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Abstract: The development of high-throughput technologies allows for evaluating gene 

expression at the whole-genome level. Together with proteomic and metabolomic studies, 

these analyses have resulted in the identification of plant genes whose function or 

expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow 

leaf curl virus (TYLCV) complex are among the most important pathogens impairing 

production of agricultural crops worldwide. To understand how these geminiviruses 

subjugate plant defenses, and to devise counter-measures, it is essential to identify the host 

genes affected by infection and to determine their role in susceptible and resistant plants. 

We have used a reverse genetics approach based on Tobacco rattle virus-induced gene 

silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, 

and to identify genes underlying virus resistance. To identify host genes with a role in 

geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, 
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which over-expresses GFP upon virus infection. With this system, we have achieved an 

accurate description of the dynamics of virus replication in space and time. Upon silencing 

selected N. benthamiana genes previously shown to be related to host response to 

geminivirus infection, we have identified eighteen genes involved in a wide array of 

cellular processes. Plant genes involved in geminivirus resistance were studied by 

comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-

nine genes preferentially expressed in R tomatoes were identified by screening cDNA 

libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so 

far, the silencing of five led to the total collapse of resistance, suggesting their involvement 

in the resistance gene network. This review of our results indicates that TRV-VIGS is an 

exquisite reverse genetics tool that may provide new insights into the molecular 

mechanisms underlying plant infection and resistance to infection by begomoviruses.  

Keywords: Tomato yellow leaf curl disease; geminiviruses; plant-resistance; tomato; 

VIGS; reverse genetics; plant-virus interaction 

 

1. Introduction 

Viral diseases threaten the production of agriculture plant crops. To establish a successful infection, 

viruses must hijack the cellular machinery and prevent or counteract the plant defenses. On the other 

hand, plants have developed a variety of resistance mechanisms, either ready to meet incoming 

pathogens or induced by them. High-throughput technologies allow following changes in gene 

expression upon virus infection at the genome level and evaluating the functions of these genes during 

infection [1, 2], in susceptible as well as resistant plants [3]. Begomoviruses (genus Begomovirus, 

family Geminiviridae), a major virus family affecting agricultural crops worldwide, have been the 

subject of such studies [4-6]. Identifying the host genes selectively expressed during infection and 

determining their role is a pre-requisite to understand the process of begomovirus infection in 

susceptible and resistant plants. We review here how the use of a reverse genetics approach based on 

virus-induced gene silencing (VIGS) has allowed the identification of plant genes involved in infection 

and in resistance to begomoviruses of the Tomato yellow leaf curl virus (TYLCV) complex.  

 

2. Analysis of gene expression in plants using a reverse genetics approach based on virus-induced 

gene silencing  

 

Plant innate response to virus invasion includes triggering resistance gene products, local cell death 

and systemic acquired resistance [7]. During the last decade, it appeared that RNA silencing is another, 

sequence-specific, universal plant defense mechanism against virus invasion [8]. It was discovered that 

replication of RNA and DNA viruses is associated with the accumulation of virus-derived small RNAs 

that help cleave viral messengers in a sequence specific manner [9,10]. This mode of RNA silencing 

was referred as post-transcriptional gene silencing (PTGS). Viruses encode suppressors of RNA 

silencing, which efficiently inhibit host antiviral responses [11]. RNA silencing of viruses led to the 
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development of an outstanding reverse genetic tool now widely used in plant biology, known as virus-

induced gene silencing (VIGS). In plants, VIGS is specifically targeted against the viral genome. 

However, with virus vectors carrying inserts derived from host genes, the process can be targeted 

against the corresponding mRNAs [12]. Hence, VIGS has emerged as an efficient tool to study gene 

silencing in plants [13].  

One of the most common vectors currently used is based on the Tobacco rattle virus (TRV) [14,15]. 

This method uses a bipartite vector system designed between left and right borders of the 

Agrobacterium Ti plasmid. TRVI contains the RNA-dependant RNA polymerase (RdRp) and the MP 

components of the virus whereas TRVII contains multiple cloning sites (MCS) and the CP sequences. 

The bipartite plasmids are flanked by the 35S Cauliflower mosaic virus promoter and a Nopaline 

synthase gene terminator. The MCS in TRVII allows ligation of DNA target sequences that will induce 

PTGS in the plant upon delivery by agroinoculation. The multiplication of the vector in the plant tissue 

triggers the cleavage of target sequence resulting in loss of expression [14]. Among other features, 

VIGS has been used to dissect the genetics of floral development and scent production [16], water 

deficit stress tolerance [17], embryogenesis, chlorophyll biosynthesis and disease resistance [18], and 

protective acyl sugars in trichomes [19]. The siRNAs-mediated RNA silencing has been exploited to 

engineer plants resistant to diseases by targeting the genome of viruses, viroids, insects and fungi [20].  

TRV is not the only virus used as vector for PTGS studies. More than 30 viruses have been shown 

to have potential as VIGS vectors [21]. Among others, the tobamovirus Tobacco mosaic virus (TMV) 

and the potyvirus Potato virus X (PVX) have been engineered to target the plant phytoene desaturase 

gene (PDS), frequently used as a reporter gene for efficient silencing (the leaf loses its green color) 

[22]. The Hordeivirus Barley stripe mosaic virus (BSMV) served as vector to silence PDS, magnesium 

chelatase subunit H and plastid transketolase genes, and the powdery mildew resistance 5 gene PMR5 

in Nicotiana benthamiana, barley and wheat [23]. Several geminiviruses have been engineered to 

serve as VIGS vectors. Tomato golden mosaic virus was used to silence the proliferating cell nuclear 

antigen (PCNA) and a subunit of magnesium chelatase in N. benthamiana [24]. Tomato leaf curl virus 

(ToLCV) served to silence tomato PCNA [25]. TYLCV was modified to serve as a gene silencing 

system in tomato and was applied to silence a viral silencing suppressor of Grapevine virus A (GVA), 

resulting in GVA-tolerant N. benthamiana plants [26]. Cabbage leaf curl virus (CaLCuV) was used to 

dissect the host geminivirus silencing mechanism in Arabidopsis thaliana [27]. The DNA1 satellite of 

the Tobacco curly shoot virus has been modified into a VIGS vector to study floral development [28]. 

African cassava mosaic virus (ACMV) was used to silence genes involved in glycoside synthesis in 

cassava [29]. Cotton leaf crumple virus (CLCrV) was used to silence a cotton magnesium chelatase 

subunit I gene [30].   

 

3. Tomato yellow leaf curl viruses: a complex of begomoviruses infecting tomato plants 

worldwide 

 

Tomato cultures (Solanum lycopersicum) worldwide are under the constant threat of diseases 

caused by geminiviruses belonging to the TYLCV complex [31]. In nature, the TYLCVs are 

exclusively transmitted by the whitefly Bemisia tabaci [32]. Members of the TYLCV complex have a 

single 2,700-2,800 nucleotide (n) circular ssDNA genome encapsidated in a geminate particle. The 
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TYLCVs replicate in the nuclei of infected cells following a rolling-circle strategy, using a double 

stranded DNA intermediate replicative form as a template [33]. Their genome encodes two genes, V1 

and V2; the complementary viral strand encodes four genes, C1 to C4. A 300 n intergenic region (IR) 

includes a stem-loop structure containing the origin of replication shared by all known begomoviruses 

and bidirectional promoters. V1 encodes the coat protein (CP); V2 encodes a movement protein (MP) 

and may also function as a silencing suppressor. C1 encodes a protein (Rep) necessary for replication, 

C2 a transcription activator (TrAP), C3 a replication enhancer (REn) and C4 a small protein embedded 

within the Rep that may act as a symptom determinant [34].  

Plants have been genetically engineered to resist infection by members of the TYLCV complex. 

Strategies employed were based on expressing viral proteins, whether wild-type or mutants, of virus-

binding proteins, and on viral gene silencing [35]. However, in view of the public reticence regarding 

genetically modified food crops, breeding remains a method of choice to obtain plants resistant to 

TYLCV [36]. Wild relatives of domesticated plant species constitute an invaluable reservoir of 

resistance genes, which have been tapped by plant breeders to improve agricultural crops [37]. It is 

thought that the expression of these resistances involves sets of genes that interact upon positive and 

negative signals within an interconnecting network [38]. Along domestication, these networks have 

been disrupted and resistances lost, probably because resistance alleles were linked with undesired 

horticultural qualities. Breeding has been instrumental in reconstituting (part of) the resistance gene 

network(s).  

Since the domesticated tomato S. lycopersicum is susceptible to TYLCV, breeders have 

introgressed resistance traits identified in wild tomato species (such as S. chilense, S. peruvianum and 

S. habrochaites) into S. lycopersicum [36,39]. As a result, the resistant tomato lines contain 

chromosomal fragments from the wild species on a domesticated tomato background, identifiable with 

polymorphic DNA markers [40]. Several loci from wild tomato species associated with resistance to 

TYLCV and related begomoviruses (coined Ty-1 to Ty-5) have been identified using such markers. 

The gene conferring TYLCV-resistance at the Ty-1 (from S. chilense) and Ty-5 (from S. peruvianum) 

loci have been identified (unpublished) but their function in the establishment of resistance is not 

known.  

 

4. Identification of host genes involved in TYLCV infection  

 

4.1. A Nicotiana benthamiana system to monitor TYLCSV infection in combination with host gene 

silencing 

 

We wished to identify plant genes responding to infection by a close relative of TYLCV, Tomato 

yellow leaf curl Sardinia virus TYLCSV, and to analyze their function. To achieve these goals, we 

have generated a N. benthamiana transgenic line, named 2IRGFP, which allows monitoring virus-

induction of host genes and their silencing. 2IRGFP plants contain a green fluorescence protein gene 

(GFP) expression cassette flanked by two repeats of the TYLCSV intergenic region IR [41]. 

Uninfected 2IRGFP plants display a basal low level of GFP. During infection, the TYLCSV Rep 

protein specifically recognizes the IRs flanking the cassette, and initiates replication and strong 

expression of the GFP transgene (Figure 1a). Therefore, induction of GFP expression directly 
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correlates with viral replication, allowing monitoring the development of infection in plant tissues in 

both space and time in a simple visual, reliable and non-invasive manner (Figure 1b) [41]. Since the 

evaluation and monitoring of the viral infection is extremely straight-forward, we have used 2IRGFP 

plants as a tool in combination with VIGS to identify host genes with an impact in viral pathogenicity. 

 

Figure 1. Generation and phenotypic analysis of TYLCSV-infected 2IRGFP N. 

benthamiana transgenic plants. a. Construct 2IRGFP contains a direct repeat of the 

TYLCSV IR encompassing a GFP expression cassette that contains the 35S CaMV 

promoter (P35S), the complete ORF of GFP and the NOS terminator (Ter). During 

TYLCSV infection, the viral Rep protein specifically recognizes the IRs flanking the 

cassette, and mGFP replicons are generated (EM), which in turn leads to a strong over-

expression of the GFP transgene and the subsequent accumulation of the fluorescent 

protein. b. Evolution of virus replication-associated phenotype (RAP) in infected 2IRGFP 

plants at different days post-infection (dpi). A representative photograph of each RAP 

phenotype showing the extension and intensity of GFP expression is displayed.   

 

 

                      0 dpi                14 dpi               28 dpi                 35 dpi            35 dpi     

 

Prior to the use of TRV-based VIGS for a reverse genetics screen in 2IRGFP plants, we have shown 

that co-infection of TYLCSV with TRV did not alter the pattern of TYLCSV-dependent over-

expression of GFP, even though TYLCSV accumulation was slightly delayed in plants co-infected 

with TRV compared to control plants [41]. At least three different proteins encoded by TYLCSV have 

been described to function as suppressors of gene silencing [42]. The possibility that a TYLCSV 

suppressor of gene silencing could counteract TRV-mediated silencing in TYLCSV-TRV co-infected 

plants was tested using either the endogenous Sulfur (Sul) gene (in 2IRGFP N. benthamiana plants) or 
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a GFP transgene. The results indicated that co-infection with TYLCSV did not significantly alter the 

silencing phenotypes, confirming that TRV-mediated VIGS can be reliably used in combination with 

TYLCSV. 

 

4.2. Selection and screening of candidate genes involved in TYLCSV infection 

 

Genes potentially involved in TYLCSV infection was established following a literature search 

according to one of the four criteria: 1) they encode proteins binding geminiviral proteins; 2) they are 

exclusively or preferentially expressed in phloem tissues, to which TYLCSV is restricted; 3) they are 

trans-activated by C2 from the begomoviruses Mungbean yellow mosaic virus (MYMV) or ACMV 

[43]; 4) they are involved in cellular processes potentially required for geminivirus infection. A list of 

114 genes was established. Since these genes belong to different plant species (the genome sequence 

of N. benthamiana was not available at the time), we performed homology analyses to identify 

sequence stretches conserved in diverse plant species, including Arabidopsis and tomato, which could 

serve as silencing targets. These sequences were used to design potentially efficient silencing siRNA 

molecules (Invitrogen Block-iT
TM 

RNAi designer tool). The fragments we chose for TRV-mediated 

silencing were those containing the largest number of potential siRNAs. Fifty-four of the initially 

selected 114 candidate genes fitted these pre-conditions; 37 were tested for their potential impact on 

TYLCSV infection upon silencing. The silencing recombinant TRVs were induced in 2IRGFP N. 

benthamiana plants, which were subsequently infected with TYLCSV. GFP over-expression was 

monitored daily from 9 to 15 days post-infection (dpi) under UV light; pictures and tissue samples 

were taken at 15 dpi (Figure 2). TYLCSV co-infection with empty TRV vectors or Sul-silencing TRV 

was used as control. 

The effect of silencing the 37 host genes TYLVSV infection was classified into three categories:  

A- silencing of 7 resulted in an earlier or enhanced infection; B- silencing of 11 delayed, reduced or 

completely abolished infection; C- silencing of 19 did not induce a noticeable change in the pattern of 

infection. The identity and associated GO terms (biological process, cellular component and molecular 

function) for each of these genes are listed in Table 1. The genes identified in this screen can be 

classified into three functional groups discussed in more detail below: 1) genes with a previously 

known function in geminivirus infection; 2) genes involved in stress responses; 3) genes involved in 

posttranslational modifications.  
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Table 1. List of genes whose silencing enhances (category A) or delays (category B) TYLCSV infection. The criterion for selection is 

indicated in each case. The accession numbers (ACC) of the homologous Arabidopsis gene used in the VIGS experiments are indicated. 

ND: not determined. 

Identity ACC A. thaliana GO Biological process GO Cellular component GO Molecular function Selection criteria 

Category A       

Bearskin 2 (BRN2)  AT4G10350 Multicellular organismal development, 

positive regulation of gene expression, 

positive regulation of transcription, DNA-

dependent, regulation of transcription, root 

cap development, secondary cell wall 

biogenesis 

ND Sequence-specific DNA 

binding transcription factor 

activity 

Phloem over-

expression  

Importin alpha isoform 4 (IMPA-4) AT1G09270 Host response to induction by symbiont of 

tumor, nodule or growth in host, protein 

transport, symbiont intracellular protein 

transport in host 

Cytosol, host cell, 

intracellular 

Protein binding, protein 

transporter activity 

Interaction with 

CP 

Lactoylglutathione lyase (GLO1) AT1G15380 Carbohydrate metabolic process ND Lactoylglutathione lyase 

activity 

Interaction with 

C3  

Replication protein A32 (RPA32/RPA2)  AT3G02920 Unknown ND Nucleic acid binding Interaction with 

Rep  

Dehydration responsive 21 (RD21) AT1G47128 Metabolic process, response to water 

deprivation 

Apoplast, chloroplast, 

plasmodesma, vacuole 

Cysteine-type 

endopeptidase activity, 

protein binding 

Interaction with 

V2  

RING-type E3 ubiquitin ligase (RHF2A) AT5G22000 Megagametogenesis, microgametogenesis, 

proteolysis involved in cellular protein 

catabolic process, regulation of cell cycle 

Plasma membrane Zinc ion binding Transactived by 

TrAP/C2 

Ubiquitin activating enzyme (UBA1) AT2G30110 Metabolic process, protein ubiquitination, 

response to cadmium ion, response to 

other organism, ubiquitin-dependent 

protein catabolic process 

Cytosol, plasma 

membrane, plasmodesma 

Ubiquitin activating 

enzyme activity, ubiquitin-

protein ligase activity 

Interaction with 

TrAP/C2  

http://www.arabidopsis.org/servlets/TairObject?type=locus&id=127717
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5590
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=29745
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=12513
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=12513
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7461
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=23444
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=23444
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=10267
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=10267
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4449
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4449
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4449
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=136334
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=31253
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=31253
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6910
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6910
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11288
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11288
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=241
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=23555
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=402
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3914
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3914
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=31147
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5291
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=2973
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=2973
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=35786
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3376
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=226917
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6331
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5647
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5647
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14693
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=175
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=571
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=730
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=2042
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=2042
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=500231939
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11325
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=26945
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=21764
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=21764
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22516
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4661
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=34701
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6331
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6911
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13588
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22499
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22499
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7522
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7522
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=241
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=571
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4569
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4569
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4573
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4573
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Category B      

4-coumarate:CoA ligase (AT4CL1) AT1G51680 Metabolic process, phenylpropanoid 

metabolic process, response to UV, 

response to fungus, response to wounding 

Unknown 4-coumarate-CoA ligase 

activity 

Phloem over-

expression  

Allene oxide cyclase (AOC1) AT3G25760 Jasmonic acid biosynthetic process, 

metabolic process, response to desiccation 

Chloroplast, chloroplast 

envelope, chloroplast 

thylakoid membrane 

Allene-oxide cyclase 

activity 

Phloem over-

expression  

Barely any meristem 1 (BAM1) AT5G65700 Anther development, floral organ 

development, gametophyte development, 

protein phosphorylation, regulation of 

meristem growth, regulation of meristem 

structural organization, trans-membrane 

receptor protein tyrosine kinase signaling 

pathway 

Plasma membrane Kinase activity, protein 

binding, protein self-

association, protein 

serine/threonine kinase 

activity, receptor 

serine/threonine kinase 

binding 

Interaction with 

C4  

Coatomer delta subunit (deltaCOP) AT5G05010 Intracellular protein transport, transport, 

vesicle-mediated transport 

Cytosol, membrane, 

plasmodesma 

ND Interaction with 

C3  

COP9 signalosome subunit 3 (CSN3) AT5G14250 G2 phase of mitotic cell cycle, cullin 

deneddylation, photomorphogenesis 

Cytosol, signalosome Protein binding Cellular process 

Geminivirus Rep A-binding (GRAB2)  AT5G61430 Multicellular organismal development, 

regulation of transcription, DNA-

dependent 

Unknown sequence-specific DNA 

binding transcription factor  

Interaction with 

Rep  

Heat shock protein cognate 70 (HSC70) AT5G02500 Defense response to bacterium, defence 

response to fungus, negative regulation of 

seed germination, protein folding, response 

to cadmium ion, response to cold, response 

to heat, response to virus, stomatal closure 

Apoplast, cell wall, 

chloroplast, cytoplasm, 

cytosol, membrane, 

nucleus, plasma 

membrane, plasmodesma 

ATP binding,protease 

binding, protein binding 

Phloem over-

expression 

Nuclear acetyltransferase (NSI)  AT1G32070 Pathogenesis, spread of virus in host Chloroplast, nucleus N-acetyltransferase activity Interaction with 

NSP  

http://www.arabidopsis.org/servlets/TairObject?type=locus&id=28261
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6331
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6712
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6712
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4960
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7124
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7144
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=840
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=840
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=37647
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6117
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6331
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5575
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=175
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=12482
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=12482
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=706
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=706
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13279
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13279
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=134068
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=21591
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=18843
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=18843
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=17129
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6897
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14824
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14824
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11963
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11963
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7487
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7487
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7487
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=2953
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22766
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22766
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3907
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3907
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3907
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=28035
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=28035
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=28035
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6091
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7489
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7567
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=241
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=453
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=571
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=130792
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4788
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=26952
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=26952
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6751
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=241
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=657
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=133187
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5590
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7461
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7461
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4449
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=4449
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=135708
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14972
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=18013
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=18013
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=17779
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=17779
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6884
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13588
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13588
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5433
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5962
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5962
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7143
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=35365
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14693
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=153
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=175
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=231
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=241
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=453
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=537
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=571
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=894
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22611
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=22611
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=136335
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6644
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13791
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=175
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=537
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=1124
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Patatin-like protein 2 (PLP2)  AT2G26560 Cell death, cellular response to hypoxia, 

defence response to virus, lipid metabolic 

process, oxylipin biosynthetic process, 

plant-type hypersensitive response, 

response to cadmium ion 

Cytoplasm, membrane Lipase activity, nutrient 

reservoir activity 

Phloem over-

expression  

Shaggy-related kinase kappa (SK4-1/SKK) AT1G09840 Protein phosphorylation Plasma membrane ATP binding, protein 

serine/threonine kinase 

activity 

Interaction with 

C4  

SKP1-like 2 (ASK2) AT5G08590 Phosphorylation, protein phosphorylation, 

response to osmotic stress, response to salt 

stress 

Nucleus Kinase activity, protein 

binding, protein kinase 

activity 

Transactived by 

TrAP/C2  

http://www.arabidopsis.org/servlets/TairObject?type=locus&id=35570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=5327
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=33992
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=21804
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6186
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6186
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=21006
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6029
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13588
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=231
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=453
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3019
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=12447
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=12447
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=28933
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6897
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=570
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=894
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3907
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3907
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3907
http://www.arabidopsis.org/servlets/TairObject?type=locus&id=132676
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6748
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6897
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6618
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7182
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=7182
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=537
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=2953
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3877
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3889
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=3889
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Figure 2. Screening of candidate genes in 2IRGFP transgenic N. benthamiana plants. 

Plants were co-inoculated with a TRV:Gene construct and TYLCSV. GFP expression was 

monitored daily up to 15 days post-inoculation (dpi). The picture shows GFP expression in 

one of the apical leaves under UV (left) and visible light (right) of 2IRGFP N. 

benthamiana transgenic plants 15 days after they were co-infected with TYLCSV and 

TRV constructs to induced silencing of genes classified in category A (Replication 

associated protein A, RPA32, and Ubiquitin activating enzyme 1, UBA1) or category B 

(Coatomer delta subunit, deltaCOP, and Heat shock cognate 70, HSC70). Leaves from 

control 2IRGFP plants are shown: agroinfiltrated with an empty binary vector (Mock) or 

with the empty TRV vector (TRV). The relative amount of TYLCSV DNA accumulated in 

co-infected plants was quantified by qPCR; results are shown below the images. Values are 

the mean of five to ten plants. The numbers correspond to the mean ±standard error. This 

experiment was repeated three times with similar results.  

 

 

 

4.2.1. Genes with a known function in geminivirus infection 

 

Among the candidate genes that were found to exert an effect on TYLCSV infection when silenced, 

three have been implicated in begomovirus infection.  

NSI (Nuclear shuttle interaction). NSI encodes a nuclear acetyl-transferase that physically interacts 

with the Nuclear shuttle protein (NSP) of CaLCuV. Over-expression of NSI resulted in enhanced 

infection [44], indicating that protein acetylation may coordinate replication of the viral genome with 

its export from the nucleus. This promoting effect of NSI on geminivirus infection is supported by our 

data, which showed that silencing of NSI negatively affects TYLCSV. 
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GRAB2 (Geminivirus Rep A-binding). GRAB2 encodes a NAC-containing protein that interacts 

with Wheat dwarf virus (WDV) RepA in wheat [45]. Over-expression of GRAB2 inhibits WDV 

replication in wheat cells. Unexpectedly, our results showed that low levels of GRAB2 enhanced 

TYLCSV infection. It is possible that GRAB2 has different roles in WDV and TYLCSV infections. 

RPA32 (Replication protein A32). The gene product was shown to interact with the Rep protein of 

Mungbean yellow mosaic India virus (MYMIV) [46], repressing the Rep nicking and closing activities 

while promoting its ATPase activity. In our system, silencing of RPA32 resulted in enhanced 

TYLCSV infection.  

 

4.2.2. Genes involved in stress responses 

 

Five of the 18 genes identified in the screen as potentially involved in TYLCSV infection have been 

shown to play a role in plant stress responses.  

HSC70-1 (Heat shock protein cognate 70). HSC70-1 is one of five cytosolic members of the heat 

shock protein 70 family in Arabidopsis [47]. Infection with several plant viruses, including the 

geminivirus Beet curly top virus (BCTV), leads to enhanced expression of this gene family [48]. 

HSC70 interacts with the co-chaperone SGT1, which has been shown to be required for resistance 

against viruses [49]. The finding that silencing of HSC70-1 results in impaired TYLCSV infection 

indicates that high levels of this protein are required for a successful geminivirus replication and 

spread. HSC70 may promote protein maturation during the virus multiplication cycle, and/or may be 

involved in virus cell-to-cell movement [50]. 

RD21 (Responsive to dehydration 21). RD21 is a cysteine protease. Tomato RD21 interacts with 

TYLCSV V2 in yeast (our unpublished results). Expression of RD21 is induced following inoculation 

with Botrytis cinerea or Pseudomonas syringae (Arabidopsis eFP browser), or upon CaLCuV infection 

[51], pointing to a potential role in plant defense. Since silencing of RD21 promotes TYLCSV 

infection, we hypothesize that this gene may also have anti-viral activities. 

PLP2 (Patatin-like protein 2). PLP2 is a lipid acyl hydrolase, hydrolyzing membrane glycerolipids 

to produce monoacyl compounds and free fatty acids. Expression of PLP2 is induced upon infection 

by CaLCuV [52]. Upon desiccation, Arabidopsis with a plp2 mutation accumulates high levels of 

jasmonic acid (JA) [53]. Since in some cases activation of JA signaling negatively impacts geminivirus 

infection [54], over-production of JA due to PLP2 silencing may explain the inhibition of TYLCSV 

infection. 

GLO1 (Lactoylglutatione lyase). GLO1 belongs to the glyoxalase system, which detoxifies 

methylglioxal (MG), a cytotoxic by-product of glycolysis [55]. Over-expression of GLO1 results in 

increased tolerance to abiotic stresses [56]. Enhancement of the glyoxalase pathway in transgenic 

tobacco and rice helps maintaining low levels of reactive oxygen species (ROS) and MG [55]. Plant 

virus infection alters the expression of oxidative stress-related genes and induces oxidative stress 

correlated with the extent of symptoms [57]. In our system, silencing of GLO1 could result in an 

increased accumulation of ROS, which would in turn favor viral infection. 

AOC1 (Allene oxide cyclase 1). AOC1 catalyzes an essential step in the biosynthesis of jasmonic 

acid. Exogenous application of JA negatively impact geminivirus infection [54]. Therefore silencing of 

AOC1, which would presumably impair jasmonate biosynthesis, was expected to result in enhanced 
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viral infection. Surprisingly, AOC1-silenced plants were more resistant to TYLCSV. It is possible that 

due to cross-talk between JA and salicylic acid (SA) signaling pathways, the silenced plants may 

accumulate high levels of SA, known to impair geminivirus infection [58]. 

 

4.2.3. Genes involved in post-translational modifications (PTMs) 

 

Strikingly, 8 of the 18 genes identified in the screen as involved in TYLCSV infection have been 

ascribed roles in post-translational modification (PTM) pathways: ubiquitination, rubylation, 

phosphorylation and acetylation. In this section, we will discuss the role of the four genes involved in 

ubiquitination since the involvement of this PTM in viral infections of plants and animals is well 

established. Ubiquitination consists in the addition of one (mono-ubiquitination) or more (poly-

ubiquitination) ubiquitin moieties to a substrate protein; poly-ubiquitination generally results in the 

degradation of the modified protein by the 26S proteasome, while mono-ubiquitination can have other, 

non-fatal effects, such as changes in activity or sub-cellular localization [59]. In plants, ubiquitination 

contributes to multiple levels of defense [60], including resistance to viruses [61] and in plant-

geminivirus interactions [54,62].  

UBA1 (Ubiquiting-activating enzyme). UBA1 catalyzes the first step in ubiquitin conjugation. 

Interestingly, an uba1 mutant in Arabidopsis can revert the constitutive defense response phenotype of 

snc1, which links UBA1 to plant defense [63]. We found that the tomato UBA1 interacts with 

TYLCSV C2 in yeast (unpublished results). Silencing of UBA1 promotes TYLCSV infection, 

suggesting that a viral pathogenicity factor may suppress the activity of this enzyme. This hypothesis is 

in agreement with the previously described negative impact of C2 on ubiquitination [54,64], and would 

imply that C2 interferes with this process at multiple levels. 

RHF2A (RING-type E3 ubiquitin ligase). RHF2a links ubiquitin to target protein substrates. 

RHF2a is highly expressed in pollen, and to a lower extent, in vegetative tissues. This gene is up-

regulated upon CaLCuV infection [4] and following P. syringae inoculation (Arabidopsis eFP 

browser). The potential role of RHF2a in plant responses to pathogens fits the findings that RHF2a 

silencing in the VIGS/2IRGFP system results in an enhancement of TYLCSV infection.  

SCF (Skp1/Cullin1/F-box protein). SCF is a multi-subunit E3 ligase. Its modular structure allows 

the incorporation of different substrate-binding subunits (F-box proteins) with more than 700 potential 

targets in Arabidopsis [65]. Interestingly, the C2 protein from several geminiviruses interferes with the 

SCF machinery [54,64]. In the VIGS/2IRGFP system we found two genes interacting with the SCF 

complex and involved in TYLCSV infection: ASK2 and CSN3. ASK2 belongs to a gene family 

encoding SKP1-like protein in Arabidopsis; it plays a role in cell division, development, and abiotic 

stress response via ABA signaling [66, 67]. ASK2 interacts with GALA effectors from Ralstonia 

solanacearum [68] and with the VirF virulence factor from Agrobacterium tumefaciens [69], 

suggesting that ASK2 is a preferential target of pathogens virulence functions. Since V2 has been 

shown to trigger the degradation of the plant SGS3 in order to counter gene silencing [70], ASK2 may 

be essential for its efficient assembly into the SCF complexes, a process that may be assisted by C2 

[54], ensuring the success of the viral infection. The finding that silencing of ASK2 has a negative 

impact on TYLCSV in the VIGS/2IRGFP system is in line with this hypothesis. 
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CSN3 (subunit of the de-rubylating CSN complex). CSN3 is one of eight subunits of the CSN 

(COP9 signalosome) complex, which de-rubylates CULLINs and therefore regulates the activity of 

CULLIN-based ubiquitin E3 ligases, including the SCF complex [71]. Geminivirus C2 was shown to 

interfere with the CSN de-rubylation activity, most likely through the interaction with CSN5 [64], 

presumably leading to an alteration of SCF-mediated ubiquitination. Since geminivirus infection is 

hindered in an Arabidopsis csn5a knock-down mutant [72], geminiviruses may be redirecting the 

activity of the CSN complex, taking over the regulation of SCF complexes rather than suppressing this 

process. Once again, this hypothesis is supported by the negative effect of CSN3 silencing on 

TYLCSV infection. Taken together, the results obtained with ASK2 and CSN3 point at the usurpation 

of the SCF ubiquitination machinery by geminiviruses, involving different viral proteins and lines of 

attack.  

 

5. Identification of genes involved in resistance to TYLCV 

 

5.1. Genes preferentially expressed in TYLCV-resistant tomatoes and the effect of their silencing on 

resistance 

 

Breeding has allowed not only to develop TYLCV-resistant crops for farmers but the resistant 

plants have been the object of genetic studies aimed at understanding genes and signals involved in 

plant response to viruses [5]. To identify these genes, we have compared two inbred tomato lines 

issued from the same breeding program, which used S. habrochaites as a source of resistance: the 

TYLCV-susceptible line 906-4 and the TYLCV-resistant line 902, hereafter designated S and R, 

respectively [73]. Upon infection, plants from the S line present the typical disease symptoms of 

stunting, leaf yellowing and curling, contain large amounts of virus and produce a small number of 

fruits. In comparison, plants from the R line remain symptomless, yield, and contain several orders of 

magnitude less virus that S plants.  

We have postulated that resistance is sustained by a gene network responding to biochemical 

triggers induced by virus infection. In addition, we assumed that these genes are preferentially 

expressed in the R line and that their silencing will lead to the collapse of resistance. Comparing 

cDNA libraries from R and S plants, before and after infection, allowed the identification of about 70 

genes preferentially expressed in R plants. Some of these genes were silenced using the TRV VIGS 

system. Fragments of 150 to 200 bp of the target genes were cloned in the TRVII vector. The TRVI 

and recombinant TRVII vectors were delivered to R and S tomato plants by agroinoculation [14] at the 

day of planting (20 days after sowing). Seven days later, the expression of the target gene was 

inhibited and the RNAi signal was conspicuous in the plant leaves and remained high for the duration 

of the experiments. This was the time the plants were caged with viruliferous whiteflies for a three 

days inoculation period. The effect of silencing was appraised during the next 40 days. TRV 

expression had no effect on subsequent TYLCV infection, neither enhancing nor depressing the virus 

spread [5].  

At present, we have silenced 25 out of the 69 genes preferentially expressed in R plants. Five genes 

out of the 25 tested led to the collapse of resistance when silenced (Figure 3). Hence, it seems that 

many genes are involved in the establishment of natural resistance to TYLCV. We summarize here the 
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behavior of four genes preferentially expressed in R plants upon silencing and TYLCV inoculation. 

We also show that there seems to be a hierarchy in these genes. 

Figure 3. Genes preferentially expressed in R plants (Gene ontology, cellular component). 

The number of genes silenced so-far and the genes which silencing leads to collapse of 

resistance are indicated. 

 

 

Permease I. With the PermeaseI-like gene, we have shown for the first time that silencing a single 

gene can lead to the loss of TYLCV resistance in tomato plants. Permease I-like protein was 

preferentially expressed in non-inoculated R plants (compared to S plants) and was strongly up-

regulated upon TYLCV inoculation [5]. Silencing this gene (Figure 4a) led to the collapse of the 

resistance phenotype: the R plants ceased to grow, developed typical yellowing and curling of leaves 

and contained amounts of virus similar to those measured in infected S plants (Figure 5). This 

permease may be involved in trafficking of macromolecules and signaling.  
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Figure 4. Relative amounts of transcripts of Permease I, Hexose transporter LeHTe1, and 

Lipocalin-like genes in R tomato plants (Ro:0), infected R tomato plants (Ri:0) and 

infected R tomato plants with silenced Permease I (Ri:TRV-Perm), Hexose transporter 

LeHTe1 (Ri:TRV-Hex), and Lipocalin-like (Ri:TRV-Lip) genes. Tubulin RNA was used as 

a reference gene transcript for each of the plants analyzed by qPCR. The amount of 

transcript immediately before silencing (at day 0) is taken as 1. Average of triplicate 

measures of three different plants. Bars: standard error. 
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Figure 5. Collapse of resistance in infected R plants where the Permease I gene has been 

silenced. a: R tomato plants 8 weeks after TYLCV inoculation; Ri:0, not silenced; Ri:TRV-Per, 

silenced. Note that Ri:0 do not present symptoms and yield fruits, in comparison Ri:TRV-Per are 

symptomatic and present inhibited growth. b: Relative amounts of virus (measured by qPCR) in 

infected tomato plants 3 and 28 days after inoculation;  Si:0 is S plants, Ri:0 is R plants and 

Ri:TRV-Per is R plants where the Permease I gene has been silenced. The amount of virus in 

Ri:0 plants at 28 dpi was considered as 1. 

 

 

Hexose transporter LeHT1. LeHT1 is one of the three known tomato hexose transporter genes  

[74]. Plant hexose transporters are plasma membrane carriers, which function as proton/hexose 

symporters, mediating intercellular and long-distance transport of sugars [75]. They are involved in 

energy production [76], pathogenesis [77], pathogen defense [78] and programmed cell death (PCD) 

[79]. LeHT1 is developmentally regulated, preferentially expressed in R tomato leaves, and 

upregulated upon TYLCV inoculation of R plants (Figure 4b). Infected LeHT1-silenced R plants 

ceased to growth and their leaves contained large amounts of virus in the vascular tissues and reduced 

sucrose concentrations [80], emphasizing the role of the hexose transporters and of sugars as part of a 

defense mechanism limiting virus movement. Necrosis appeared on the stem and petioles of the 

LeHT1-silenced R plants about three weeks after inoculation not only with TYLCV, but also with 

other viruses such as TMV and CMV [80]. Hence silencing of R plant LeHT1 revealed a second line of 

defense associated with PCD features: DNA laddering, increased amounts of MAPKs, and release of 

reactive oxygen species (ROS) [80]. In most cases, PCD minimizes the pathogen spread [81], 

however, in the case of infection of LeHT1-silenced R plants, the plant defense mechanisms were 

unable to confine virus infection and the resistance collapsed.  

Lipocalin-like protein. A gene encoding a putative lipocalin protein [82] with its typical barrel-

shaped architecture [83], was expressed in the leaves of S and R tomatoes during a two week-long 

window, starting about 40 days after sowing (Figure 4c). This gene, coined SlVSRLip, was upregulated 

in R (but not S) plants upon infection but also, to a lesser extent, following whitefly feeding [82]. The 

association of lipocalins with virus infection has not been reported before. Following TYLCV 
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inoculation, SlVSRLip-silenced R plants ceased to grow, developed disease symptoms, and contained 

large amounts of virus. As in the case of LeHT1, SlVSRLip-silenced R plants presented a PPCD-related 

necrotic response along the stems and petioles [82]. The role of SlVSRLip is not known, as it behaved 

differently than the known tomato lipocalins [83], which appear to protect plants from temperature-

induced stresses [84].  

Pectin methylesterase. Another gene preferentially expressed in R plants was a Pectin 

methylesterase. This gene is a member of a large family encoding enzymes that modify plant cell wall 

pectins. Pectin methylesterases play a role in the plant host defenses against cold, wounding and 

phloem-feeders [85]. They have also been involved in virus-induced gene silencing [86] and in virus 

systemic infection [87]. Contrary to the three genes described above, silencing Pectin methylesterase 

did not affect the resistance of R plants. Hence, although Pectin methylesterase is more expressed in R 

than in S plants, this gene is probably not located at a bottleneck of the resistance network. Thus, not 

all the genes preferentially expressed in R plants play the same role in the establishment of resistance 

to TYLCV. 

 

5.2. Hierarchy of genes involved in resistance to TYLCV 

 

We hypothesized that the genes conferring resistance in R plants are organized in an interconnected 

hierarchical network. We therefore tested the hypothesis that the silencing of one gene will cause the 

down-regulation of genes downstream in the network. Expression of SlVRSLip was estimated in R 

plants in which LeHT1 had been silenced [82]. In the LeHT1-silenced R plants, the expression of 

SlVRSLip was totally inhibited. Conversely, silencing of SlVRSLip did not affect the expression of 

LeHT1. Hence, SlVRSLip is downstream of LeHT1 in the hierarchy of the resistance network [82]. 

Silencing a Permease gene did not affect the expression of either SlVRSLip or LeHT1; conversely, 

silencing either SlVRSLip or LeHT1 did not affect the Permease gene expression, indicating that the 

later gene does not belong to the LeHT1/SlVRSLip branch of the network. SlVRSLip and LeHT1 do not 

seem to be linked by any obvious biochemical or physiological link. However, as a consequence of  

LeHT1-silenced, the concentration of sucrose in leaves was lower of than that in non-silenced R 

tomatoes [82]. It has been already reported that silencing LeHT genes decreased hexose accumulation 

in tomato fruits by half [88]. Hence the inhibition of sugar transport due to LeHT1 silencing resulted in 

a limited level of cellular sucrose, and consequently energy, to activate and maintain the resistance 

response [78]. Sugars act as secondary messengers [89] and sugar sensing mediates a direct link 

between carbohydrate metabolism and the defense response [78]. In this context, intracellular sugars 

may up-regulate the expression of SlVSRLip in R plants upon TYLCV infection, contributing to 

resistance by increasing lipocalin ROS scavenging. A reduction in the intracellular concentration of 

sugars due to LeHT1 silencing may inhibit the signal-transduction pathway leading to the activation of 

SlVSRLip.  

 

6. Discussion 

 

We have shown that TRV-VIGS is a tool of choice to discover plant genes responding to TYLCSV 

infection. Using the 2IRGFP N. benthamiana transgenic line, we have been able to demonstrate that 
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silencing of 18 out of 37 analyzed host genes alters TYLCSV infection. An attractive feature of this 

screening method is the fact that candidate genes are tested in the context of the infection, hence the 

genes discovered are likely to be biologically relevant. On the other hand, we cannot rule out that some 

of the tested genes have not been efficiently silenced, rendering their potential impact on TYLCSV 

infection undetectable. A strategy similar to VIGS/2IRGFP is more difficult to apply to tomato, since 

expression of GFP in leaves does not bear green fluorescence. Therefore, the genes discovered in the 

N. benthamiana 2IRGFP plant screen could be validated subsequently in tomato. 

It is striking that almost half the genes shown to interfere with TYLCSV infection are involved in 

processes related to PTMs, such as ubiquitination, rubylation, phosphorylation, acetylation or folding. 

It has been postulated that PTMs provide means to respond quickly to environmental stimuli in a fast 

and efficient way critical for the plant survival. Thus, it is not surprising that PTMs affect viral 

infection and may be preferred targets of viral pathogenicity factors. Increase evident obtained in the 

last years confirm the central role played by PTMs in virus-host interactions, being both manipulated 

by viruses to achieve a successful infection and used by the host as an important defense mechanism 

[59,61].  

We have also applied the TRV-VIGS reverse genetics tool to discover genes involved in tomato 

natural resistance to TYLCV. The current view to plant responses to stress involve integrated 

transcriptional and cellular changes that result in physiological adaptations expressed as resistance in 

certain genotypes, which may be regulated by metabolite and hormone signaling pathways [90]. 

Accordingly, we have postulated that resistance to TYLCV is sustained by a gene network. Indeed, we 

have identified several genes from R plants which, when silenced, lead to the collapse of resistance. 

We found a beginning of hierarchy in the TYLCV-resistance network, where SlVRSLip is downstream 

of LeHT1. To uncover the genes up- and downstream LeHT1 in the resistance network we are using a 

home-made oligonucleotide microarray to analyze the transcriptome re-programming in leaves of 

LeHT1-silenced R plants using a home-designed microarray [91]. Resistance to TYLCV may consist 

of several layers of defense - a general feature of the plant response to pathogens [38]. This multilayer 

response starts with a basal response and production of general pathogen-associated molecular pattern 

molecules (PAMPs), followed by activation of MAPK-signaling cascades and production of 

antimicrobial compounds [92]. The next layer of resistance usually involves the expression of genes 

related to the plants response to specific pathogens, in our case LeHT1 and SlVSRLip.  

Since the R line's resistance to TYLCV was introgressed from S. habrochaites, it would be of 

interest to determine whether the genes that are preferentially expressed in R tomato plants were 

introgressed from this wild tomato species. It is worth noting that the three genes we have studied are 

located on three different chromosomes: Permease I-like protein is on chromosome 3, LeHT1 is on 

chromosome 2, and SlVSRLip is on chromosome 10 (http://solgenomics.net accesed 18 February 

2013). If these three genes originate from the wild S. habrochaites genitor, they must have been 

introgressed as three chromosomal fragments during breeding and selection for resistance.  

In summary, the results presented here are a good example of the potential of VIGS as a tool for 

functional studies in plant-virus interactions, providing at the same time new insights into the roles that 

specific plant genes play during geminivirus infection. In the genomic era, the completion of genome 

sequences of many important plant species, including N. benthamiana and tomato [93.94], together 

with the efforts made to improve the efficiency and applicability of the VIGS system to different hosts, 
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are contributing to make this technology an essential tool for high-throughput functional genomics 

studies in plants. 
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