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ABSTRACT 
 
One of the simplest ways to confine polymeric materials is by self assembling during 
the crystallization process. The remaining amorphous phase is then constrained by the 
lamellar crystals. In this manuscript, we aim to shed additional light in the 
understanding of the amorphous chains dynamics of semicrystalline polymers above the 
Tg by using incoherent quasielastic neutron scattering QENS in a mesoscopic timescale 
(10-9-10-10 s) on poly(ethylene terephthalate). The observed dynamics is satisfactorily 
described by a theoretical model that considers that the proton mobility follows a 
random jump-diffusion in a restricted environment. We demonstrate that the 
combination of macroscopic with microscopic dynamic tools allows a complete 
description of the confined dynamics on a paradigmatic semicrystalline polymer like 
poly(ethylene terephthalate).  

 
 

1. INTRODUCTION 
 
In spite of the numerous studies devoted to the understanding of the mechanism of 

molecular motions in restricted environments, there are still important questions open to 

debate, such as the modification of the glass to liquid transition temperature Tg, 

distribution of relaxation times and the development of satisfactory theoretical 

frameworks to describe the confined dynamics among others [1]. Glass forming liquids 

in general and polymers in particular can be geometrically constrained in different 

ways, for instance, reducing the sample thickness to the nanoscale, through the location 

of the material within porous networks and by their mixing with truly nanoparticles [2-

5]. In addition to that, polymeric systems show the ability of self-assembling, one of the 

main features of soft condensed matter, giving as a result hierarchical morphologies 

where any of the resulting domains is spatially confined [6]. Phase separated block 

copolymers and semicrystalline polymers can be considered self-assembled structures 
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where the phenomenon of confinement at molecular levels has been widely investigated 

[7-11]. Semicrystalline polymers consist of lamellar crystals with amorphous domains 

intercalated in between, in such a way that the disordered chains forming these 

amorphous domains are formally confined by the laminar crystals [12]. It is well 

established that polymeric molecules, due to their extremely length and polidispersity, 

are randomly coiled precluding a complete ordering of the chains, leading to complex 

and heterogeneous systems. Putting the influence of the lamellar crystals on the 

amorphous chains dynamics aside, the random coiled scenario of amorphous polymers 

can be considered a confining environment itself where the polymeric segments are 

found to be constrained by the surrounding chains and the distance between 

entanglements may play an important role acting as confining elements. Above the Tg, 

centre-of-mass diffusion is relatively slow but each chain is able to explore 

continuously new conformations by internal motions of the main backbone. In this way, 

atoms in the rubbery state of a polymer undergo a complex type of motion at different 

time and length scales [13]. The story becomes more complicated when semicrystalline 

polymers come into play since it has been proposed, on the basis of thermal and 

dielectric analysis, that a rigid amorphous phase RAP, i.e. a phase of amorphous chains 

lacking segmental motion [14, 15], may arise in the interfacial region between the 

crystalline lamellae and the inter-lamellar amorphous phase. All things considered lead 

to a highly heterogeneous environment from dynamical and structural points of view.  

The main relaxation process observed in glass forming materials is the  mode, only 

detected above the Tg. The  relaxation is considered a universal fingerprint of the glass 

transition phenomenon and it has been principally studied in the macroscopic timescale 

using relaxation techniques. It is a non-Debye relaxation when observed in the 

frequency domain (stretched exponential decay in the time domain) and the temperature 

dependence of its relaxation times strongly departs from the common Arrhenius 

behaviour. The  relaxation dynamics of semicrystalline polymers, for instance as 

explored by means of dielectric spectroscopy DS, is affected by the presence of crystals, 

resulting in general in a less intense, broader and slower relaxation [8, 16-20]. In the 

context of semicrystalline polymers, poly(ethylene terephthalate) PET is one of the 

most common polymers for industrial necessities and, as a consequence, it has 

frequently attracted the attention from the scientific community during the last decades. 

In PET, the crystallization process can be controlled up to some extend playing with 
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experimental factors like degree of polymerization, temperature,  polydispersity, etc, 

making possible to study the fully amorphous state or with a controlled amount of 

crystallinity [7]. All in all makes PET an ideal candidate for the study of the self-

confined dynamics of semicrystalline polymers. We have recently combined dielectric 

spectroscopy DS with neutron spin echo NSE measurements performed in deuterated 

and semicrystalline PET, showing that the dynamics of semicrystalline polymers occurs 

in a homogeneous scenario similar to that valid to describe the dynamics of amorphous 

polymers [21]. Accordingly, the intermolecular cooperativity is expected to be rather 

similar in both amorphous and semicrystalline polymers. We proposed that the slowing 

down of the characteristic segmental relaxation in a semicrystalline polymer in 

comparison with that of an amorphous one seems to be caused by a retardation of the 

intramolecular mobility provoked by the anchoring of the polymers chains of the 

amorphous phase bounded to the crystalline one. 

In this manuscript, we look further into the understanding of the amorphous chains 

dynamics of semicrystalline polymers above the Tg by using incoherent quasielastic 

neutron scattering QENS in a mesoscopic timescale (10-9-10-10 s) on fully hydrogenous 

PET. The observed dynamics is satisfactorily described by a theoretical model that 

considers that the proton mobility follows a random jump-diffusion in a restricted 

environment.  

 

2. EXPERIMENTAL SECTION 

 

2.1.Sample details  

 

Poly(ethylene terephthalate) used here was a commercial sample supplied by 

RhodiaSter (Rhodia S80, 45.000 g/mol). Films of 275 m were prepared by melt 

pressing (540 K) of previously dried pellets and subsequent isothermal 

annealing at 448 K was carried out to facilitate the crystallization of the material. 

The degree of crystallinity was estimated to be around 33 % trough calorimetric 

measurements. It has been demonstrated that PET shows a heterogeneous 

crystalline lamellar filling formed by stacks of laminar crystals separated by 

relatively broad amorphous domains that are commonly called liquid pockets. 

Inside the stacks of lamellae, we find highly constrained disordered regions with 
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average thickness of about 30 Å as estimated by small angle x-ray scattering 

SAXS.  

 

2.2.Quasielastic neutron scattering 

 

After making the appropriate corrections to the raw data, the useful quantity in a 

neutron scattering experiment is given by the double-differential scattering cross 

section, which gives the probability that a neutron with incident energy E0, leaves the 

scattering material in the solid angle d about the direction  and with an energy 

exchange in an interval between E and E + dE. Due to the fact that the nucleus-neutron 

interaction depends on the spin and isotope state of the nucleus, the double-differential 

scattering cross section contains two parts, namely the incoherent and coherent cross 

sections respectively. 
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PET contains C (coh = 5.55 and inc = 0.001), O (coh = 4.23 and inc = 0.0008) and H 

(coh = 1.75 and inc = 80.26). The large value of the scattering incoherent cross section 

of hydrogen, allowed us to assume that, for PET, the measured quantity is mainly 

dominated by the incoherent scattering, which is expressed as follows: 
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k and k0 are the wave-vectors of the incident and scattered neutrons respectively being 

the modulus of scattering vector 0kkQ    (wave-vector transfer), N is the total 

number of hydrogen atoms, H
inc  is the incoherent scattering cross section of hydrogen 

and the function  ,QS H
inc  is the incoherent scattering law associated to the hydrogen 

atoms. The incoherent scattering function  ,QS H
inc  carries information on the self-

correlation in space of an individual proton as a function time.  ,QS H
inc  is related 

through double Fourier transform to the Van Hove self-correlation function [22]. 
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Therefore, incoherent neutron scattering on a fully hydrogenous PET sample, provides 

direct information of the proton dynamics and, consequently, of the whole 

macromolecule. As a consequence of the limited energy resolution of the neutron 

spectrometers, what one gets experimentally is the convolution of the incoherent 

scattering function with the experimental resolution function, that is, the response of the 

spectrometer when a purely static material is measured and consequently all the 

neutrons are scattered elastically. 

 

      ,,, QRQSQI H
inc   eq 3 

 

Incoherent quasielastic neutron scattering provides temporal and spatial information of 

the mechanism of molecular motions, but in order to get a physical insight from the 

experimental data, a theoretical model must be used to help in the understanding of the 

microscopic dynamics. The general form of the incoherent scattering law for 

quasielastic processes is expressed as follows: 

  

        ,, QSQEISFQS q
inc   eq 4 

 

The first term is a purely elastic component and EISF is known as the elastic incoherent 

structure factor which is always present when the particles move within a restricted 

environment [22]. The EISF is defined for each value of Q as the ratio of the elastic 

intensity to the total scattered intensity and provides information on the geometry of the 

motion [23]. The second term of equation 4 is the quasielastic contribution of the 

scattering function and contains all the dynamic information.  ,QS q  is generally 

expressed by a lorentzian function with a half width at half maximum that provides the 

time scale of the microscopic dynamics and through its Q dependence one can assume a 

microscopic model of the underlying dynamics. Q is defined as Q = 4sin(/ 2)/, is 

the scattering angle and  the neutron wavelength. The lorentzian function is modulated 

by the term (1-EISF), in such a way that the model used to fit the experimental data is 

the following: 
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The convolution of this model function to the experimental resolution data (spectrum at 

5 K) for each value of Q is what we actually fit to the experimental data in order to 

extract the half width at half maximum  (time scale of the motion) of the quasielastic 

component and the elastic incoherent structure factor EISF which gives information on 

the geometry of the motion.  

QENS experiments were performed at the backscattering spectrometer IN10, at the ILL 

(Grenoble, France). The incident neutron wavelength was set at 6.28 Å and the Q range 

was extended from 0.5 to 2 Å-1, with an energy resolution at half maximum of 0.45 eV 

and energy transfer window between -12 and 12 eV. Sample thickness was set at 275 

m in order to ensure a transmission of 95 % and minimize as much as possible the 

poisoning contribution of the multiple scattering effects.  

Fixed window scans (E ≈ 0) were also measured covering a temperature range of 4 K 

< T < 475 K, accessible with a cryofurnace. These measurements monitor the evolution 

of the elastic scattering intensity as a function of temperature and momentum transfer Q, 

and provide a direct measure of the Debye-Waller factor below the onset of side-group 

or segmental motions in glassy polymers [13, 22, 24]. The measured elastic scattering 

intensity Sinc(Q,ω ≈ 0) at constant temperature becomes the DW factor assuming a 

simple harmonic vibration model: 
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eq 6 

 

where <u2> is the mean-square amplitude of proton vibrations. In practice, during a 

window scan experiment, an ‘apparent’ Debye–Waller factor <u2>app(T) is measured as 

a function of temperature (4–475 K in the present work). Intensities are normalized to 

the values corresponding to the lowest measured temperature. 

 

3. RESULTS AND DISCUSSION 

 

As it was indicated in the previous section, we first carried out fixed window scans in 

order to visualize the dynamic behaviour of PET for the IN10 experimental conditions. 

The panel (a) of figure 1 shows the normalized elastic scattered intensity for 
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semicrystalline PET as a function of temperature for different values of the momentum 

transfer Q. Data are normalized to the elastic intensity at the lowest temperature , in this 

work 4 K. As a general trend, for the lowest temperature range, the elastic intensity 

decreases in a linear fashion as the temperature is increased, but for values close to 150 

K a new and deeper dependence is observed and it is probably attributed to the onset of 

anharmonic vibrations or rotational motions. This second linear trend continues up to 

approximately 350 K, where the liquid to glass transition of semicrystalline PET is 

located coinciding with a dramatic drop of the elastic neutron scattered intensity when 

long range motions of the centres of mass come into play [25]. It is also noticeable that 

the elastic intensity decreases when the values of Q increase for the whole temperature 

window. From equation 6 we have estimated the mean square displacement (<u2>) of 

the proton vibrations which are represented in the panel (b) of figure 1. We also include 

for comparison the values of <u2> for a fully amorphous sample of PET (red triangles). 

The values of <u2> are rather similar up to the onset of the glass transition for the 

amorphous and semicrystalline PET, indicating that at least for this energy resolution, 

the harmonic proton vibrations of PET are not apparently affected by the presence of 

crystals. For the semicrystalline sample, the glass transition around 350 K is also 

manifested by the abrupt increase of the amplitude of the displacements. This change of 

dependence of <u2> with temperature that characterizes the glass transition takes place 

at lower temperatures for the amorphous sample (~340 K). In general, for 

semicrystalline polymers the glass transition is shifted to higher temperatures as 

compared to the fully amorphous state as a consequence of the retardation of the 

segmental motions induced by the presence of the crystals surrounding the amorphous 

domains [9, 12, 26]. A point worthy of mention is the larger amplitude of the proton 

displacements for the amorphous PET above the Tg, when long range motions become 

active. That restriction of the dynamics for semicrystalline PET could indicate a 

confinement effect of the crystalline phase on the amorphous chains dynamics at much 

localized scales than those characteristic of the segmental motions that typically 

contribute to the glass transition [12]. Confinement effects on the macromolecular 

dynamics, also investigated through neutron scattering fixed window scans, have been 

reported when thin films, polymers intercalated inside porous networks or biological 

systems are addressed [3, 27-29]. Larger or smaller values of the mean square proton 

displacement as compared to the bulk are observed for confined systems, especially 

during the onset of anharmonic motions or long range modes, but also certain variations 
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of the pure vibrational dynamics defined by the DWF have been reported on polymer 

thin films and polymer nano-composites [30-32]. Different physical and geometrical 

aspects have been considered depending on the case in order to justify these findings. In 

addition, it is interesting to note that the amorphous PET shows a clear peak in <u2>, 

presumably associated to the cold crystallization process. At higher temperatures, when 

the initially amorphous PET is already semicrystalline, the amplitude of the localized 

diffusion-like motions becomes smaller and finally the values of <u2> overlap with 

those corresponding to the initial semicrystalline sample. Fixed window scans are also 

convenient to select temperature regions where the dynamics at the corresponding 

energy resolution is sufficiently active in order to explore the quasielastic spectra. That 

is the reason we are mainly concerned with the dynamics above the Tg. QENS spectra 

were collected at different temperatures and values of momentum transfer Q. Figure 2 

shows the incoherent scattering functions S(Q,) for semicrystalline PET as a function 

of the energy transfer at 350 and 500 K and at a constant value of Q = 1.85 Å-1. QENS 

data are shown in arbitrary units but without normalization to emphasize the decrease of 

the central elastic peak at expenses of the QENS broadening when temperature 

increases.  The experimental quasielastic spectra have been described using the equation 

5 and the separation between the purely elastic component and the quasielastic 

broadening is indicated. The spectrum at 350 K can be simply fit to an elastic 

component, indicating that at temperatures very close to the glass transition the 

quasielastic contribution is within the instrumental energy resolution. To illustrate how 

the dynamic structure factor changes with Q, figure 3 presents the experimental data 

(crosses) of S(Q,) for 500 K at certain values of the momentum transfer, and the 

corresponding total fit to equation 5 (red continuous), and the decomposition in terms of 

the resolution (black dotted) and the lorentzian (blue dashed) functions. The lorentzian 

function becomes broader when the values of Q increase, showing as a first approach 

the long range character of the underlying motions [22, 23, 26, 33, 34]. Since the 

broadening of the dynamic structure factor is directly related to the time scale of the 

microscopic dynamics, the results shown in figure 3 suggest that the motions causing 

the quasielastic scattering become faster when the values of Q increase. The best fit of 

the scattering law defined in terms of the equation 5 to the experimental QENS data 

allowed us to estimate the Q and temperature dependence of both  and EISF. The 

panel a of figure 4 collects the EISF at different temperatures. The EISF is modulated 
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by Q in a similar manner for the three temperatures, suggesting that the nature of the 

dynamics remains unchanged for the whole temperature range. On the contrary, the 

values of EISF are clearly temperature dependence. The panel a of figure 4 shows that 

the elastic contribution to the total scattering becomes larger when temperature 

decreases, finding that is frequently observed for different kind of motions [35-37]. The 

most accepted explanation for this temperature dependence is connected to the fact the 

fraction of mobile scatters causing the broadening normally increases with temperature. 

Before addressing the theoretical description of the EISF by the assumption of the most 

suitable model, we must pay attention to the Q and temperature dependence of the 

quasielastic broadening. The main features observed in the panel b of figure 4 are 

related to the asymptotic values of  for the high and low Q regimes, specifically for the 

measurement at 500 K which shows the largest and best defined broadening. Mobile 

scatterers in a restricted media are characterized by a non-zero asymptotic behaviour of 

 at low Q [22], as it is effectively observed in the lower panel of figure 4.  But also, if 

one look to the high Q limit,  also tends to a constant value and this is a common 

feature of motions taking place through jumps between discrete distances instead of by 

a continuous diffusion [22]. At first look, the dynamics of semicrystalline PET at the 

mesoscopic time of IN10 seems to be arisen by jumps of mobile protons in a confined 

media. With these ideas in mind, it is important to remark that each scattering law is 

conveniently characterized by the most suitable theoretical framework or model that 

helps to give a physical insight to the experimental QENS data. This work concerns the 

dynamics of semicrystalline PET above the Tg. That implies that long-range motions are 

expected to occur within a restricted media created by the surrounding disordered 

chains, rigid amorphous domains and laminar crystals. To corroborate our assumptions 

we have considered the applicability of the long range diffusion in a restricted 

environment model (DRE model) that was developed by Hall and Ross [22, 38], 

considering that the motion takes place in one dimension exploring a fixed distance 

defined by impermeable walls. This model was previously applied by some of us to 

interpret QENS data on a semicrystalline polyketone [35]. The development of this 

theoretical model proposes the following expression for the EISF: 
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where n(T) is the fraction of mobile protons, j0 is the spherical Bessel function of first 

kind and zero order and L(T) is the distance between two rigid and impermeable walls, 

that is the confinement size. In figure 4(a), the dashed lines represent the theoretical 

EISF values predicted by the DRE model, showing an acceptable description of the 

experimental results. The obtained parameters from fitting the equation 7 to our 

experimental data are represented in figure 5. Here we see that the confinement size L 

barely changes with temperature, unlike the fraction of mobile protons n which clearly 

get larger with temperature, indicating that the higher the temperature, the more mobile 

protons become active at the mesoscopic timescale (10-9-10-10 s). Within the framework 

of this model, the confinement size is estimated to be around 6.5 Å, value situated far 

below the long spacing (average inter-laminar crystal thickness, 140 Å for 

semicrystalline PET) for semicrystalline polymers [12, 39]. Therefore, the physical 

origin of the restricted character of the motions observed in semicrystalline polymers is 

apparently beyond of the confining effects from the lamellar crystals morphology. The 

extension of the motions explored here is even smaller than the size of the typical 

cooperative areas dominated by the segmental mobility, usually 10-20 Å [6, 40]. Here, 

for semicrystalline PET, the confinement size remains almost constant for the explored 

temperature range and this supposes an opposite behaviour than the one observed for 

poly(ether ether ketone) PEEK where the confining size becomes larger with 

temperature. PEEK is a much more rigid polymer than PET and consequently more 

fragile in the context of the classification of glass forming systems proposed by Angell, 

and therefore is characterized by segmental motions more sensitive to temperature 

variations [35, 41].     

As it was already mentioned, the constant values of  at the high Q values deviates from 

the Fick´s Law and this is a common feature of a jumping mechanism rather than a 

continuous diffusion. General speaking, jump-diffusion models consider that the 

diffusing species jump from one site to another after a period of time during which the 

particle remains fixed apart from vibrations about a centre of equilibrium. After this 

residence time , the particle jumps to a new site, hypothetically in an infinitesimal time 

[22]. However, the 500 K data shows a clear deviation from the expected behaviour of 

the jump-diffusion model calculated by Hall and Ross for the lowest Q value. On the 

contrary, it is important to note that this deviation is not clearly observed for the lowest 

temperatures. For these low values of Q and temperature, the quasielastic broadening is 

not enough to be distinguished from the experimental resolution and, therefore, we are 
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not able to estimate confidence values of . However, there is no reason to postulate a 

dynamic crossover from 500 to 450 K, so the same departure from the jump-diffusion 

model at low Q´s is also expected for the 450 and 400 K data. It has already mentioned 

that a constant value  with Q, at small Q values, is a common feature of dynamic 

processes taking place in a spatially confined environment. Therefore, it is not 

surprising that our EISF data for semicrystalline PET can be reproduced in a 

satisfactory way under the framework of confined dynamics models.  

At this point it is important to note that we have analyzed our EISF data assuming a 

continuous diffusion within a bounded media between two rigid walls. On the contrary, 

the evolution of  with Q seems to indicate that the mobile protons jump from one side 

to another instead to diffuse in a continuous way. That apparent mismatch can be 

overcome by the approach developed by Hall and Ross, who calculated the scattering 

law for jumping motions with a Gaussian distribution of lengths but also including a 

spatially confined environment [22, 38].  This model assumes that particles undergo a 

random-walk between two impermeable walls. When dealing with dynamics within a 

restricted media, Hall and Ross found the synergy between the one-dimensional 

diffusion between two walls and the jumping diffusion. A good description of this 

model and the strategy to calculate the quasielastic broadening at different values of Q 

is reported elsewhere [35]. The scattering law proposed by Hall and Ross for long range 

jumping diffusion within a bounded media is described as follows: 
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Here the first term is an elastic component with the EISF defined by the equation 7. The 

second term is the corresponding quasielastic component which consists of an infinite 

series of Lorentzian functions )),(,( LQ ,  each one with amplitude An(Q,L) given 
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The half width at half maximum  of the Lorentzian functions is expressed as follows: 
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where  is the average residence time between two consecutive jumps, r0 is the 

characteristic jump distance and ħ=h/2, with h as the Planck constant. Under the 

assumption of a simple jumping diffusion in an unbounded media, the relation of the 

residence time  with the quasielastic broadening at enough high Q´s is simply 

expressed as 





Q . Using this expression we have estimated the residence time . 

The scattering law for jumping diffusion within a restricted volume (equation 9) has 

been computed using the values of L and  and only adjusting the parameter r0 (jump 

distance) in order to fit the experimental data of  versus Q. In practice, for the sum of 

the lorentzian functions in equation 9, 100 terms were taken into account. Calculations 

considering more terms do not modify the values of . The results of these calculations 

are included in figure 4(b) as continuous lines. The values of r0, L and the fraction of 

mobile protons are included in the table 1. The panel b of figure 4 shows that the 

segmental motions of semicrystalline PET at the mesoscopic time scale (10-9-10-10 s) 

can be modelled as jumps of distances between 1.8 and 2.5 Å within a restricted 

environment defined by a characteristic length L of approximately 6.5 Å. The residence 

time at 500 K has been included in the relaxation map of semicrystalline PET (figure 6) 

together with neutron spin echo (NSE) and dielectric spectroscopy (DS) data [21]. We 

have just included the 500 K data considering that at lower temperatures the  

relaxation time scale should fall far away from the IN10 time window as one can 

observe from the Vogel-Fulcher-Tamman line in figure 6. In this way an extremely 

broad dynamic range is covered, below and above the Tg. The dotted line in figure 6 

corresponds to the empirical Vogel-Fulcher-Tamman VFT equation that nicely 

reproduces the cooperative nature of the  relaxation of glass forming systems [41]. We 

see that the NSE data fall into the VFT line, indicating that the collective dynamics 

observed through the coherent dynamic structure factor is actually the  relaxation [21]. 

Interestingly, the data at 500 K almost coincide for the NSE and backscattering data. In 

addition to that, the translational character of the dynamics observed in IN10 is also 

supported by the evolution of  with the values of Q. The reason of the shorter times for 
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the IN10 data at 450 and 400 K than those expected for the  relaxation is presumably 

attributed to the main contribution to the broadening observed in IN10 of the high 

frequency tail of the distribution of relaxation times and therefore decoupling from the 

average  relaxation time, for instance observed by NSE. The better agreement between 

the NSE data and the VFT line predicted by the low temperature dielectric 

measurements for the  relaxation confirms that NSE on fully deuterated systems at the 

maximum Q value of the static structure factor becomes an ideal tool to study 

selectively the decay of the inter-chain correlations that originate the segmental motions 

of the  relaxation [42]. On the contrary, IN10 allows exploring the dynamics with 

excellent momentum transfer dependence from which the geometry of the motions is 

found, complementing previous NSE and DS results.     

 

4. CONCLUDING REMARKS 

 

The dynamics of semicrystalline PET at the microscopic level has been studied by 

quasielastic neutron scattering QENS. The quasielastic broadening has been interpreted 

with a simple lorentzian curve from which the time-scale of the underlying dynamics 

was estimated. Our EISF data have been modelled assuming that the mobile protons 

diffuse within a restricted environment. The values of the confinement size were 

approximately situated between 6 and 7 Å for the diffusion in a restricted environment 

model. It is interesting to note the agreement between these values with those associated 

to the typical length scales of the cooperative motions observed above the Tg [43, 44]. 

We observe an increase of the fraction of mobile protons with temperature. The 

existence of a rigid amorphous phase at the crystal-amorphous interface that 

progressively becomes mobile when the system is heated up is the most plausible 

explanation for the n(T) dependence plotted in figure 6. Similar results have been 

reported for other semicrystalline polymers [15, 35, 45]. This experimental evidence of 

the existence of a gradient of mobility caused by the presence of a rigid amorphous 

phase, which can be consider a new confining factor, supports our data analysis based 

on the proton diffusion in a restricted environment. The mechanism of the proton 

dynamics of semicrystalline PET is clearly manifested in the asymptotic behaviour of  

at high values of Q, indicating that a jump-diffusion is highly probable to occur. A good 

description of the experimental data by means of a model that considers that the mobile 
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particles undergo random jump trajectories allowed us to estimate the characteristic 

jump lengths and the residence time between two consecutive jumps. We have 

successfully applied the approach developed by Hall and Ross in which the scattering 

particles show a Gaussian distribution of jump lengths within a restricted environment 

defined by rigid and impermeable boundaries. Here, the values of the jump lengths for 

PET are estimated to be slightly lower than those reported for semicrystalline PEEK. To 

conclude, the inclusion of the IN10 data at 500 K into the relaxation map of 

semicrystalline PET indicates that the dynamics observed in this spectrometer is 

connected to the genuine  relaxation of semicrystalline PET. We demonstrate that the 

combination of macroscopic with microscopic dynamic tools allows a complete 

description of the confined dynamics on a paradigmatic semicrystalline polymer like 

poly(ethylene terephthalate), corroborating previous empirical results by using 

theoretical  models.   
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Tables 
 
 
Table 1. Parameters obtained from the fittings of  and EISF as a function of Q using 
the diffusion within a restricted environment model. 
 

T (K)  (s)  r0 (Å)    L (Å) n 
400 3.5 x 10-10 1.9 6.4 0.17 
450 2.5 x 10-10 1.8 6.1 0.28 
500 1.9 x 10-10 2.5 6.2 0.33 

 
 
 
 
 
 
 
 
 
 
 
Figure Captions 
 
 
Figure 1. (a) Fixed window scans (at FWHM 0.9μeV resolution) of semicrystalline PET 
from T equal to 4–475 K, at selected wavenumbers Q ( 0.50 Å−1), ( 1.18 Å−1), 
(1.68 Å−1) and (1.96 Å−1). The results are normalized by the elastic intensity 
measured at 4 K. (b) Apparent mean-square displacement <u2> (Å2) as a function of 
temperature for amorphous () and semicrystalline () PET samples. Glass transition 
temperatures of both species and cold crystallization temperature for initially 
amorphous PET are indicated by arrows. 
 
Figure 2. Influence of temperature on the experimental QENS spectra on semicrystalline 
PET at a constant momentum transfer of 1.85 Å-1. The total incoherent scattering law 
(solid red line) is separated into the experimental resolution (dashed black line) and the 
quasielastic component (dotted blue line).  
 
Figure 3. Q dependence of the incoherent scattering law of semicrystalline PET at 500 
K. Solid red lines are the best fit of the equation 5 to the experimental data. Solid black 
lines correspond to the experimental resolution and the dotted blue lines indicate the 
lorentzian component, convolved with the resolution function, of the equation 5 that 
represents the quasielastic broadening. The vertical axes are shown up to a 25% of the 
maximum intensity of the central elastic peak. 
 
Figure 4. (a) Experimental data of the elastic incoherent elastic factor EISF as a function 
of Q for semicrystalline PET. Experimental data of the EISF were estimated from the 
fits of the QENS spectra to the equation 5. Dashed lines represent the fits of the 
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experimental data to the one dimensional diffusion in a restricted environment model 
(DRE). (b) Half width at half maximum  of the quasielastic broadening against the 
momentum transfer Q at different temperatures for semicrystalline PET. Solid lines 
correspond to the Hall and Ross model (Jump diffusion model in a restricted 
environment [35, 38]). 400 K (), 450 K () and 500 K () 
 
 
Figure 5. Fraction of mobile protons (left axe) and confinement size (right axe) with 
temperature for the DRE model which considers rigid walls (equation 7). Lines are 
guides to the eye.  
 
 
Figure 6. Relaxation times as a function of reciprocal temperature for semicrystalline 
PET. The graph collects different relaxation processes like: (a) dielectric  relaxation 
(); (b) dielectric  relaxation (); (c) NSE  relaxation () and (d) IN10 data (500 
K) of the present work (). Solid red line corresponds to the Arrhenius description of 
the dielectric  relaxation. Dotted black line is the best fit of the dielectric and NSE data 
of the  relaxation to the Vogel-Fulcher-Tamman equation [17]. Filled pattern 
corresponds to the IN10 timescale window. 
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