrete jump lengthl the number of unit
cells traversed in the jump! at the two energies of the powe
spectra of Fig. 5. The theoretical predictions of the statist
models should give the behaviorf̄( l ); l 23/2 and f̄( l )
; l 25/4 for 84 and 80 meV, respectively, shown in the figu
with a dashed line. The good agreement confirms the vali

FIG. 6. Integrated jump probability distributions~solid lines! at
~a! E584 meV and~b! E580 meV. Only jumps with lengths les
than 50 unit cells are shown. The theoretical predictions given
Eq. ~19! are plotted with dashed lines.
5-7
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of this Lévy flight model for our system. The reason fo
anomalous diffusion lies on the island around island struc
in phase space originated by the abrupt bifurcation of
parallel drifting motion~see Fig. 7!. This causes sticking o
the chaotic trajectories around cantori giving diffusive m
tion of all possible jump lengths.

The existence of stable or Le´vy distributions of the type
~17! affects theDK behavior of the dynamic structure facto
To see this, suppose a one-dimensional random walker
the algebraic jump length probability distribution~17! for the
individual steps~a Weierstrass random walker11!. Then, the
probability density for the walker to be at positionx after N
steps is the convolution

GN~x!5f~ l !3•••3f~ l ! ~22!

N times and where, by definition,GN(x) is a discrete time
one-dimensional pair correlation function. In Fourier spa
the intermediate scattering function can then be expresse

I N~DK !5f̂~DK !N. ~23!

For the probability distribution~17!, the characteristic func
tion f̂(DK) has the limitingDK→0 form11

f̂~DK !5e2c(b)uDKaub21
, ~24!

where a is the unit cell length. By defining the timet
5NDt and a generalized diffusion coefficient asD
5c(b)lim

a,Dt→0
(ab21/Dt), and using Eq.~3!, one readily

finds for the dynamic structure factor at smallDK the func-
tional form

Ss~DK,v!5
1

p

DDKb21

v21D 2DK2(b21)
. ~25!

FIG. 7. Poincare´ surface of section inx5a/2 at E584 meV
illustrating the islands around islands structure of the main para
diffusing orbit. The inset shows some islands chains magnified f
the squared region.
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Note that within this Weierstrass random walk approa
whenb53 the characteristic function~24! is a Gaussian and
we recover the result for normal diffusion, Eq.~4!.

For energies above 90 meV~until ;120 meV, still far
away from the integrable limit! we have observed only nor
mal diffusion. The MSD’s grow linearly in time and th
power spectra converge to a finite value asv→0 @see Fig.
8~a!#. By using the curvature criterium, we have found
exponential behavior of the jump length probabilities,f( l )
;e2g l . The corresponding integrated probability is shown
Fig. 8~b!, together with the sojourn time distribution. Th
agreement between the length and duration time probabil
is an additional argument in favor of the statistical mod
used, since both of them assume that during a jump the
locity is constant.

In spite of the absence of anomalous diffusion, at seve
of these energies we still have stable diffusive motions wh
originate long jumps. For instance, when 88 meV<E
<97.5 meV the diagonal orbit is stable, and whenE
.110 meV the parallel orbit becomes stabilized again. T
influence of this change of stability can be traced by relat
the microcanonical diffusion coefficient to average jum
lengths using some approximate statistical theories for
diffusion coefficient. For instance, for extremely mobile ad
toms we can use the kinetic theory of gases32 to express the
diffusion coefficient as

D~E!5
1

2
^v&l, ~26!

el
m

FIG. 8. ~a! Velocity power spectrum atE595 meV, with fre-
quencies in units ofv0. ~b! Solid line: integrated jump length prob
ability at the same energy. Dashed line: Integrated probability
tribution for jump duration times. Both give an exponential dec
and the slopes coincide within statistical uncertainty.
5-8
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where ^v& is the average velocity andl is the mean free
path. Correlations due to long flights are manifested
anomalous high values forl. Another approximate expres
sion for the microcanonical diffusion coefficient comes fro
the generalization of the simple random walk picture to
random flight formalism31,33 which in our case gives

D~E!5
1

2
n^ l 2&, ~27!

where n is the frequency of flights and̂l 2& the average
squared length of the jumps. The frequencyn can be com-
puted as the total number of flights containing a nonz
number of barrier crossings, divided by the total time. T
model assumes that successive flights are uncorrelated. I
jumps consist of only single hops, one obviously should h
^ l 2&5a2. In Fig. 9 we plot the exact microcanonical diffu
sion coefficient obtained from molecular dynamics simu
tions using the Einstein formulaD(E);^R2(t)&/4t @or
analogously Eq.~6!#, versus the two approximations, Eq
~26! and ~27!. It is seen that aroundE5110 meV the true
diffusion coefficient increases abruptly, due to the stabili
tion of the main parallel diffusing orbit. Although the tw
approximations used overestimate the diffusion coefficien
low energies, it is observed that the same qualitative fea
is present in both models, that is, a more or less pronoun
increase of the diffusion constant around 110 meV. In b
approximations this is due to the increase in the jump len
caused by the diffusing periodic orbit.

IV. DISCUSSION AND CONCLUSIONS

We have investigated in detail the deterministic chao
dynamics and transport properties of Na adparticles o
Cu~001! surface using a semiempirical potential.5 This sys-
tem has received considerable attention recently as a p
digm to study atomic diffusion by the QHAS experimen
technique. A question of interest is the role played by
PES in the diffusion mechanism. This question arised

FIG. 9. Microcanonical diffusion coefficients for an energ
range between 95 and 120 meV. Solid line: exact diffusion coe
cient from a fitting to the Einstein relations using microcanoni
ensembles. Dashed line: Approximation from the kinetic theory
gases Eq.~26!. Dot-dashed line: Random flight approximation E
~27!.
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cause using this technique, one can estimate the rates o
gration paths along different directions as well as the con
bution of long jumps to the diffusion coefficient. Although
quantitative study requires the inclusion of some kind of fr
tional coupling and thermal effects, as was done in Ref
the deterministic dynamics can explain well some qualitat
features of the experiment.

It has been found that for a range of energies from
activation barrier~;74.6 meV! until well above the top bar-
rier, the phase space shows a coexistence of chaotic reg
with stability islands produced by the simplest periodic m
tions. The periodic motions are of two kinds: those produ
ing localization inside a potential well, and therefore inhi
iting diffusion, and those promoting long jumps along thex,
y directions as well as the diagonal ones. Inside a poten
well we have found stable localized motions associated
fundamental frequencies of vibration. By semiclassical qu
tization of these motions, we have obtained an estimation
the frustrated translational mode (T mode! in good agree-
ment with the experimentally measured value. It is rema
able that localized motions are stable for energies m
higher than the saddle point barrier. The orbits correspond
to frustrated parallel translations suffer an abrupt bifurcat
when energy barriers are opened, and originate an isla
around islands structure in the phase space consistin
drifting motions of all possible periods. The diagonal tran
lations are unstable but experience the same sudden bifu
tion with energy. The interesting situation is that this diag
nal orbit becomes stabilized by the small minima at the
top sites, and we suggest this stability as a poss
explanation for the unusual high rate of migration pa
along this direction detected in the experiment.

Our second aim has been to investigate the possibility
anomalous transport mechanisms in this potential, and if
is the case to provide an explanation for this mechanism
terms of simple periodic motions. For energies between
diffusion barrier and slightly above the potential maximu
both the localized and parallel diffusing motions are stab
and particles behave as a random walker executing
jumps of constant velocity in random directions after so
waiting time in an equilibrium position. Such statistical mo
els have been investigated in the past in connection to c
otic Hamiltonian systems and Le´vy flights.9,14 Here we have
found that anomalous diffusion is present in our system
the range of energies where both stable motions coexist,
that the theoretical predictions of the model are able to
produce satisfactorily the power spectra and MSD’s num
cally calculated. At higher energies~from 95 up to;120
meV!, we have seen only normal diffusion. However, lon
jumps still play an important role in the deterministic diffu
sion mechanism, since at several of these energies diffu
motions become stabilized. We have calculated microcan
cal diffusion coefficients in this energy range using molec
lar dynamics simulations and two approximate statistical
pressions, and verified the influence of long jumps due to
stabilization of the free diffusing motion. The influence
long correlated flights has also been investigated theo
cally in other atom-surface diffusing systems with expe
mental results,31 and although long jumps were determine

-
l
f
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to be important, deterministic anomalous diffusion was
observed.

An important question to be addressed is whether a
consideration of the diffusion process, taking into acco
the friction, the coupling to the perpendicular motion and
surface temperature through random forces will alter the
namics to the extent of washing out any deterministic effe
When introducing dissipation, the stable periodic orbits
come sinks or attracting centers7 and the invariant tori~is-
lands! are destroyed. Both regular and chaotic motions
come transient since eventually all trajectories settle dow
one of the sinks~minima at the hollow or the on-top sites!.
However, the existence of an external force, even if it
random, will eventually provide enough energy to escape
attractor and give rise to diffusive motion. The assumpt
that the system is in thermal equilibrium and that the dis
pation mechanism is of the form2hṘ defines the statistica
properties of the noise through the fluctuation-dissipat
theorem, and these are those of a Gaussian white noise15,34

Therefore, modelling the dynamics by a Langevin equat
of the type ~2!, as has been done to simulate the expe
ments,5 is expected to show only normal diffusion in the lon
time run ~one can also verify that the Maxwell-Boltzman
distribution is a stationary solution of the correspondi
Klein-Kramers equation;15 furthermore this stationary solu
tion is unique!. However, the thermal equilibration tim
needed for the stationary behavior should be larger t
h21. If the friction constant is small enough, it is possib
that the thermal equilibration time is much bigger than
equilibration time due to the chaotic dynamics, and un
such circumstances one could observe a transient regio
the MSD or the power spectrum where the adiabatic or s
tematic potential plays an important role. The intensity of
noise ~temperature! should be also small so that the dete
ministic dynamics is not strongly perturbed.

In Fig. 10~a! we have plotted a Poincare´ surface of section
of the full Langevin dynamics, Eq.~2!, at a value of the
friction coefficienth51023 ps21 andT550 K @compare to
Fig. 3~d!#. We have numerically solved this equation using
velocity Verlet method35 and an accurate fourth order st
chastic Runge-Kutta method36 since both are adequate fo
treating properly the dynamics, especially at low values
friction. It is seen that the island structure coming from t
main parallel diffusing motion aroundy5py50 becomes
blurred, but still there are many orbits giving narrow ban
around this center, therefore resembling quasiperiodic
tion of the free diffusive type.

The corresponding velocity power spectrum and MSD
a canonical ensemble with an initial Maxwell distribution f
the velocities is shown in Fig. 10~b!. Note that thermal
equilibration times are of the order of 103 ps, while dynami-
cal equilibrium is reached at about 100 ps. This can be
preciated in the inset, where we can distinguish two differ
slopes for the MSD, one giving ‘‘transient’’ anomalous d
fusion and other normal diffusion, and the same can be s
in the behavior of the power spectrum at small frequenc
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At finite frequencies a broad band aroundv5v0 ~recall that
the frequencies are scaled byv0) appears showing the fin
gerprint of the frustrated translational mode. Since exp
mental time scales are finite, this transient anomalous di
sion could be observed in some systems~for this paricular
one,h was found to be around 1 ps21 ~Ref. 1! and transient
anomalous diffusion can not be seen!. It is worth noting that
for diffusion of Xe atoms on a Pt~111! surface the extreme
case of ideal gas behavior~zero effective friction and no
influence of the adiabatic potential, corresponding to ballis
diffusion! has been observed experimentally.37 We also men-
tion that anomalous diffusion has been described in the c
text of the Langevin formulation in nonequilibrium system
for instance by introducing correlated~colored! noise.38
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FIG. 10. ~a! Poincare´ surface of section atx50 of the full
Langevin dynamics, Eq.~2!, at T550 K and h51023 ps21. ~b!
Velocity power spectrum and MSD~inset! for an ensemble of 1000
trajectories with a Maxwell distribution of velocities at the sam
temperature. Frequencies in units of the fundamental frequencyv0.
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