
966 OPTICS LETTERS / Vol. 27, No. 11 / June 1, 2002
Phase-locked soliton pairs in a stretched-pulse fiber laser
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We report the experimental observation of stable pulse pairs with a 6p�2 phase difference in a passively
mode-locked stretched-pulse fiber ring laser. In our setup the stabilization of interacting subpicosecond pulses
is obtained with a large range of pulse separations, namely, from 2.7 to 10 ps, without the need for external
control. © 2002 Optical Society of America
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With the aim of developing compact high-repetition-
rate sources for telecommunications applications,
researchers have studied erbium-doped fiber lasers
intensely for a decade.1 The field conf inement in
doped optical fibers provides both large optical gain
and Kerr nonlinearity, key ingredients for passive
mode locking. Anomalous dispersion leads to soliton
pulse shaping and favors multiple pulsing with the
increase of pumping power, as was observed in early
experiments with passively mode-locked fiber laser
cavities. It was then noticed that a slight change of
the mode-locking conditions could group pulses into
a more or less tight bunch instead of spacing them
equally along the cavity.2,3 Recently, pulse bunching
regained some attention because of the high stability
of the pattern obtained under certain conditions,4 – 6

leading to new studies of the interactions between
pulses in a fiber laser cavity.

Within the framework of the nonlinear Schrödinger
equation, soliton–soliton interaction does not usually
lead to fixing of pulse separation, except in the case of a
train of solitons in quadrature, which is, nevertheless,
not immune to perturbation.7 However, the increased
complexity of the physical system, when either gain
plus losses or higher-order dispersion terms are taken
into account, allows one to find stable bound states of
pulse pairs. On the one hand, modeling distributed
gain and losses leads to the complex Ginzburg–Landau
equation in which stable two-soliton bound states were
predicted.8,9 An important feature of the stable bound
states reported in Ref. 9 is the 6p�2 phase difference
between the two pulses. On the other hand, the inclu-
sion of large third-order dispersion was also shown to
lead, in some cases, to the formation of bound multisoli-
ton solutions,10 without any preferred phase difference
between the pulses. The latter result could be rele-
vant in balanced dispersion management, namely, with
very close to zero path-averaged group-velocity disper-
sion and with the use of short sub-100-fs pulses, as
was investigated with a Cr41:forsterite laser.11 Very
recently, the observation of a closely interacting pair of
pulses that formed a soliton bound state in an anoma-
lous f iber ring was reported.6 To overcome timing jit-
ter and achieve a bound state required injection of a
0146-9592/02/110966-03$15.00/0
strong cw laser f ield, and two possible separations be-
tween the two 310-fs interacting pulses were observed,
namely, 1.16 and 2.28 ps.

In this Letter we report, for the first time to our
knowledge, that a pulse pair locks with the precise
p�2 phase relationship predicted within the framework
of Ginzburg–Landau equation stability analysis.9 In
addition, and contrary to the requirements mentioned
in Ref. 6, no external injection was needed in our fiber
cavity configuration, and pairs of interacting pulses
were found to phase lock spontaneously with a large
range of possible separations.

The fiber laser setup, a stretched-pulse f iber ring
cavity comprising an open-air section,12,13 is illustrated
in Fig. 1. The optical gain is provided by a 1.6-m-long
1400-parts-in-106 (ppm) erbium-doped fiber with nor-
mal dispersion �D � 240 �ps�nm��km�. The erbium-
doped fiber is followed by a polarization-insensitive
coupler–isolator into which the 980-nm pumping light
is injected. A 4.8-m length of SMF-28 fiber provides
anomalous dispersion �D � 117 �ps�nm��km�. Non-
linear polarization rotation that takes place along
the propagation in both fibers makes transmission
through polarizer P1 intensity dependent, allowing
for passive mode locking to be triggered by an ap-
propriate adjustment of the preceding wave plates.
In pulse operation, however, it is necessary that

Fig. 1. Schematic of the fiber ring laser cavity pumped
by laser diodes (LDs). WDM-IS, polarization-insensitive
coupler–isolator; EDF, erbium-doped f iber; l�4, quarter-
wave plate; l�2, half-wave plate.
© 2002 Optical Society of America
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P1 reject an important fraction (30–70%) of the
intracavity power for stabilization. Low-pedestal
pulses may then be obtained at the output port, P2.
Temporal characterization of the output intensity
is performed with a laboratory-made optical auto-
correlator that uses a 1-mm-thick b-barium borate
crystal in type I second-harmonic generation and
can be set in interferometric or noninterferometric
mode. For spectrum analysis, we use a commercial
high-resolution monochromator (Jobin-Yvon HR 640).

The laser self-mode-locks for a pumping power of
more than 35 mW. Operating with a slightly anoma-
lous path-averaged dispersion of �13 �ps�nm��km,
we observe low-pedestal sech-profiled pulses, whose
FWHM duration varies from 400 to 650 fs. Stable
bunches of pulses are easily obtained when the pump
power is increased to more than 80 mW, as described
in Ref. 4. As many as five identical pulses of �15-pJ
power and 450-fs duration each are observed to bunch
with a regular spacing of typically 20 ps, for a pump
power of �250 mW. We also noticed a very low level
of timing jitter from the autocorrelation recordings
as well as the presence of interference fringes in the
spectrum, indicating phase locking. The procedure
for obtaining a pair of interacting pulses is usually as
follows: We start with a bunch of regularly spaced
pulses whose separation is �20 ps, as this is the
easiest stable conf iguration to be obtained in our
setup. We then reduce the pump power to keep only
two interacting pulses of the same amplitude, with
20-ps separation. Notice the presence of interference
fringes in the spectrum, indicating that the two pulses
are phase locked. However, the precise phase rela-
tionship between the two pulses is difficult to measure
because of the large pulse separation. Reducing the
pump power further below 50 mW, we observe that
the pair separation is decreased. We remark that
the configuration of pulses undergoes some hysteresis
with respect to the pumping power: We can keep a
given configuration of pulses for a pump power signifi-
cantly lower than the power required for formation
of that given configuration. When the pump power
is lowered, the decrease in the pair separation is not
uniform but undergoes some jumps. These jumps are
probably related to the high stability of the operation
regime, in which a pulse pair remains precisely phase
locked. Indeed, at the beginning, the pump power
leads to a continuous decrease of the amplitude of both
pulses, whereas the separation is kept constant and
the pulse pair remains phase locked. Lowering the
pump power further, we find that an abrupt transition
happens in which the pulses get closer and stabilize
with phase locking again at a f ixed separation. The
same process can be repeated two or three times.

When the pair separation is less than 10 ps, which
is �18 pulse widths, the phase relationship between
the two phase-locked pulses can be inferred with good
precision from the position of fringes in the pair spec-
trum. Figure 2(a) shows the spectrum of a pair of in-
teracting pulses, whose asymmetry indicates the phase
relation between pulses is neither 0 nor p. This spec-
trum is well f itted by the spectrum resulting from two
610-fs FWHM sech-profiled pulses separated by 6.8 ps
and with a phase difference of p�2. The 610-fs pulse
width was deducted from the autocorrelation trace, and
the time–bandwidth product of 0.32 6 0.01 is com-
patible with unchirped sech-profiled pulses. Another
proof of phase locking is obtained with the optical au-
tocorrelation set in the interferometric mode. The re-
sulting trace is shown in Fig. 2(b), and the presence
of lateral peaks confirms the pulse separation as well
as the equal amplitude of the pulses. Moreover, the
fact that the lateral peaks comprise fringes, as shown
in the insets, proves the stable phase relationship be-
tween the two pulses. The autocorrelation traces have
been normalized so that average recorded intensity
of the second-harmonic generation is unity where the
pulses do not overlap. With this normalization, and
when the pulses have identical amplitude, the fringes
of the lateral peaks are expected to extend from 0.5
to 4.5.

Another spectrum, recorded at a lower pump power
of 29 mW, is displayed in Fig. 3(a) and fitted by the
spectrum of two pulses separated from 2.7 ps and hav-
ing a 2p�2 phase relationship. The corresponding
interferometric autocorrelation function is shown on
Fig. 3(b). For the experimental conditions of Figs. 2

Fig. 2. (a) Spectrum of the laser output port (solid curve)
fitted (open circles) by the spectrum of two unchirped
610-fs sech-profiled pulses separated by 6.8 ps and with a
p�2 phase difference. The pump power is 31 mW. (b) In-
terferometric autocorrelation of the same output. Al-
though experimental noise is visible, interference fringes
appear clearly in the lateral peaks, as seen from the
insets. This result indicates that the two pulses have a
fixed phase relationship.
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Fig. 3. (a) Spectrum of a closer pulse pair (solid curve) fit-
ted (open circles) by the spectrum of two unchirped 540-fs
sech-profiled pulses separated by 2.7 ps and with a 2p�2
phase difference. The pump power is 29 mW. (b) Corre-
sponding interferometric autocorrelation trace.

and 3, there was no significant difference between the
spectra taken at laser port P2 and the spectra taken
at rejection port P1. This was always the case for
low-energy pulse pairs. Output powers were approxi-
mately 0.8 mW at port P1 and 0.2 mW at port P2.

The 6p�2 phase relationship calculated from the
previous spectra was predicted in a stability analysis
of the complex Ginzburg–Landau equation.9 It is
highly remarkable that this relation holds for pulses
separated by more than 10 pulse widths in a highly
perturbed dynamic system such as a stretched-pulse
fiber laser. Finally, we also observed in our setup
more-complicated structures of bunches comprising
more than two phase-locked pulses that will be de-
scribed in a future paper.

In conclusion, we have demonstrated experimentally
that a passively mode-locked stretched-pulse fiber
laser can support 6p�2 phase-locked pulse pairs.
Depending on the pump power and mode-locking con-
ditions, the pulse separation can be changed in a large
range. The 6p�2 phase separation could be due to
soliton–soliton interaction, as was theoretically pre-
dicted on the basis of the Ginzburg–Landau equation
model. Because of the large range of pulse-to-pulse
separations observed, we believe that incoherent ef-
fects such as gain recovery time14 and electrostriction15

could f ix the approximate separation, in particular
when the pulses are far apart, whereas soliton–soliton
interactions could be responsible for precise phase
locking of pulses.
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