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We show that, for space-times with inner boundaries, there exists a natural area operator different from

the standard one used in loop quantum gravity. This new flux-area operator has equidistant eigenvalues.

We discuss the consequences of substituting the standard area operator in the Ashtekar-Baez-Corichi-

Krasnov definition of black hole entropy by the new one. Our choice simplifies the definition of the

entropy and allows us to consider only those areas that coincide with the one defined by the value of the

level of the Chern-Simons theory describing the horizon degrees of freedom. We give a prescription to

count the number of relevant horizon states by using spin components and obtain exact expressions for the

black hole entropy. Finally we derive its asymptotic behavior, discuss several issues related to the

compatibility of our results with the Bekenstein-Hawking area law and the relation with Schwarzschild

quasinormal modes.
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I. INTRODUCTION

The study of black holes is a central topic in quantum
gravity. In fact, the identification of the microscopic de-
grees of freedom accounting for the black hole entropy and
the successful derivation of the Bekenstein-Hawking area
law are important challenges that prospective quantum
gravity theories must meet. Within the loop quantum grav-
ity (LQG) formalism the identification of these degrees of
freedom has been proposed in the classical papers of
Ashtekar, Baez, Corichi, and Krasnov [1,2]. The resulting
framework will be referred to in the following as the
ABCK approach. The combinatorial problem of counting
the relevant black hole states was recast in a rather man-
ageable form by Domagala and Lewandowski in [3] and an
effective way to use it to derive the Bekenstein-Hawking
area law was found by Meissner [4] (see also [5]).

The Hilbert space of quantum states in the ABCK for-
malism is a tensor product of a volume Hilbert space
corresponding to the quantum geometry in the bulk and a
surface Hilbert space associated to the Uð1Þ Chern-Simons
(CS) theory on the isolated horizon used to model a black
hole in LQG. A somewhat disturbing feature of the initial
ABCK proposal is the fact that the prequantized value of
the horizon area (related to the level � of the CS theory
according to a� ¼ 4��‘2P�) does not belong to the spec-
trum of the standard area operator. This compatibility
problem was taken care of in the original papers [1,2] by
introducing a small area interval in the definition of the
entropy, a procedure that resembles the standard way of
introducing the microcanonical ensemble in Statistical

Mechanics. An alternative to this is to pick a different
choice for the area operator on the horizon. The basic
idea is now to use some extra structure—that exists when
an inner space-time boundary is introduced to model a
black hole—to define a different area operator that we
will call âflux. This new area operator has an equally-
spaced spectrum containing the prequantized horizon
area eigenvalues. It is important to highlight the fact that
this area operator is an alternative choice within LQG that
is available when an inner boundary is introduced. It is also
important to note that the matching between the CS theory
on the horizon and gravity in the bulk is arguably more
natural with the new choice of area operator and the study
of the black hole entropy is notably simplified.
Our purpose here is to thoroughly discuss black hole

entropy in this new framework. Our starting point will be
the ABCK entropy definition. We will first justify how the
change in the area operator allows us to count the micro-
states responsible for the entropy for a given value of the
prequantized area without introducing an interval at this
stage. After that we will find a way to recast the counting of
physical states as a counting of third spin components in
the spirit of [3]. This will simplify the computation of the
entropy and shed some light about the issue of how this can
be done in the general case.1 The details of the counting
will be explored afterwards, in fact, we will be able to get
exact, closed expressions for the entropy—involving hy-
pergeometric functions—that can be effectively used to
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1There are some issues related to the fact that the Domagala-
Lewandowski prescription [3] in the case of the standard defi-
nition for the entropy does no use an interval but rather a sum
involving all the area eigenvalues up to the considered black hole
area.
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obtain the asymptotics for large areas and discuss the
Bekenstein-Hawking area law. Finally we will look at the
relevance of our results with regard to the Schwarzschild
quasinormal modes link and show, in particular, that this
connection is independent of the choice of SUð2Þ or SOð3Þ
as the internal symmetry group.

The paper is structured as follows. After this introduc-
tion we devote Sec. II to review some important facts about
the ABCK entropy definition. Section III deals with the
flux-area operator that we propose to use here. In Sec. IV
we give some definitions and state the main result of the
paper in theorem IV.1. We give the details of the state
counting needed in the entropy computation in Sec. V. A
discussion of several relevant physical issues follows in
Sec. VI. The last section is devoted to conclusions and
comments and we end the paper with several appendices
where we prove some results used in the text and give some
examples. Throughout the paper � stands for the Immirzi
parameter and ‘P denotes the Planck length.

II. THE ABCK QUANTUM HORIZON

In this section we introduce and review some elements
of the ABCK model of quantum isolated horizons neces-
sary to understand the definition and calculation of black
hole entropy in LQG. The starting point of the ABCK
approach is a nonperturbative quantization based on a
Hamiltonian framework. The arena for the Hamiltonian
formalism is a 3-manifold M homeomorphic to the com-
plement of the unit open ball in R3. The boundary ofM is a
2-sphere, which we denote by S, that can be thought of as
the intersection of an isolated horizon withM. As in [2], we
will refer to S simply as the ‘‘horizon’’. A basic point of the
ABCK approach is, precisely, to represent a black hole of a
fixed classical area a� as an isolated horizon that becomes
an inner space-time boundary. Its presence requires the
introduction of suitable surface terms in the gravitational
action and implies the existence of bulk and surface gravi-
tational degrees of freedom. The consistent treatment of
the latter leads to a Chern-Simons like quantization that
requires the following area prequantization condition

a� ¼ 4��‘2P�; � 2 N: (2.1)

The horizon Hilbert spaceH �
Hor is spanned by a basis of

quantum states

jð0ÞiHor; . . . ; jðb1; . . . ; bnÞiHor; . . .
labeled by sequences ðb1; . . . ; bnÞ of congruence classes

0 � bi 2 Z�; i ¼ 1; . . . ; n; n 2 N;

such that

Xn
i¼1

bi ¼ 0 2 Z�:

The length n of a sequence is arbitrary and, hence, n ranges

over all the natural numbers. In the previous basis jð0ÞiHor
denotes the state corresponding to a sequence with the
single element 0 2 Z�.
The bulk Hilbert space H Bul is spanned by the states

jð0Þ; � � �iBul; . . . ; jðm1; j1; . . . ; mn; jnÞ; � � �iBul; . . . (2.2)

where the half-integers ji 2 1
2N correspond to irreducible

representations of SUð2Þ and
mi 2 f�ji;�ji þ 1; . . . ; ji � 1; jig

for every i ¼ 1; . . . ; n; n 2 N: (2.3)

The quantum numbers mi and ji represent the quantum
degrees of freedom of the bulk geometry close to the
horizon, and ‘‘� � �’’ in the bulk state
jðm1; j1; . . . ; mn; jnÞ; � � �iBul stands for the other bulk de-
grees of freedom away from the horizon.
The horizon quantum area operator used in [2] comes

from the standard area operator defined in the kinematical
Hilbert space of LQG for an arbitrary 2-surface [6–8].
When applied to the horizon it extends to the bulk
Hilbert space H Bul as follows

â LQGjðm1; j1; . . . ; mn; jnÞ; � � �iBul
¼ aLQGðj1; . . . ; jnÞjðm1; j1; . . . ; mn; jnÞ; � � �iBul;

aLQGðj1; . . . ; jnÞ :¼ 8��‘2P
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ

q
:

(2.4)

The total Hilbert space H �
Tot of physical states is a

subspace of the tensor product H �
Hor �H Bul,

H �
Tot <H �

Hor �H Bul; (2.5)

spanned by all the vectors of the form

jðb1; . . . ; bnÞiHor � jðm1; j1; . . . ;mn; jnÞ; � � �iBul; n2N0;

(2.6)

satisfying the following constraint

bi ¼ �2mi ðmod�Þ; for i ¼ 1; . . . ; n: (2.7)

At this point the next step in the standard ABCK frame-
work is to introduce an area interval [a� � �, a� þ �] with
a � of the order of ‘2P. The entropy is computed by first
tracing out the bulk degrees of freedom to get a density
matrix that describes a maximal entropy mixture of surface
states with area eigenvalues in [a� � �, a� þ �]. The value
of the entropy is finally obtained by counting the number of
allowed lists ðb1; . . . ; bnÞ of nonzero elements of Z� sat-
isfying b1 þ � � � þ bn ¼ 0, such that bi ¼ �2mi ðmod�Þ
for some permissible third spin components ðm1; . . . ; mnÞ.
Here permissible means that there exists a list of non-
vanishing spins ðj1; . . . ; jnÞ such that each mi is a spin
component of ji and
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a� � � � aLQGðj1; . . . ; jnÞ ¼ 8��‘2P
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ

q
� a� þ �: (2.8)

The counting of b-labels amounts to the determination of
the dimension of the Hilbert subspace of H �

Hor that repre-
sents the black hole degrees of freedom.

The introduction of a suitable area interval is crucial at
this point because the prequantized area a� does not belong
to the spectrum of the area operator âLQG. In the ABCK
model, however, there is another conceivable choice for the
quantum area operator—that we refer to as âflux—which
classically corresponds to the same horizon area but has the
property that the prequantized area a� does belong to its
spectrum. As we will show in Sec. III, the eigenvalues
afluxðm1; . . . ; mnÞ of âflux are labeled only by the spin
components ðm1; . . . ; mnÞ. As a consequence of this, the
condition (2.8) of the standard ABCK framework can be
consistently replaced by

a� ¼ afluxðm1; . . . ; mnÞ: (2.9)

This choice naturally leads to a definition of the black hole
entropy that requires tracing out the bulk degrees of free-
dom in a degenerate area interval [a� � �, a� þ �] with
� ¼ 0. This introduces some simplifications in the result-
ing formalism and allows us to eliminate this arbitrariness
associated to �. In the following sections, we discuss in
detail âflux and explore the consequences of using it in the
black hole entropy definition.

III. THE FLUX-AREA OPERATOR

The use of an inner boundary S to model the black hole
horizon in the ABCK formalism carries an associated
ambiguity in the definition of the quantum area operator
for the horizon. This ambiguity is more than the standard
ordering one characteristic of quantum mechanics. It fol-
lows from the extra, nondynamical, structure defined on
the horizon 2-surface S in the ABCK model, namely, a
fixed Lie algebra suð2Þ valued function

r: S ! suð2Þ:
Classically, the metric tensor of the three-dimensional bulk
manifold is encoded in the Ashtekar vector density triad ~Ea

I

where the indexes a and I respectively correspond to local
coordinates in the bulk, and the Lie algebra. The vector
density field ~Ea

I r
I (we use the scalar product �2Tr in

suð2Þ) is orthogonal to the horizon 2-sphere S, and the
flux of the normal vector to the horizon can be written as2

afluxð ~E; rÞ ¼ 1

2

Z
S
j ~Ea

I r
I�abcdx

b ^ dxcj; (3.1)

where xa are local coordinates in the bulk, �abc is the
alternating symbol, and the absolute value guarantees
that the integrand is positive regardless the orientation of
S. The quantum area-flux operator that we are proposing to
use here is given by

â flux ¼ afluxð ~̂E; rÞ; (3.2)

where r is left unquantized. This operator represents the
quantum counterpart of the flux of ~Ea

I r
I through the hori-

zon, namely

â fluxjðm1; j1; . . . ; mn; jnÞ; � � �iBul
¼ afluxðm1; . . . ; mnÞjðm1; j1; . . . ; mn; jnÞ; � � �iBul; (3.3)

where

afluxðm1; . . . ; mnÞ ¼ 8��‘2P
Xn
i¼1

jmij: (3.4)

The spectrum of this operator, spðâfluxÞ ¼ 4��‘2PN0, is
equidistant being �a ¼ 4��‘2P the distance between two
consecutive eigenvalues. Furthermore, and very important
for our purposes, the prequantized values of the area a�
belong to spðâfluxÞ.
Notice that if the values of r at each point of the surface

Swere not given (‘‘gauge fixed’’) by the ABCKmodel, one
could try to alternatively express it as a function �ð ~EÞ of
the triad field. Substituting r for �ð ~EÞ in afluxð ~E; rÞ would
then give the standard area function

að ~EÞ ¼ afluxð ~E;�ð ~EÞÞ: (3.5)

On the classical phase space the functions afluxð ~E; rÞ and
afluxð ~E; �ð ~EÞÞ coincide. However, the quantum area opera-
tor

â LQG ¼ afluxð ~̂E; �ð ~̂EÞÞ (3.6)

is given by (2.4) which differs from the quantum flux-area

operator afluxð ~̂E; rÞ defined by (3.3) and (3.4).
It is important to point out that the advantage of the

standard quantum area operator âLQG is that it is available
for arbitrary 2-surfaces in the bulk. Using this operator we
can treat the intrinsic geometry of the horizon on the same
footing as the 2-geometry of any other 2-surface. This is
the reason why that operator was used in the original
ABCKmodel. However there are suggestive physical argu-
ments that imply that the quantum black hole area should
be quantized and the spectrum should be equidistant.3

These arguments, together with the availability within
LQG of a natural area operator âflux with the required
equidistant spectrum, lead us to study the consequences
of using it to define the entropy. In fact, this operator has

2Given a differential m-form ! and a m-submanifold M,R
M j!j is defined in the obvious way.

3This has been suggested in [9]. As we will see in Sec. VID,
there are also some compelling arguments coming from the
study of quasinormal modes pointing in the same direction.
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some extra advantages, in particular, as mentioned above
the prequantized value of the classical area (2.1) belongs to
the spectrum of âflux. This is helpful because there is no
need to introduce an interval of the form [a� � �, a� þ �]
as in the original ABCK proposal in order to define the
entropy. In our opinion this reinforces the nontrivial rela-
tionship between the quantum geometry in the bulk and the
CS surface states originating from the quantum matching
conditions. We want to point out, nonetheless, that the fact
that we do not need to introduce a priori an area interval at
this stage does not mean that we should not use an interval
in the definition of the entropy of a black hole; in fact, we
will see that it is quite natural to do so in order to take into
account, for example, the unavoidable finite resolution of
measuring devices in any conceivable physical determina-
tion of a black hole entropy or define a quantum statistical
microcanonical ensemble.

It is important to mention that some operators similar to
the one proposed here have been considered in the litera-
ture [10–13]. In these papers the authors have suggested to
use area operators with eigenvalues defined in terms of the
spins ji. They appear quite naturally if one approximates
the eigenvalues of the standard area operator (2.4), for large
spins ji, according toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jiðji þ 1Þ
q

� ji þ 1

2
� ji:

This has led these authors to consider an area operator with
the same spectrum as âflux. Notice, however, that the
eigenvalues of âflux involve the spin components mi

whereas in these other proposals the action of the operators
is defined in terms of the spins ji. This changes the details
of the state counting leading to the black hole entropy as
will be commented in Sec. VII.

Finally, with the quantum flux-area operator, the relation
of the ABCK model with the black hole quasinormal
modes [14], which was destroyed in [3], can be proven
again, and will hold even stronger than before: see
Sec VID.

IV. THE QUANTUM ENTROPYAND THE
FLUX-AREA OPERATOR

In this section we will give the precise entropy definition
that we will use throughout the paper and enunciate the
main result of this work. We start by giving some defini-
tions that will be used in the following.

Definition IV.1. Let � 2 N be a fixed value correspond-
ing to the level of the CS-theory that gives rise to the
prequantized area a� ¼ 4��‘2P�. We say the list m ¼
ðm1; . . . ; mnÞ of half-integers is �-permissible list of spin
components if it satisfies the area condition

Xn
i¼1

jmij ¼ �=2:

Definition IV.2. Given a list b ¼ ðb1; . . . ; bnÞ of nonzero
elements of Z�, we say it is �-permissible if the following
two conditions are satisfied
(a) b1 þ � � � þ bn ¼ 0 2 Z�,
(b) bi ¼ �2miðmod�Þ for some �-permissible list of

spin components m ¼ ðm1; . . . ; mnÞ.
We will denote byB� the set of all �-permissible b-lists of
nonzero elements of Z�. In the following the equality
mod� will be denoted with the symbol � . Hence the
condition (b) above will be written as bi � �2mi.
The direct translation of the procedure given by ABCK

to define the entropy to the case when the âflux operator is
used instead of âLQG is the following:
Definition IV.3 (black hole entropy). The entropy Sbhða�Þ

of a quantum horizon of area a� ¼ 4��‘2P�, with � 2 N,
is given by the formula

Sbhða�Þ ¼ logðjB�j þ 1Þ;

where the 1 above comes from the trivial sequence.
Several comments are in order now. First notice that

after the substitution of âLQG for âflux the labels ðj1; . . . ; jnÞ
completely disappear from the definition of the entropy, in
particular, there is no need to define permissible lists of j’s
although one can trivially obtain one by considering
ðjm1j; . . . ; jmnjÞ for a given list of m’s satisfying
afluxðm1; . . . ; mnÞ ¼ a�: Also notice that the interval has
disappeared from the definition and has been substituted by
a sharp equality condition. Finally remember that we are
counting horizon states. In this regard we want to point out
that we will implement in the next section the philosophy
of [3] of changing this counting problem into an equivalent
one involving only the counting of third spin components
(m-labels) with the only difference that we will not need to
introduce any type of area interval as in [3].
The central result of this paper is the following exact,

closed form, expression for the entropy of a black hole
obtained according to the previous definition.
Theorem IV.1. Let � 2 N the CS-level and a� ¼

4��‘2P�. For even values of the CS-level the entropy of
a quantum horizon of area a2u, u 2 N, is given by

Sbhða2uÞ ¼ log

� ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞ � u! 2F1ð1=2;�u; 3=2� u; 9Þ

þ 22u � 2u�1ðuþ 3Þ � 2uþ 2

�
;

where � and 2F1 are, respectively, the Gamma function and
the Gauss’s hypergeometric function. On the other hand,
for odd values of the CS-level the entropy of a quantum
horizon of area a2uþ1, u 2 N0, is

Sbhða2uþ1Þ ¼ logð22uþ1 � 2u� 1Þ:

The proof of this result is the scope of the next section.
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V. THE QUANTUM ENTROPY COUNTING

In order to proof theorem IV.1 we have to count states
according to the definition IV.3; this amounts to counting
the elements of B�. To this end we will follow a strategy
close to the one employed in [3] and translate the problem
into one involving only sequences m ¼ ðm1; . . . ; mnÞ of
spin components. In the following we will find it conve-
nient to work with integer sequences � ¼ 2m so we give
the following auxiliary definition.

Definition V.1 (integer permissible lists). We say that the
list � ¼ ð�1; . . . ; �nÞ 2 Zn is a �-permissible list of inte-
gers if

Xn
i¼1

j�ij ¼ �:

We will denote by N � the set of all �-permissible list of
integers.

The setN � is bijective with the set of �-permissible list
of spin components introduced in definition IV.1, and the
set of all �-permissible b-sequences can be written as

B � ¼
�
b: 9n 2 N; b ¼ ðb1; . . . ; bnÞ 2 Zn

�;
Xn
i¼1

bi ¼ 0; 0

� bi � ��i; ð�1; . . . ; �nÞ 2 N �

�
:

Notice that the condition 0 � bi � ��i implies �i � 0
and also �i � �� (the other integer multiples of � are
trivially excluded by the area condition

P
n
i¼1 j�ij ¼ �

appearing in definition V.1). Moreover
P

n
i¼1 bi ¼ 0 im-

plies
P

n
i¼1 �i � 0. Then, using

P
n
i¼1 �i ¼ y�, y 2 Z, we

have � ¼ P
n
i¼1 j�ij � jPn

i¼1 �ij ¼ jyj�, so y ¼ 0, �1.
Hence, it suffices to restrict ourselves to the following
subset of the �-permissible list of integers

V � ¼
�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ; j�ij

� �;
Xn
i¼1

j�ij ¼ �;
Xn
i¼1

�i ¼
�
0; or

��

�
;

where Z	 ¼ Z n f0g. Notice that V � 
 N �. The set V �

can be partitioned as the disjoint union

V � ¼ Vþ
� [V 0

� [V�
� ;

where

V 0
� ¼

�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ; j�ij

� �;
Xn
i¼1

j�ij ¼ �;
Xn
i¼1

�i ¼ 0

�
;

V�
� ¼

�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ; j�ij

� �;
Xn
i¼1

j�ij ¼ �;
Xn
i¼1

�i ¼ ��

�
:

These sets can be given also in the following equivalent but
simpler forms

V 0
� ¼

�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ;

Xn
i¼1

j�ij

¼ �;
Xn
i¼1

�i ¼ 0

�
; (5.1)

V�
� ¼

�
�: 9n > 2; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ;

Xn
i¼1

j�ij

¼ �;
Xn
i¼1

�i ¼ ��

�
: (5.2)

First notice that we do not need to explicitly include the
condition j�ij � � in the definition of V 0

� because if we
had some �i ¼ � the condition

P
n
i¼1 j�ij ¼ �would tell us

that there can be only one such �i and hence it would be
impossible to have

P
n
i¼1 �i ¼ 0. This implies, by the way,

that there are no sequences of unit length in V 0
�. Each of

the sets V�
� can be split as one containing unit-length

sequences and another containing the rest. Unit-length
sequences are excluded by the impossibility of simulta-
neously satisfying the conditions j�1j � � and

P
n
i¼1 �i ¼

�1 ¼ ��. Finally, for sequences of length greater or equal
than 2, the condition

P
n
i¼1 j�ij ¼ � with nonzero �i di-

rectly excludes that any of them is ��. After these con-
siderations we see that it is possible to writeB� in terms of
V � as

B � ¼
�
b: 9n 2 N; b ¼ ðb1; . . . ; bnÞ 2 Zn

�;
Xn
i¼1

bi ¼ 0; 0

� bi � ��i; ð�1; . . . ; �nÞ 2 V �

�
:

It is straightforward to prove now the following result.
Proposition V.1. The equality modulo � defines an

equivalence relation on V �, that we also denote by � ,
as follows: � and �0 are equivalent (� � �0) if and only if �
and �0 have the same length and �i � �0

i for all i. Hence, by
using that for any � 2 V � the sequence b � �� always
belongs toB�, the quotient spaceV �= � can be identified
with B�.
Notice that, if all the equivalence classes ofV �= � had

only one element there would exist a bijection betweenB�
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and V � and our counting problem would boil down to the
simpler one of counting the elements of V �. However,
there is an overcounting issue if we only look atV � owing
to the existence of equivalence classes with more that one
element. In other words, there are different �-sequences
corresponding to the same b-sequence such that � ¼ ð��
1; 1Þ and �0 ¼ ð�1; 1� �Þ. This forces us to carefully
study V �.

In order to proceed now it is convenient to consider odd
and even values of � separately.

A. Prequantized odd numbers

In the case of odd values of � ¼ 2uþ 1 the strategy to
deal with the overcounting issue is straightforward. We
first show that V 0

2uþ1 ¼ ;. Hence, we only have to con-
sider V�

2uþ1. It is easy to prove that there is no possible
overcounting within each of these sets so that the only
remaining possibility for overcounting is that two sequen-
ces belonging, respectively, to Vþ

2uþ1 and V�
2uþ1 give the

same b-sequence. These cases are very easy to characterize
and count: they are the length-two sequences in V�

2uþ1.
In order to complete this program we need to prove

several propositions. In the first, by using that the parity
of the sum of the elements of the sequences ð�1; . . . ; �nÞ
and ðj�1j; . . . ; j�njÞ is the same, we prove thatV 0

2uþ1 ¼ ;.
Proposition V.2. There is no sequence � ¼ ð�1; . . . ; �nÞ

such that

Xn
i¼1

�i ¼ 0 and
Xn
i¼1

j�ij ¼ 2uþ 1 ¼ 1 ðmod 2Þ;

and, hence, V 0
2uþ1 ¼ ;.

Proof. Using �i ¼ j�ijðmod 2Þ we get

0 ¼ Xn
i¼1

�i ¼
Xn
i¼1

j�ij ¼ 1 ðmod 2Þ

which is impossible. h
This means that

V 2uþ1 ¼ Vþ
2uþ1 [V�

2uþ1

Notice that if � 2 Vþ
� then 0< �i ¼ j�ij< � for all i.

This trivially follows from the fact that inVþ
� the equalityP

ij�ij ¼
P

i�i ¼ � holds. Also, if �0 2 V�
� then �� <

�0
i ¼ �j�0

ij< 0 for all i. It is then clear that, if �, �0 2
Vþ

2uþ1, the condition �0 � � implies � ¼ �0. This is also
true in V�

2uþ1. This proves that there is no danger of
overcounting within each of the sets Vþ

� and V�
� , i.e.

each equivalence class on V �= � has, at most, one ele-
ment of Vþ

� and the same is true for V�
� . The next

proposition identifies the sequences in Vþ
� and V�

� lead-
ing to the same b-sequence.

Proposition V.3. Let � 2 Vþ
2uþ1. Then there exists a

sequence �0 2 V�
2uþ1 satisfying �0 � � if and only if �

has two components � ¼ ð�1; �2Þ and �0 ¼ ð�1 � 2u�
1; �2 � 2u� 1Þ. There are 2u such sequences in Vþ

2uþ1.

Therefore, the only equivalence classes on V �= � with
more than one element are those of the form
fð�1; �2Þ; ð�0

1; �
0
2Þg where ð�1; �2Þ 2 Vþ

� and ð�0
1; �

0
2Þ ¼ð�1 � �; �2 � �Þ 2 V�

� .
Proof. The condition is sufficient. If � ¼ ð�1; �2Þ 2 Vþ

�

then 0< �i < � and

�1 þ �2 ¼ �:

The sequence �0 ¼ ð�0
1; �

0
2Þ, with�� < �0

1 ¼ �1 � � < 0,
�� < �0

2 ¼ �2 � � < 0, satisfies

�0
1 þ �0

2 ¼ ��; j�0
1j þ j�0

2j ¼ �;

and hence �0 2 V�
� .

Trivially, the condition is also necessary. Let �0
i � �i for

all i. Then �0
i ¼ �i � �si, with si ¼ 0 or 1. So we have

� � ¼ Xn
i¼1

�0
i ¼

Xn
i¼1

�i � �
Xn
i¼1

si ¼ �� �
Xn
i¼1

si ) 9i1;

i2: si1 ¼ si2 ¼ 1; si ¼ 0; i � i1; i2:

but si ¼ 0 implies �0
i ¼ �i > 0 which is impossible in

V�
� . Hence � has only two components. It is straightfor-

ward to see that there are 2u such sequences in each
V�

2uþ1. h

Finally, as shown in Appendix A, it is straightforward to
find that

jVþ
2uþ1j ¼ jV�

2uþ1j ¼ 22u � 1:

Hence, as it is claimed in theorem IV.1, for black holes with
odd � ¼ 2uþ 1, the entropy is

Sbhða2uþ1Þ ¼ logðjB2uþ1j þ 1Þ
¼ logð2jVþ

2uþ1j � 2uþ 1Þ
¼ logð22uþ1 � 2u� 1Þ:

B. Prequantized even numbers

Our strategy now to deal with the overcounting problem
when � ¼ 2u, u 2 N, is the following:
(1) Show that if � 2 Vþ

2u and �
0 2 Vþ

2u, then � � �0 is
equivalent to � ¼ �0.

(2) Show that if � 2 V�
2u and �

0 2 V�
2u, then � � �0 is

equivalent to � ¼ �0.
(3) Characterize the equivalent sequences inV 0

2u. They
reduce to ðu;�uÞ and ð�u; uÞ.

(4) Show that if � 2 Vþ
2u and �

0 2 V�
2u, then � � �0 is

equivalent to � ¼ ð�1; �2Þ and, in addition, �0 ¼
ð�1 � 2u; �2 � 2uÞ.

(5) Show that if � 2 V�
2u and �

0 2 V 0
2u, then � � �0 is

equivalent to the existence of an index i0 such that
�i0 ¼ �u, �0

i0
¼ �u, and �i ¼ �0

i, whenever i � i0.

Points (1), (2) are trivial as shown above. Point (4) is
actually proved in proposition V.3 because the parity of �
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plays no role in its proof. We have then to concentrate only
on points (3) and (5).

Let us first consider point (3) consisting in the charac-
terization of equivalent sequences in V 0

2u. To this end we
need to prove the following propositions.

Proposition V.4. If � 2 V 0
2u then j�ij � u.

Proof. Otherwise, suppose that j�i0 j> u, thenP
i�i0

�i ¼ ��i0 , and hence 2u ¼ P
ij�ij ¼ j�i0 j þP

i�i0
j�ij> uþP

i�i0
j�ij � uþ jPi�i0

�ij> uþ u ¼ 2u

which is impossible. h
Proposition V.5. Let �, �0 2 V 0

2u. If �
0 � � but �0 � �

then either � ¼ ðu;�uÞ and �0 ¼ ð�u; uÞ or � ¼ ð�u; uÞ
and �0 ¼ ðu;�uÞ.

Proof. The equivalence of � and �0 implies that �0
i ¼

�i þ 2siu, for all i, with si 2 Z. The fact that j�ij � u and
j�0

ij � u actually restricts the values of the si to be 0, �1.
As we have that

P
n
i¼1 �i ¼ P

n
i¼1 �

0
i ¼ 0 we must have as

many values of the si equal to þ1 as values equal to �1.
The condition � � �0 means that at least one value of si,
say si1 , is equal to þ1. We have then

�0
i1
¼ �i1 þ 2u

which implies that �i1 ¼ �j�i1 j. Finally we have

u � j�0
i1
j ¼ 2u� j�i1 j � u

and, hence �0
i1
¼ u and �i1 ¼ �u.

As positive and negative values of si come in pairs there
must be another si, say si2 , equal to�1, the same argument

tells us that �0
i2
¼ �u and �i2 ¼ u. By noting that

Xn
i¼1

j�ij ¼
Xn
i¼1

j�0
ij ¼ 2u

the sequences � and �0 can only have two elements and
hence they are either � ¼ ðu;�uÞ and �0 ¼ ð�u; uÞ or � ¼
ð�u; uÞ and �0 ¼ ðu;�uÞ. h

The last proposition tells us that there is only one
equivalence class in V �= � with more than one represen-
tative in V 0

�. This class simultaneously contains ð�u; uÞ
and ðu;�uÞ and the rest of the representatives belong to
V�

� [actually they are ðu; uÞ 2 Vþ
� and ð�u;�uÞ 2 V�

� ,
as will be shown bellow].

We deal now with point (5). To this end we need to prove
the following result.

Proposition V.6. Let � 2 Vþ
2u and �0 2 V 0

2u. The con-
dition �0 � � is equivalent to the existence of an index i0
such that �i0 ¼ u ¼ ��0

i0
and �i ¼ �0

i for i � i0.

Proof. Clearly if � 2 Vþ
2u and �0 2 V 0

2u satisfying
�i0 ¼ u ¼ ��0

i0
and �i ¼ �0

i, for i � i0, then �0 � �. On

the other hand, if � 2 Vþ
2u and �

0 2 V 0
2u and �

0 � � then
�0
i ¼ �i � 2siu, si ¼ 0 or 1 (remember that 2u > �i > 0

and, hence, the values of si different from 0 or 1 are
excluded). Hence

0 ¼ Xn
i¼1

�0
i ¼

Xn
i¼1

�i � 2u
Xn
i¼1

si ¼ 2u� 2u
Xn
i¼1

si:

We see then that there exists just a single index i0 such that
si0 ¼ 1 and the remaining si vanish (si ¼ 0, i � i0). If

�i0 > u we would have j�0
i0
j ¼ 2u� j�i0 j< u< j�i0 j and

hence

Xn
i¼1

j�0
ij<

Xn
i¼1

j�ij ¼ 2u

which is not allowed. Similarly, if �i0 < u we would have

j�0
i0
j ¼ 2u� j�i0 j> uwhich, in view of proposition V.4, is

not allowed. Therefore we conclude �i0 ¼ u. h

A similar argument proves
Proposition V.7. Let � 2 V�

� and �0 2 V 0
�. The con-

dition �0 � � is equivalent to the existence of an index i0
such that �i0 ¼ �u ¼ ��0

i0
and �i ¼ �0

i for i � i0.

As a direct consequence of propositions V.6 and V.7, the
equivalence classes of V 2u= � that do not have represen-
tatives on V 0

2u are those with representatives belonging to
the sets

~V �
2u ¼ f� 2 V�

2u: �i � u;8ig 
 V�
2u:

Also, as we have shown in point (5), two different ele-

ments, one in ~V
þ
2u and the other in ~V

�
2u, do not always

represent different equivalence classes. The overcounting
is precisely due to the sequences of length two that appear
in proposition V.3. There are 2u� 2 sequences with two

components in ~V
þ
2u. Finally, the overcounting of equiva-

lence classes inV 0
2u is only associated with the sequences

ðu;�uÞ and ð�u; uÞ as shown in proposition V.5. Hence,
we have proved the following:
Proposition V.8. The cardinality of B2u coincides with

the cardinality of the quotient space V 2u= � and is given
by the following expression

jB2uj ¼ jV 0
2uj � 1þ 2j ~Vþ

2uj � ð2u� 2Þ
¼ jV 0

2uj þ 2j ~Vþ
2uj � 2uþ 1:

Finally (see Appendices A and B), by using

jV 0
2uj ¼

ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞu! 2F1ð1=2;�u; 3=2� u; 9Þ;

j ~V�
2uj ¼ 22u�1 � 2u�2ðuþ 3Þ;

we have

jB2uj ¼ ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞ � u! 2F1ð1=2;�u; 3=2� u; 9Þ þ 22u

� 2u�1ðuþ 3Þ � 2uþ 1:

Hence, as claimed in theorem IV.1, the entropy for black
holes with even � ¼ 2u is
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Sbhða2uÞ ¼ logðjB2uj þ 1Þ

¼ log

� ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞ � u! 2F1ð1=2;�u; 3=2� u; 9Þ

þ 22u � 2u�1ðuþ 3Þ � 2uþ 2

�
:

VI. PHYSICAL ISSUES

In this section we will discuss some physical issues in
relation with our new proposal, in particular, the
Bekenstein-Hawking area law and the link with the
Schwarzschild quasinormal modes.

A. The Bekenstein-Hawking area law

The asymptotic behavior for large areas of the black hole
entropy in the scheme that we are using in the paper can be
computed in a straightforward way from the expressions
appearing in theorem IV.1. The relevant formulas are

Sbhða2uþ1Þ¼ logð22uþ1�2u�1Þ;

Sbhða2uÞ¼ log

� ð�1Þu ffiffiffiffi
�

p
4�ð3=2�uÞ �u!2F1ð1=2;�u;3=2�u;9Þ

þ22u�2u�1ðuþ3Þ�2uþ2

�
:

Hence, by using the asymptotic expansion for the hyper-
geometric function obtained in appendix C, we get in the
large u regime

Sbhða2uþ1Þ � a2uþ1 log2

4��‘2P
;

Sbhða2uÞ � log

�
32u�1

ffiffiffiffiffiffiffi
2

�u

s �
� a2u log3

4��‘2P
� 1

2
log

�
a2u

4��‘2P

�
:

The first step in the analysis of our result is a comparison
with the asymptotic form of the Bekenstein-Hawking area
law,

SBHðaÞ � a

4‘2P
; a ! 1;

where SBH is the Bekenstein-Hawking entropy. The law
seems to be only strictly valid if we restrict our entropy Sbh
only to‘‘even areas’’ a2u or ‘‘odd areas’’ a2uþ1. However,
the Bekenstein-Hawking law should be considered at a
suitable scale, larger the one corresponding to quantum
gravity. The scale of our LQG calculation is given by the
area gap 4��‘2P. Therefore, to make contact with the
Bekenstein-Hawking law we should coarse grain our exact
quantum entropy Sbh over an interval [a� �, aþ�]
centered around a given classical area a, where certainly

�> 4��‘2P:

Another way to understand this would be by invoking the
necessity to take into account the unavoidable finite reso-

lution of any conceivable measuring device4 or the defini-
tion of a suitable quantum microcanonical ensemble. In
any case, given an interval [a� �, aþ �] of width 2�>

8��‘2P, we define Sð�ÞBHðaÞ to be the logarithm of the total
number of the CS states which correspond to the quantum
areas a� 2 ½a� �; aþ��, that is

Sð�ÞBHðaÞ :¼ log

� X
�: a�2½a��;aþ��

eSbhða�Þ
�
: (6.1)

The expansion for large values of a is

Sð�ÞBHðaÞ �
a log3

4��‘2P
� 1

2
log

�
a

4��‘2P

�
: (6.2)

Notice that the dependence on the interval width 2� drops
out.
Now, the value of the Immirzi parameter can be fixed5

such that the Bekenstein-Hawking holds, namely

� ¼ log3

�
: (6.3)

B. The area gap

Given this value of � we can calculate the distance
between eigenvalues of the flux-area spectrum. The spac-
ing between consecutive area eigenvalues is

�a ¼ 4��‘2P ¼ 4 log3‘2P: (6.4)

This value of the area gap is known for its very special
properties [16]. We describe them in the Sec. VID. But
before that, several remarks are in order.

C. The relevance of the even and odd sectors

The microscopic behavior of the exact quantum entropy
Sbh is reminiscent of the substructure found in [17,18] for
the entropy of black holes when the standard form of the
area spectrum is considered. The even areas a2u are re-
sponsible for the large scale properties of the entropy, for
the value of � given by (6.3), and the logarithmic correc-
tion to the entropy with the usual�1=2 coefficient. If there
were any physical reasons to restrict the quantum areas to
the even �, the only difference would be a doubling of the
area gap (6.4).
On the other hand, if there were any physical conditions

requiring us to restrict ourselves to the odd area subsector,
we would find that consistency with the Bekenstein-
Hawking law would require

�odd ¼ log2

�
;

4The area gap relevant in our computations is 4��‘2P so the
resolution of the physical measuring apparatus should be quan-
tified in comparison with this scale.

5However, see [15] for an argument against fixing � before
taking into account possible renormalization effects.
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and in the consequence the area gap would have to be

�aodd ¼ 8 log2‘2P;

a value favored by the arguments presented in [9] that
suggest that the spacing between consecutive allowed ho-
rizon areas should be of the form 4N log2 with N 2 N. In
this case no logarithmic term would show up in the large
area expansion.

In fact, the parity of the CS-level � has a clear physical
interpretation. The bulk states are constructed from em-
bedded graphs. The numbers ðm1; j1; . . . ; mn; jnÞ intro-
duced in Sec. II correspond to the intersection of the
graph with the surface S of the horizon. Suppose the
intersection splits the graph into two disjoint parts (con-
tained ‘‘inside’’/‘‘outside’’ the black hole). This is a justi-
fied assumption. If there are no fermions in the theory, then
each of the disjoint parts of the graph intertwines the tensor
product of the SUð2Þ representations corresponding to the
spins j1; . . . ; jn into the trivial representation. Therefore, in
that fermionless case, the extra necessary condition is

Xn
i¼1

ji 2 N:

It is equivalent to

�

2
¼ Xn

i¼1

jmij 2 N:

In the general case, the vertices of the graph are colored
with fermions. Then, the SUð2Þ representations corre-
sponding to the numbers j1; . . . ; jn are intertwined by the
interior/exterior part of the graph into a representation
defined in the tensor product of the spinor spaces of the
vertices contained inside/outside the black hole. Therefore,
� is odd, provided the total spin of the fermions inside/
outside the black hole is half-integer.

D. Reactivation of the quasinormal modes link

As we have mentioned above the value (6.4) of the
elementary step �a in the area spectrum that we have
derived is very special. It provides some known relation
between quantum gravity and the theory of the quasinor-
mal modes of Schwarzschild black hole [19]. The shortest
link is the following definition of a frequency !,

! :¼ �a

8
ffiffiffiffiffiffiffi
�a

p (6.5)

(G ¼ @ ¼ 1 in this subsection). The frequency ! given by
�a ¼ 4 log3 turns out to coincide with the limit of the
quasinormal mode frequencies at which the dumping is
maximal. Moreover, Eq. (6.5) has a heuristic quantum
gravitational derivation [19]: the quantum jump a � aþ
�a is assumed to be caused by the quantum excitation
M � Mþ! of the black hole mass M, where

a ¼ 16�M2

implies

�a ¼ 32�M!:

It was also noticed [14] that the value 4 log3 for �a
could be predicted by the ABCK model with the standard
LQG quantum area operator (2.4), provided the following
two assumptions were satisfied
(i) the quantum numbers ji in (2.2) take integer values

only (rather then half integers),
(ii) the states corresponding to the lowest nonzero value

of ji contribute to the entropy in the leading order as
a ! 1.

The first assumption would be equivalent to replacing
SUð2Þ by SOð3Þ in LQG (see [14,20]). The second assump-
tion had been believed in for a while, but turned out to be
incorrect [3]. With the quantum flux-area operator, on the
other hand, the result (6.4) holds with the SUð2Þ group and
is derived by an exact calculation.
Remarkably, that result (6.4) is in fact insensitive to

replacing SUð2Þ by SOð3Þ. Indeed, the replacement
amounts to restricting the combinatorial black hole entropy
Definition IV.3 to the set of integer valued sequences
ðm1; . . . ; mnÞ. All the sequences ðm	

1; . . . ; m
	
nÞ of this

SOð3Þ theory can be obtained out of the sequences
ðm1; . . . ; mnÞ of our SUð2Þ theory by the 1 to 1 transforma-
tion

ðm1; . . . ; mnÞ � ðm	
1; . . . ; m

	
nÞ ¼ ð2m1; . . . ; 2mnÞ;

� � �	 ¼ 1

2
�; � � �	 ¼ 2�:

Indeed, the transformation preserves the area

4��� ¼ a ¼ 4��	�	

and maps the conditions

2
Xn
i¼1

mi ¼ 0 ðmod�Þ; Xn
i¼1

jmij ¼ �

2

into

2
Xn
i¼1

m	
i ¼ 0 ðmod�	Þ; Xn

i¼1

jm	
i j ¼

�	

2
:

As a consequence, the transformation preserves the en-
tropy function a � SbhðaÞ. Since it also preserves the
spectrum of the quantum flux-area operator and the quan-
tity �a, the mysterious relation with the quasinormal
modes is maintained.

VII. COMMENTS AND CONCLUSIONS

The main idea presented in the paper is to substitute the
area operator used in the definition of black hole entropy
according to the ABCK prescription for a different area
operator âflux that can be defined in the LQG framework by
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using some extra structure provided by the inner space-
time boundary introduced to model a black hole. Other
than this we strictly adhere to the entropy definition of [2].
It is important to notice that the geometrical operators
depend both on certain regularization procedures that (as
is usual in quantum mechanics) are not unique and also on
a multiplicative factor related to the Immirzi parameter.
However, once the regularization is fixed these operators
can be used to measure the length, area and volume of
‘‘arbitrary’’ curves, surfaces and volumes at the scale
determined by the Immirzi parameter. The regularizations
used in LQG are very well motivated as discussed, for
example, in [7,8]. The proposal that we are suggesting
here is not based on a different regularization procedure
of the standard area operator employed in LQG. Rather we
are using a new area operator constructed in terms of the
additional structure employed to model the black hole
horizon in the ABCK framework. This additional structure
cannot be used for a generic surface in the bulk. The use of
this new operator has several advantages. First of all its
spectrum is equally spaced and, furthermore, the prequan-
tized values of the area belong to the spectrum. This
reinforces the beautiful interplay between the bulk quan-
tum geometry and the horizon CS theory shown in [1,2]
and allows us to eliminate the need to introduce an area
interval of undetermined width � at this stage of the
definition of the entropy. As we have shown, it is possible
to completely solve the problem of determining the black
hole entropy with the new area operator. Actually we have
been able to get the solution in a closed (and rather simple)
form and also obtain the asymptotic behavior for large
areas.

In order to compare our intrinsically quantum entropy
with the semiclassical Bekenstein-Hawking entropy, we
course grain the quantum entropy along an interval of
arbitrary width � greater then the area gap. An agreement
is established if and only if the Immirzi parameter is � ¼
ðlog3Þ=�.

The main drawback of our choice is that the law is not
immediately recovered due to the different behavior of the
entropy for ‘‘even’’ and ‘‘odd’’ areas. Within each of these
subsets of area eigenvalues the right proportionality be-
tween entropy and area can be found after fixing an appro-
priate value for �even or �odd so if one can physically justify
the elimination of one of these two sectors in the spectrum
of the area operator one would get the desired result
without any coarse graining. Given that the spacing be-
tween consecutive eigenvalues depends on the choice of �
it is actually possible to have the type of area quantization
proposed in [9] with a distance between consecutive ei-
genvalues of an integer multiple of 4 log2 or connect with
some proposals involving the choice of SOð3Þ as the inter-
nal symmetry group [14,20]. Another potential problem
that should be faced at some point is the recovery of a
thermal spectrum for the Hawking radiation with such an
equally-spaced spectrum [21].

Proposals with a flavor similar to ours have appeared in
the literature before. For example Krasnov has proposed in
[10] to use an operator of the type

â Krjðm1; j1; . . . ; mn; jnÞ; � � �iBul
¼ 8��‘2P

Xn
i¼1

jijðm1; j1; . . . ; mn; jnÞ; � � �iBul

that can be understood as an approximation to the standard
area operator in LQG justified by the fact that for large jwe

have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp � j. It is important to notice that although

the spectrum of this area operator is the same as that of âflux

its introduction in the ABCK entropy definition would
require to keep the necessity to define compatible lists of
j’s that are not needed in our case. It is rather straightfor-
ward to adapt our methods to this case. When this is done
the result for odd areas is the same as the one that we give
here whereas for even areas is asymptotically the same.
Another such study is due to Sahlmann [13]. In that

paper the author starts from the Domagala-Lewandowski
prescription [3] to obtain the entropy by studying only
sequences of third spin components. His starting point is
to countm-sequences satisfying an area constraint with the
form of an inequality

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmijðjmij þ 1Þ

q
� a

2

and the additional projection constraint given by

Xn
i¼1

mi ¼ 0:

He then proceeds to approximate each
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijmijðjmij þ 1Þp

term as jmij or jmij þ 1=2 and solve the resulting problem
by using generating function techniques similar to the ones
that we have used here. In fact, as mentioned in
Appendix B, some of the results that we have used to
compute the entropy actually appear in [13].
To conclude, in our opinion the framework that we have

developed here provides a concrete and carefully defined
starting point to attack the problem of understanding
Hawking radiation in LQG. We hope that the precise
knowledge of the degeneracies in the spectrum of the
area operator and the mathematical tools used here will
allow us to solve this problem and find out if the descrip-
tion presented here is really suitable to model black holes.
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APPENDIX A: PARTITIONS OFAN INTEGER

In this appendix we give some results used in the body of
the paper, concerning the partitions of a positive integer
� 2 N. The following theorem is a well-known result in
Combinatorics.

Theorem A.1 (partitions of an integer). The number of
(unordered) partitions of � 2 N is

½x��Y1
i¼1

1

1� xi
:

The number of ordered partitions of � is

½x�� 1

1�P1
i¼1 x

i ¼ ½x�� 1� x

1� 2x
¼ 2��1:

Here ½x��fðxÞ denotes the coefficient of the x� term in the
Taylor series expansion of the function f around x ¼ 0.

The sets Vþ
� and V�

� , defined by

V �
� ¼

�
�: 9n > 2; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ;

Xn
i¼1

j�ij

¼ �;
Xn
i¼1

�i ¼ ��

�
;

are obviously bijective with the set of those ordered parti-
tions of � different from the trivial one provided by � itself.
Hence, as a corollary of theorem A.1, we get

jVþ
� j ¼ jV�

� j ¼ 2��1 � 1:

Theorem A.1 can be easily generalized to account for the
class of ordered partitions related to the black hole entropy
computations. In particular:

Theorem A.2. The number of ordered partitions of an
even integer � ¼ 2u for which all parts are different from u
is given by

½x2u� 1

1�P1
i¼1 x

i þ xu
¼ ½x2u� 1� x

1� 2xþ xu � xuþ1

¼ 22u�1 � 2u�2ðuþ 3Þ þ 1:

In Sec. V we introduced the sets

~V �
2u ¼ f� 2 V�

2u: �i � u;8ig:

Clearly, ~V�
2u are bijective with the set of those ordered

partitions of � ¼ 2u that are different from the trivial one

(2u) and for which all parts are different form u. Hence, as
a corollary of theorem A.2, we have

j ~V�
2uj ¼ 22u�1 � 2u�2ðuþ 3Þ:

APPENDIX B: GENERATING FUNCTION FOR
jV 0

�j
The cardinality of the set

V 0
� :¼

�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ;

Xn
i¼1

j�ij

¼ �;
Xn
i¼1

�i ¼ 0

�

can be computed by considering the more general sets

V p
� :¼

�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ;

Xn
i¼1

j�ij

¼ �;
Xn
i¼1

�i ¼ p

�

corresponding to projection constraints
P

n
i¼1 �i ¼ p, p 2

Z. Notice that the sets V�
� defined in (5.2) are related, but

not equal due to the trivial sequences ð��Þ, to V��
� . The

generating function of the double sequence fjV p
�j: k 2

N; p 2 Zg can be obtained by particularizing the results
of [22] to the easier case corresponding to the spectrum of
the flux-area operator (3.4).
Theorem B.1 (generating function for the numbers

jV p
�j). The function

Gðx; zÞ :¼ z� x� z2xþ zx2

z� 2x� 2z2xþ 3zx2

satisfies

Gðx; zÞ ¼ 1þ X
�2N

�X
p2Z

jV p
�jzp

�
x�:

Proof. The proof is a trivial generalization of the meth-
ods developed in [22]. The formulas appearing in [22] are
related to the problem of counting the number of solutions
to certain quadratic diophantine equations. Here, the role
of those Pell equations is played by the ones giving the
number of partitions for certain integers. This gives rise to
the terms

P1
�¼1 x

� in the generating functions. On the other
hand, the projection constraint

P
i�i ¼ p can be incorpo-

rated by using a generating function in the form of a
Laurent polynomial in an auxiliary variable z. Actually,

Gðx; zÞ ¼
�
1� X1

n¼1

ðzn þ z�nÞxn
��1

¼ z� x� z2xþ zx2

z� 2x� 2z2xþ 3zx2
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satisfies jV p
�j ¼ ½zp�½x��Gðx; zÞ whenever � 2 N and

p 2 Z. The notation ½zp�½x��Gðx; zÞ means that we must
perform first the power expansion of Gðx; zÞ in x and then
find the Laurent expansion in z of the coefficients previ-
ously obtained. The normalizationGð0; zÞ ¼ 1 is chosen to
account for the trivial sequence appearing in
definition IV.3. h

The problem of finding generating functions for the
combinatorial problems posed above was considered also
by H. Sahlmann in [13]. His approach was based on the use
of paths in the integer lattice Z. The generating function
GHSðx; zÞ provided in page 11 of Ref. [13]—we are using
GHSðx; zÞ for Sahlmann’s Gðg; zÞ—can be obtained from
Gðx; zÞ as

GHSðx; zÞ ¼ Gðx; zÞ � 1 ¼ xð1þ z2 � 2xzÞ
z� 2x� 2z2xþ 3zx2

:

This is so because GHS satisfies GHSð0; zÞ ¼ 0. As we can
see the different approaches provide equivalent results.

By using Cauchy’s theorem, it is possible to integrate out
the auxiliary z-variable appearing in Gðx; zÞ and obtain a
generating function G0ðxÞ for the numbers jV 0

�j.
Theorem B.2 (generating function for jV 0

�j). The func-
tion

G0ðxÞ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1� 9x2

s �
(B1)

satisfies

G0ðxÞ ¼ 1þ X
�2N

jV 0
�jx�:

Hence

jV 0
2uj ¼

ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞ � u! 2F1ð1=2;�u; 3=2� u; 9Þ;

jV 0
2uþ1j ¼ 0;

where � and 2F1 are, respectively, the Gamma function and
the Gauss’s hypergeometric function.

Proof. Let

x�ðzÞ :¼ 1þ z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2 þ z4

p
3z

;

z�ðxÞ :¼ 1þ 3x2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10x2 þ 9x4

p

4x
:

By using theorem B.1, it is possible to write

jV 0
�j ¼ ½z0�½x��Gðx; zÞ

¼ 1

2�i

I
C1

�
1

2�i

I
C0

z� x� z2xþ zx2

ð1� xÞðz� 2x� 2z2xþ 3zx2Þ

 dx

x�þ1

�
dz

z
; � 2 N;

where C0 and C1 are simple closed curves in the complex

plane satisfying the following conditions. Both curves
must surround the origin. The curveC0 has to enclose x0 ¼
0 but not x�ðzÞ, for all z 2 C1. It is not difficult to prove
that this last requirement implies that C1 must enclose both
z0 ¼ 0 and z�ðxÞ but not zþðxÞ, for all x 2 C0. If we use
now Fubini’s theorem

jV 0
�j ¼ 1

2�i

I
C0

�
1

2�i

I
C1

z� x� z2xþ zx2

ð1� xÞðz� 2x� 2z2xþ 3zx2Þ

 dz

z

�
dx

x�þ1
:

Hence

G0ðxÞ :¼ 1

2�i

I
C1

Gðx; zÞ
z

dz

¼ 1

2�i

I
C1

z� x� z2xþ zx2

zðz� 2x� 2z2xþ 3zx2Þdz

satisfies

jV 0
�j ¼ ½x��G0ðxÞ; � 2 N:

The functionGðx; zÞ=z has simple poles at z0 and z�ðxÞ and
their corresponding residues are

Res ðGðx; zÞ=z; z0Þ ¼ 1

2
;

ResðGðx; zÞ=z; z�ðxÞÞ ¼ � 1� x2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10x2 þ 9x4

p :

Therefore, applying Cauchy’s theorem,

G0ðxÞ ¼ 1

2
þ 1� x2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10x2 þ 9x4

p ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1� 9x2

s �
:

Finally, by using the binomial formula and the standard
properties of the 2F1 hypergeometric functions, we find

G0ðxÞ¼1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

1�9x2

s �

¼1þ1

2

X1
u¼1

ð�1Þu
�Xu
m¼0

32m
1=2
u�m

� � �1=2
m

� ��
x2u

¼1þX1
u¼1

ð�1Þu ffiffiffiffi
�

p
4�ð3=2�uÞ�u!2F1ð1=2;�u;3=2�u;9Þx2u:

h

APPENDIX C: ASYMPTOTIC EXPANSION OF 2F1

In this appendix we want to briefly discuss how the
asymptotic expansion of the entropy is obtained. To this
end we need to find out the asymptotic behavior of a
function f defined in terms of a hypergeometric function

2F1 in the form fðuÞ ¼ 2F1ð�;	� u;�� u; xÞ with �, 	,
�, and x fixed and u ! 1. These expansions were dis-
cussed in detail in a classic paper by G.N. Watson [23]. In
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order to apply the techniques developed in that article it is
necessary to make use of some identities relating hyper-
geometric functions of different arguments. This is done in
another classic book by A. R. Forsyth [24] from which the
notation used by Watson in [23] is borrowed. Specifically,
because of the following identity (valid for positive integer
values of u)

ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞ�ðuþ 1Þ 2F1

�
1

2
;�u;

3

2
� u; 9

�

¼ 32u�1�ðuÞ ffiffiffi
2

p
�ðuþ 1=2Þ ffiffiffiffi

�
p 2F1

�
� 1

2
;
1

2
;
1

2
þ u;

9

8

�

þ ð�1Þuþ1i�ðuÞ ffiffiffiffi
�

p
8�ðuþ 1=2Þ�ð1=2� uÞ�ðuþ 3=2Þ ffiffiffi

2
p 2F1

�
3

2
;
1

2
;
3

2

þ u;� 1

8

�
;

the relevant asymptotic expansion can be obtained directly
from the asymptotics of hypergeometric functions when
only one of the parameters goes to infinity. In our case we
just have to use the formula given in [23]

2F1ð�;	;�þ u; xÞ � �ð�þ uÞ
�ð�þ u� 	Þu	 ð1þOð1=uÞÞ;

u ! 1:

This way we finally get

ð�1Þu ffiffiffiffi
�

p
4�ð3=2� uÞ�ðuþ 1Þ 2F1

�
1

2
;�u;

3

2
� u; 9

�

� 32u�1

ffiffiffiffiffiffiffi
2

�u

s
ð1þOð1=uÞÞ: (C1)

APPENDIX D: EXAMPLES

We give here two explicit examples, corresponding to
odd and even values of � to illustrate the main results and
derivations in the paper, in particular, the problems asso-
ciated to the overcounting occurring when �-sequences are
used instead of b-sequences.

1. An odd �: The case � ¼ 5

In this case

V 5 ¼
�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ; j�ij � 5;

Xn
i¼1

j�ij ¼ 5;
Xn
i¼1

�i ¼ 0 or � 5

�
:

We can enumerate the elements of this set by first finding
all the partitions of the number 5. These are: 5 ¼ 4þ 1 ¼
3þ 2 ¼ 3þ 1þ 1 ¼ 2þ 2þ 1 ¼ 2þ 1þ 1þ 1 ¼ 1þ
1þ 1þ 1þ 1. The simple parity argument given in the
text shows that the set V 0

5 is empty so we have

V 5 ¼ Vþ
5 [V�

5 :

with the disjoint sets Vþ
5 and V�

5 given by

V þ
5 ¼ fð4; 1Þ; ð1; 4Þ; ð3; 2Þ; ð2; 3Þ; ð3; 1; 1Þ; ð1; 3; 1Þ; ð1; 1; 3Þ; ð2; 2; 1Þ; ð2; 1; 2Þ; ð1; 2; 2Þ; ð2; 1; 1; 1Þ; ð1; 2; 1; 1Þ; ð1; 1; 2; 1Þ;
ð1; 1; 1; 2Þ; ð1; 1; 1; 1; 1Þg

V�
5 ¼ fð�1;�4Þ; ð�4;�1Þ; ð�2;�3Þ; ð�3;�2Þ; ð�3;�1;�1Þ; ð�1;�3;�1Þ; ð�1;�1;�3Þ; ð�2;�2;�1Þ;

ð�2;�1;�2Þ; ð�1;�2;�2Þ; ð�2;�1;�1;�1Þ; ð�1;�2;�1;�1Þ; ð�1;�1;�2;�1Þ; ð�1;�1;�1;�2Þ;
ð�1;�1;�1;�1;�1Þg:

We explicitly see here several features of these sets already commented in the text, for example, there are no unit-length
sequences, all the elements in Vþ

5 are strictly positive and strictly smaller than 5 and there are no equivalent sequences
within each of them (similarly for V�

5 ). The first four elements of each set (highlighted by using a boldface type) are
pairwise equivalent: i.e. ð4; 1Þ � ð�1;�4Þ, ð1; 4Þ � ð�4;�1Þ and so on. These type of sequences are characterized in
proposition V.3. As we can see there are 2u ¼ 4 such pairs that correspond only to 4 b-sequences. Taking this into account
we conclude that

B 5 ¼ fð½4�5; ½1�5Þ; ð½1�5; ½4�5Þ; ð½3�5; ½2�5Þ; ð½2�5; ½3�5Þ; ð½3�5; ½1�5; ½1�5Þ; ð½1�5; ½3�5; ½1�5Þ; ð½1�5; ½1�5; ½3�5Þ; ð½2�5; ½2�5; ½1�5Þ;
ð½2�5; ½1�5; ½2�5Þ; ð½1�5; ½2�5; ½2�5Þ; ð½2�5; ½4�5; ½4�5Þ; ð½4�5; ½2�5; ½4�5Þ; ð½4�5; ½4�5; ½2�5Þ; ð½3�5; ½3�5; ½4�5Þ; ð½3�5; ½4�5; ½3�5Þ;
ð½4�5; ½3�5; ½3�5Þ; ð½2�5; ½1�5; ½1�5; ½1�5Þ; ð½1�5; ½2�5; ½1�5; ½1�5Þ; ð½1�5; ½1�5; ½2�5; ½1�5Þ; ð½1�5; ½1�5; ½1�5; ½2�5Þ;
ð½3�5; ½4�5; ½4�5; ½4�5Þ; ð½4�5; ½3�5; ½4�5; ½4�5Þ; ð½4�5; ½4�5; ½3�5; ½4�5Þ; ð½4�5; ½4�5; ½4�5; ½3�5Þ; ð½1�5; ½1�5; ½1�5; ½1�5; ½1�5Þ;
ð½4�5; ½4�5; ½4�5; ½4�5; ½4�5Þg;

where we have denoted Z5 ¼ f½0�5; ½1�5; ½2�5; ½3�5; ½4�5g. Finally the entropy is
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Sða5Þ ¼ logðjB5j þ 1Þ ¼ logð27Þ ¼ logð25 � 5Þ;
which is the result given by the formulas derived in the text.

2. An even �: The case � ¼ 4

In this case u ¼ 2 and

V 4 ¼
�
�: 9n 2 N; � ¼ ð�1; . . . ; �nÞ 2 Zn	 ; j�ij � 4;

Xn
i¼1

j�ij ¼ 4;
Xn
i¼1

�i ¼ 0 or � 4

�
:

We can enumerate the elements of this set by first finding
all the partitions of the number 4. These are now: 4 ¼
3þ 1 ¼ 2þ 2 ¼ 2þ 1þ 1 ¼ 1þ 1þ 1þ 1. We have
then

V 4 ¼ V 0
4 [Vþ

4 [V�
4 ;

where V 0
4 is nonempty in this case. The disjoint sets V 0

4,
Vþ

4 and V�
4 are given by

V 0
4 ¼ fð2;�2Þ; ð�2; 2Þ; ð�2; 1; 1Þ; ð2;�1;�1Þ; ð1;�2; 1Þ; ð�1; 2;�1Þ; ð1; 1;�2Þ; ð�1;�1; 2Þ


 ð1; 1;�1;�1Þ; ð1;�1; 1;�1Þ; ð1;�1;�1; 1Þ; ð�1; 1; 1;�1Þ; ð�1; 1;�1; 1Þ; ð�1;�1; 1; 1Þg
Vþ

4 ¼ fð3; 1Þ; ð1; 3Þ; ð2; 2Þ; ð2; 1; 1Þ; ð1; 2; 1Þ; ð1; 1; 2Þ; ð1; 1; 1; 1Þg
V�

4 ¼ fð�3;�1Þ; ð�1;�3Þ; ð�2;�2Þ; ð�2;�1;�1Þ; ð�1;�2;�1Þ; ð�1;�1;�2Þ; ð�1;�1;�1;�1Þg:
We can see now several features of these sets that have been discussed in the paper. First of all we see that all the elements
within each of the sets Vþ

4 and V�
4 are inequivalent. We see that all the elements in V 0

4 satisfy that their entries are
j�ij � 2 as stated in proposition V.4, also the only equivalent sequences in V 0

4 (that we have underlined) are ð2;�2Þ and
ð�2; 2Þ as stated in proposition V.5. Their equivalence class also contains an element in each ofVþ

4 andV�
4 (that we have

also underlined); they are (2, 2) and ð�2;�2Þ that are equivalent as stated in proposition V.3. We can readily see that the
equivalence classes of V 4= � that do not have representatives in V 0

4 are precisely those in either Vþ
4 or V�

4 with no
element equal to u ¼ 2 [for example (1, 1, 1, 1) or ð�1;�1;�1;�1Þ]. Actually the equivalence classes consisting in more
than one element are

ð½1�4; ½3�4Þ ¼ fð�3;�1Þ; ð1; 3Þg ð½3�4; ½1�4Þ ¼ fð�1;�3Þ; ð3; 1Þg ð½2�4; ½2�4Þ ¼ fð2;�2Þ; ð�2; 2Þ; ð2; 2Þ; ð�2;�2Þg
ð½2�4; ½1�4; ½1�4Þ ¼ fð2; 1; 1Þ; ð�2; 1; 1Þg ð½1�4; ½2�4; ½1�4Þ ¼ fð1; 2; 1Þ; ð1;�2; 1Þg
ð½1�4; ½1�4; ½2�4Þ ¼ fð1; 1; 2Þ; ð1; 1;�2Þg ð½2�4; ½3�4; ½3�4Þ ¼ fð2;�1;�1Þ; ð�2;�1;�1Þg
ð½3�4; ½2�4; ½3�4Þ ¼ fð�1; 2;�1Þ; ð�1;�2;�1Þg ð½3�4; ½3�4; ½2�4Þ ¼ fð�1;�1;�2Þ; ð�1;�1; 2Þg
So we finally get that

B4 ¼ fð½1�4; ½3�4Þ; ð½3�4; ½1�4Þ; ð½2�4; ½2�4Þ; ð½2�4; ½1�4; ½1�4Þ; ð½1�4; ½2�4; ½1�4Þ; ð½1�4; ½1�4; ½2�4Þ; ð½2�4; ½3�4; ½3�4Þ;
ð½3�4; ½2�4; ½3�4Þ; ð½3�4; ½3�4; ½2�4Þ; ð½1�4; ½1�4; ½3�4; ½3�4Þ; ð½1�4; ½3�4; ½1�4; ½3�4Þ; ð½1�4; ½3�4; ½3�4; ½1�4Þ;
ð½3�4; ½1�4; ½1�4; ½3�4Þ; ð½3�4; ½1�4; ½3�4; ½1�4Þ; ð½3�4; ½3�4; ½1�4; ½1�4Þ; ð½1�4; ½1�4; ½1�4; ½1�4Þ; ð½3�4; ½3�4; ½3�4; ½3�4Þg;

jB4j ¼ 17 and the entropy is

Sða4Þ ¼ logðjB4j þ 1Þ ¼ logð18Þ;
which is, again, given by the formulas derived in the text.
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