Introduction

Local.-EP

Inversion of EP

Density division +EPI

Conclusions

Density division + Embedding Potential Inversion method for spectroscopy in clathrates ?

Octavio Roncero

Inst. Física Fundamental, CSIC

octavio.roncero@csic.es

Introduction •oooo	LocalEP	Inversion of EP	Density division +EPI	Conclusions
Outline:				

- 2 Localization vs. Embedding potential
- 3 Inversion of embedding potentials
- 4 Density division and embedding potential inversion
- 5 Conclusions

Introduction 0e000	LocalEP 000	Inversion of EP	Density division +EPI	Conclusions
Partition te	chniques			

- A : primary region \rightarrow high accuracy
- B : Substrate \rightarrow low accuracy
- V_{emb} : Embedding potential

Covalent

"cluster" method saturation of bonds

Ionic

cations by core pseudopotential anions by point charges polarization of the substrate

Metallic

Wave function partition electronic density partition

Total density factorizes as $\rho = \rho_A + \rho_B$

and energy as $E[\rho] = E_A[\rho_A] + E_B[\rho_B] + E_{int}$

The embedding potential is obtained by minimizing E_{int}

$$\begin{aligned} v_{emb} &= \frac{\delta E_{int}}{\delta \rho_A} \\ E_{int} &= E[\rho] - E_A[\rho_A] - E_B[\rho_B] \\ \rho_A &\approx 0 \quad \text{in} \quad B \quad \rightarrow \frac{\delta E_B}{\delta \rho_A} \approx 0 \end{aligned} \right\} v_{emb} = v_T + v_J + v_{xc} + v_{ion} \\ \textbf{Coulomb} \quad \textbf{Nuclear} \end{aligned}$$

Total density factorizes as $\rho = \rho_A + \rho_B$

and energy as $E[\rho] = E_A[\rho_A] + E_B[\rho_B] + E_{int}$

The embedding potential is obtained by minimizing *E*_{int}

$$v_{emb} = \frac{\delta E_{int}}{\delta \rho_A}$$

$$E_{int} = E[\rho] - E_A[\rho_A] - E_B[\rho_B]$$

$$\rho_A \approx 0 \quad \text{in} \quad B \quad \rightarrow \frac{\delta E_B}{\delta \rho_A} \approx 0$$

$$\mathsf{Kinetic} = \frac{\delta T_s[\rho]}{\delta \rho} - \frac{\delta T_s[\rho_A]}{\delta \rho_A}$$

• FDE used to obtain v_{emb} and ρ_A iteratively by setting $\rho_B = \rho - \rho_A$

Kondo state in Co/Cu(111)

A: cluster of CoCu₇

Huang & Carter ('06)

2 In subsystem A, with a modified Fock operator $(\mathcal{F} = \hat{F} + v_{emb})$ conventional *ab initio* methods are used

- to include dynamical correlation in A (CoCu₇)
- calculate excited electronic states localized in A
- etc

Introduction ○○○○●	LocalEP 000	Inversion of EP	Density division +EPI	Conclusions
Kinetic er	nergy fun			

Approximate character of the kinetic energy functional

$$v_T = \frac{\delta T_s[\rho]}{\delta \rho} - \frac{\delta T_s[\rho_A]}{\delta \rho_A}$$

Break down of the FDE procedure for covalent bonds (Fux, et al. 2010)

Introduction	LocalEP 000	Inversion of EP	Density division +EPI	Conclusions
Kinetic e	nergy fund	ctional		

Approximate character of the kinetic energy functional

$$v_T = \frac{\delta T_s[\rho]}{\delta \rho} - \frac{\delta T_s[\rho_A]}{\delta \rho_A}$$

Break down of the FDE procedure for covalent bonds (Fux, et al. 2010)

Intense work

- Developing new functionals (Wesolowski, since '97)
- 2
- Exact no additive kinetic potentials (Goodpaster, et al '10)
- In the second second state v_T (Jacob and *co-workers*, '10)

Introduction 00000	LocalEP ●○○	Inversion of EP	Density division +EPI 00000000	Conclusions
Outline:				

Introduction

2 Localization vs. Embedding potential

3 Inversion of embedding potentials

4 Density division and embedding potential inversion

5 Conclusions

 ρ_A related to local orbitals, obtained by an unitary transformation

 $|\Lambda_l
angle = \sum_k |\phi_k
angle U_{kl}$

- **1** Boys: minimization of spacial extension $\sum_{l} \langle \Lambda_{l} \Lambda_{l} | (\mathbf{r}_{1} \mathbf{r}_{2})^{2} | \Lambda_{l} \Lambda_{l} \rangle$
- Pipek and Mezey: projection maximization P_A
- Sedmiston and Ruedenberg: maximization of self-repulsion

 $\frac{1}{r_1 - r_2}$

 ρ_A related to local orbitals, obtained by an unitary transformation

 $|\Lambda_l
angle = \sum_k |\phi_k
angle U_{kl}$

- Boys: minimization of spacial extension Σ_l(Λ_lΛ_l |(**r**₁ **r**₂)²|Λ_lΛ_l)
 Pipek and Mezey: projection maximization P̂_A
- Sedmiston and Ruedenberg: maximization of self-repulsion

 $\frac{1}{\mathbf{r}_1-\mathbf{r}_2}$

Localized orbitals satisfy (Edmiston & Ruedenberg, '63)

$$\left[\hat{F} + \mathcal{V}\right] \Lambda_l = \lambda_l \Lambda \quad \rightarrow \quad \text{Modified Fock equation}$$

where \mathcal{V} includes terms analogue to the embedding potential

Introduction 00000	LocalEP ○○●	Inversion of EP	Density division +EPI	Conclusions
Kinetic ene	ergy term			

Let's partition the molecular orbitals as

 $\Phi_k = \alpha \, \Phi_k + (1 - \alpha) \, \Phi_k \equiv \Phi_k^A + \Phi_k^B$

Two coupled Fock equations, for Φ_k^A and Φ_k^B

- local terms: $V \alpha(\mathbf{r}) \Phi_k = \alpha(\mathbf{r}) V \Phi_k$
- non local terms: $-\frac{1}{2}\nabla^2 \alpha(\mathbf{r})\Phi_k = \alpha(\mathbf{r})\left[-\frac{1}{2}\nabla^2\right]\Phi_k + \mathcal{V}_T\Phi_k$

Introduction 00000	LocalEP ○○●	Inversion of EP	Density division +EPI	Conclusions		
Kinetic energy term						
Let's partition the molecular orbitals as						
$\Phi_k = \alpha \Phi_k + (1 - \alpha) \Phi_k \equiv \Phi_k^A + \Phi_k^B$						
Two sounded Easth sound into for \mathbf{x}^A and \mathbf{x}^B						

Two coupled Fock equations, for Φ_k^A and Φ_k^D

- local terms: $V \alpha(\mathbf{r}) \Phi_k = \alpha(\mathbf{r}) V \Phi_k$
- non local terms: $-\frac{1}{2}\nabla^2 \alpha(\mathbf{r})\Phi_k = \alpha(\mathbf{r}) \left[-\frac{1}{2}\nabla^2\right]\Phi_k + \mathcal{V}_T \Phi_k$

 $\mathbf{x} - \frac{1}{2} \left(\nabla^2 \alpha \right) - \left(\nabla \alpha \right) \cdot \nabla$

Introduction	LocalEP oo●	Inversion of EP	Density division +EPI	Conclusions
Kinetic ene	ergy term			

Let's partition the molecular orbitals as

 $\Phi_k = \alpha \, \Phi_k + (1 - \alpha) \, \Phi_k \equiv \Phi_k^A + \Phi_k^B$

Two coupled Fock equations, for Φ_k^A and Φ_k^B

- local terms: $V \alpha(\mathbf{r}) \Phi_k = \alpha(\mathbf{r}) V \Phi_k$
- non local terms: $-\frac{1}{2}\nabla^2 \alpha(\mathbf{r})\Phi_k = \alpha(\mathbf{r})\left[-\frac{1}{2}\nabla^2\right]\Phi_k + \mathcal{V}_T\Phi_k$

Octavio Roncero

 $\propto -\frac{1}{2} \left(\nabla^2 \alpha \right)$

Introduction	LocalEP 000	Inversion of EP •oooooo	Density division +EPI	Conclusions
Outline				

Introduction

- 2 Localization vs. Embedding potential
- Inversion of embedding potentials
- Density division and embedding potential inversion

5 Conclusions

• Density partition $\rho = \rho_A + \rho_B$

E.g.: minimizing $\langle \rho_A | \frac{1}{r_{12}} | \rho_B \rangle$

Inversion of the embedding potential

 $\mathcal{F}_A = F_A + \mathcal{V}_A$ whose solution is ρ_A

Functionals from reference densities in DFT

Leeuwen & Baerends Phys. Rev. A ('94) Zhao, Morrison & Parr Phys. Rev. A ('94)

Yang & Wu Phys. Rev. Lett. ('02)

• Use \mathcal{F}_A to calculate $E_A^{cor} = E_A^{CI} - E_A^{HF}$

Total energy: $E^{HF}[\rho_A + \rho_B] + E^{cor}_A$

Similar to Govind, Wang & Carter, J. Chem. Phys. ('99)

Introduction	LocalEP 000		Inversion of EP	Density division +EPI	Conclusions
		-			

Self-repulsion and embedding potential

For a reference density ρ_A we define

 $\Delta_A^k = \rho_A^k - \rho_A$

• $\Delta_A^k > 0 \longrightarrow$ repulsive potential

• $\Delta_A^k < 0 \longrightarrow \text{attractive potential}$

Defining a repulsive potential as

(Zhao, Morrison & Parr '94)

 $\left. \begin{array}{l} \mathcal{V}_A^k \propto \Delta_A^k \text{ or } \mathcal{V}_A^k \equiv \mathcal{V}_A^k [\Delta_A^k] \end{array} \right.$

$$v_{rep}^k = \int d{\bf r} \frac{\Delta_A^k}{{\bf r}-{\bf r}'} \equiv J[\Delta_A^k]$$

the embedding potential is obtained iteratively as

$$\mathcal{V}_A^{k+1} = \mathcal{V}_A^k + \lambda \, v_{rep}^k$$

where λ minimize $\delta^{k+1} = \int d{\bf r} (\Delta^{k+1})^2$

		u propoduro		
Introduction	LocalEP 000	Inversion of EP	Density division +EPI	Conclusions

- Density partition: Mulliken's method
 - R = r = 1.3 a.u.

Water-Ice-Clathrate, Toulouse, Nov.3-4th

Introduction	LocalEP 000	Inversion of EP ○○○○●○○	Density division +EPI	Conclusions

H_{10} chain example: comparison with FDE

- FDE potential using ρ and ρ_A
 - $V_J \approx -V_N$
 - The dominant term is V_T
- The two V_{emb} are similar

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
		0000000		

H₁₀ chain example: Energies

- Electronic Correlation
 - Full symbols:
 - in whole H_{10} system
 - Open symbols: in "A" embedded

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
		0000000		

H_{10} chain example: Energies

- Electronic Correlation
 - Full symbols:
 - in whole H_{10} system
 - Open symbols: in "A" embedded
- r = 1.3 a.u.
- Only with A the repulsion of enviroment is described !!
- The van der Waals well requires AB and a CI method

Water-Ice-Clathrate, Toulouse, Nov.3-4th

Introduction OCOCO Introduction OCOCO Introduction Intersion of EP OCOCO Density division +EPI OCOCO Conclusions OCOC Conclusions OCOC Intersion of EP OCOCO OCOCO Intersion of EP Intersion of E

Comparison of CI calculations:

- Full H₁₀+H₂ system
- H_2 + H_2
- embedded H_2 + H_2

Roncero, et al., J. Chem Phys. 129 ('08)

Introduction	LocalEP 000	Inversion of EP	Density division +EPI ●○○○○○○○	Conclusions
Outline:				

Introduction

- 2 Localization vs. Embedding potential
- Inversion of embedding potentials
- Density division and embedding potential inversion

5 Conclusions

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
			0000000	

Problems of the inversion of embedding potentials

- The reference density ρ_A may not be v-representable
 - Mulliken's method yields fractional charges
 - Any renormalization is arbitrary
- The procedure depends on:
 - Initial guess:
 - self-repulsion potential v_{rep}
 - optimization procedure
- Convergence is always a problem: 3 iterative procedures

To obtain the density partition $\rho = \rho_A + \rho_B$

 $\bullet \quad \Delta^k = \rho - \rho_A^k + \rho_B^k$

with ρ_C^k being obtained from a MFE

$$\left[F_C + V_C^k\right]\phi_C^k = \epsilon_C \phi_C^k$$

$$v_{rep}^k = \frac{1}{2} \sum_{m,l} \Delta_{m,l}^k (im|lj) \equiv K[\Delta^k]$$

$$V_C^{k+1} = V_C^k + \lambda \quad v_{rep}^k[\Delta^k]$$

where λ minimizes $\delta^{k+1} = \int d\mathbf{r} (\Delta^k)^2$

2

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
			000000	

The H_{10} example

٥

Introduction	LocalEP 000	Inversion of EP	Density division +EPI 000●0000	Conclusions

The H_{10} example

Density difference Δ^k

Introduction	LocalEP 000	Inversion of EP	Density division +EPI oooooooo	Conclusions
The H_{10}	example			
Embe	dding pot. \mathcal{V}^k_A	٠	Density difference	$ au \Delta^k$
٧ ₄ ⁶ -				-
V4 ⁵ -			Δ ⁵ · · · · · · · · · · · · · · · · · · ·	•
V _A 4		-		
٦.				<u>}</u>

 Introduction
 Local-EP
 Inversion of EP
 Density division +EPI
 Conclusions

 00000
 000
 00000
 00000
 0000

$H_{10} + H_2$ van der Waals interactions

• Comparing different DFT functionals for the full system

Roncero, et al., J. Chem Phys. 131 ('09)

R / a.u.

 Introduction
 Local-EP
 Inversion of EP
 Density division + EPI
 Conclusions

 0000
 000
 0000000
 0000000
 0000

$H_{10} + H_2$ van der Waals interactions

- Comparing different DFT functionals for the full system
- The density difference Δ^k converges fast
- The convergence depends on the DFT functional used for ρ

Roncero, et al., J. Chem Phys. 131 ('09)

R / a.u.

 Introduction
 Local-EP
 Inversion of EP
 Density division + EPI
 Conclusions

 00000
 000
 0000000●
 0000

$H_{10} + H_2$ van der Waals interactions

- Comparing different DFT functionals for the full system
- The density difference Δ^k converges fast
- The convergence depends on the DFT functional used for ρ
- This new method yields better results

Roncero, et al., J. Chem Phys. 131 ('09)

Introduction	LocalEP 000	Inversion of EP	Density division +EPI	Conclusions •••••
Outline:				

Introduction

- 2 Localization vs. Embedding potential
- Inversion of embedding potentials
- 4 Density division and embedding potential inversion

5 Conclusions

Introduction	LocalEP 000	Inversion of EP	Density division +EPI	Conclusions
Conclus	ions			

- An alternative to the FDE embedding method in which ρ_A and ρ_B are *v*-representable
- It has not the problem of the kinetic energy functional but different v_{rep} should be tested for different functionals
- Initial ρ can be obtained from any method, DFT or not.
- It can be combined with the most traditional FDE method by using ρ_A and ρ_B

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions 0000
Conclus	ions			

- An alternative to the FDE embedding method in which ρ_A and ρ_B are *v*-representable
- It has not the problem of the kinetic energy functional but different v_{rep} should be tested for different functionals
- Initial ρ can be obtained from any method, DFT or not.
- It can be combined with the most traditional FDE method by using ρ_A and ρ_B
- More work is needed to solve convergence problems and to design new v_{rep}

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
				0000

What about impurities in clathrates?

First check: $Br_2 + H_2O$

Franklin-Mergarejo *et al* J. Phys. Chem. A **115**, (2011)

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
				0000

Acknowledgements

Alfredo Aguado (UAM)

Pablo Villarreal (CSIC)

Alexandre Zanchet (CSIC)

• Pilar de Lara (CSIC)

Fernando Flores (UAM)

- Miguel Paniagua (UAM)
- Jose Ortega (UAM)

Introduction	LocalEP	Inversion of EP	Density division +EPI	Conclusions
				0000

Acknowledgements

Alfredo Aguado (UAM)

• Pablo Villarreal (CSIC)

Alexandre Zanchet (CSIC)

• Pilar de Lara (CSIC)

• Fernando Flores (UAM)

- Miguel Paniagua (UAM)
- Jose Ortega (UAM)

