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Two faces of quantum sound
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Fluctuations around a Bose-Einstein condensate can be described by means of Bogolubov theory
leading to the notion of quasiparticle and antiquasiparticle familiar to nonrelativistic condensed-matter
practitioners. On the other hand, we already know that these perturbations evolve according to a
relativistic Klein-Gordon equation in the long-wavelength approximation. For shorter wavelengths, we
show that this equation acquires nontrivial corrections which modify the Klein-Gordon product. In this
approach, quasiparticles can also be defined (up to the standard ambiguities due to observer dependence).
We demonstrate that—in the low-energy as well as in the high-energy regimes—both concepts of
quasiparticle are actually the same, regardless of the formalism (Bogolubov or Klein-Gordon) used to
describe them. These results also apply to any barotropic, inviscid, irrotational fluid, with or without
quantum potential. Finally, we illustrate how the quantization of these systems of quasiparticles proceeds
by analyzing a stationary configuration containing an acoustic horizon. We show that there are several
possible choices of a regular vacuum state, including a regular generalization of the Boulware vacuum.

Issues such us Hawking radiation crucially depend on this vacuum choice.
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I. INTRODUCTION

It has for quite some time been understood that the
propagation of sound waves in inviscid irrotational baro-
tropic fluids can, under rather general circumstances, be
effectively described by relativistic curved-spacetime met-
rics; see e.g. [1]. This led to the observation that it should,
at least in principle, be possible to achieve sonic or acoustic
black hole configurations, and thus study certain types of
high-energy effects on black hole physics by analogy [2].
This gravitational analogy was established on firm foot
about a decade ago in [3]. Since then, the field of analogue
gravity has grown into a mature and well-established re-
search programme within the gravity community [4]. It
offers both the exciting prospect of bringing black hole
physics, in particular, Hawking radiation, within the reach
of experimentation, and a refreshing conceptual take on
some long-standing problems of quantum gravity, such as
its relation to dark energy [5] or the avoidance of black
hole singularities in the gravitational collapse of ultraheavy
bodies [6].

The quest for a useful background fluid in which to
conduct experiments of analogue gravity leads in the di-
rection of superfluids. Indeed, superfluids have a vanishing
viscosity, and some superfluids can be made extremely
pure. Among the possible candidates, Bose-Einstein con-
densates [7,8] have the comparative advantage of being
conceptually well understood and relatively simple to de-
scribe theoretically and manipulate experimentally.
Acoustic black holes have been recently reported for the
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first time in Bose-Einstein condensates [9], and there is
good hope that an experimental detection of analogue
Hawking radiation, one of the main current promises of
the analogue gravity programme, will be achievable in the
near future [10].

Another motivation for studying Bose-Einstein conden-
sates in the context of analogue gravity is that they provide
a real system in which high-energy modifications to the
relativistic dispersion relations arise. This shows that there
exist concrete examples in nature in which Lorentz invari-
ance is realized as a low-energy effective symmetry, bro-
ken at high energy. Such a scenario could be the case for
the local Lorentz invariance of general relativity as well. In
this manner, Bose-Einstein condensates might offer an
interesting model for quantum gravity phenomenology;
see e.g. [11,12].

Our first aim in this paper is to further elaborate and
consolidate the theoretical framework for the gravitational
analogy in Bose-Einstein condensates by taking a look at
the different inner products and related creation and anni-
hilation variables that can be introduced depending on the
point of view. Quantum sound in Bose-Einstein conden-
sates can, on the one hand, be analyzed within the
Bogolubov formalism by directly perturbing the Gross-
Pitaevskii equation. On the other hand, the phase perturba-
tions of the condensate obey a modified Klein-Gordon
equation, and a corresponding quantization can be carried
out. Remarkably, both procedures give rise to the same
quantum theory. This allows us to establish a deep con-
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ceptual connection between both formalisms, the first one
being inherently nonrelativistic while the second is rela-
tivistic, up to corrections which are vanishingly small for
long wavelengths. Both procedures are known to be
equivalent in this long-wavelength acoustic limit; see e.g.
[13]. Here we discuss in detail how the usual Klein-Gordon
field is distorted after the acoustic approximation is broken.
The step-by-step analysis that we perform shows that the
equivalence between the Bogolubov approach and this
generalized Klein-Gordon formalism persists well beyond
the limit of validity of the acoustic approximation.

Once an inner product has been defined, one can proceed
with the quantization of the system of quasiparticles in the
standard Fock manner. An orthonormal and complete set of
positive norm modes is needed to expand the field operator.
Finding such a complete set of positive norm modes
amounts to defining quasiparticle creation and annihilation
operators and a vacuum state. This construction is not
unique: One can choose several distinct sets of modes
and vacuum states which give place to different quasipar-
ticle notions. To illustrate this procedure we will consider a
stationary one-dimensional configuration possessing an
acoustic black hole horizon. The second aim of this paper
is precisely to show that for this configuration there exist
several regular vacuum states with a specific interpretation,
including a regular generalization of the Boulware state for
a relativistic field in a black hole geometry. In this way, we
show that the freedom in choosing a vacuum state is larger
in dispersive theories than in relativistic theories. This
vacuum choice has crucial importance in issues such as
the presence or not of Hawking radiation.

This paper is organized as follows. Section II is devoted
to the Bogolubov approach and the definition of the appro-
priate inner product. A mode analysis is also performed.
Section III introduces the hydrodynamic representation
that leads to a Klein-Gordon equation in the long-
wavelength regime and to its generalization for all wave-
lengths. The corresponding generalized Klein-Gordon
product is also introduced. In Sec. IV, we show that both
formalisms are actually equivalent and lead to the same
concept of positive and negative norm solutions. After
defining the appropriate inner product, Sec. V is devoted
to a discussion of the different vacuum state choices. We
focus on a configuration of particular relevance for ana-
logue gravity experiments: a one-dimensional stationary
acoustic black hole. We conclude with some final com-
ments in Sec. VL.

II. BOGOLUBOV APPROACH

Let us consider a condensed dilute gas of interacting
bosons described in terms of quantum field operators LAﬂ
and 1 that annihilate and create particles (see e.g.
Refs. [14,15]). The operator fp can be separated into two
parts: a macroscopic wave function i, describing the
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actual Bose-FEinstein condensate and a quantum field op-
erator q@ describing perturbations around the condensate.

The order parameter i satisfies the Gross-Pitaevskii
equation

h2
ihd o = (= 50V Vet eldilo (D

where V., is an external potential, m the atomic mass, and
g the atomic interaction constant (proportional to the
s-wave scattering length). We will also use the Madelung
representation

o = e/, 2

in terms of the number density of atoms n, and the phase
6, of the condensate, which defines the flow velocity
potential (such that the flow velocity is v = V6,/m).
Then Eq. (1) translates into

a,n() + V . (nOVHO)/m = O, (3)

1 n? V* /ng
8,00 + =—(V6)? + Ve + -— =0, (4
tY0 2m( 0) ext 8No m \/ﬁa ( )
which are the continuity equation and the Bernoulli equa-
tion plus a quantum potential term, respectively.

A. Bogolubov equation

The quantum perturbation field dA) satisfies the
Bogolubov equation (see e.g. Refs. [14,15])

ih@,d; _ 3_[({) + mc262i90/h(£1" (5)
where ¢ = gny/m is the square of the local comoving
speed of sound and H is the operator,

n* V2 1
e —mv? — 9,0, + mc?. (6)

H =
2m ¢ 2

2
_h_VZ +
2m

The commutation relation for the atomic creation and
annihilation operators,

[F(x, 1), T (x, 0] = 8(x — x)), @)
translates into the commutation relation
[(x, 1), T (x', )] = 8(x — x/) ®)

for the perturbation field operators, which create or anni-
hilate atoms in the noncondensed part and correspondingly
annihilate or create them in the condensed phase. In other
words, <,!3 moves an atom from the noncondensed part to the
condensate, and vice versa for cf)T. This commutation
relation is valid for condensed systems in which the num-
ber of noncondensed atoms is very small compared to the
number of condensed ones.

Note that the Bogolubov equation (5) could also have
been obtained by expanding to first order in ¢ the Gross-
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Pitaevskii equation (1) for the order parameter . /ige!%/" +
¢. In other words, the classical perturbation ¢ of the mean-
field wave function of the condensate satisfies exactly the
same evolution equation as the quantum fluctuations ¢
around the condensed phase. From now on, we will there-
fore drop the hat from the operator (ﬁ, unless necessary.

It is important to note that, although this equation can be
obtained by “linearizing” the Gross-Pitaevskii equation, it
is a complex equation for a genuinely complex field and is
therefore nonlinear: If ¢ is a solution, then, in general, o ¢
is not (unless « is real). Therefore, we cannot directly
perform a mode expansion to find the general solution.
There exists a procedure [14,15] which allows us to over-
come this problem by enlarging the space in which we look
for solutions to Eq. (5) and to define an inner product in this
enlarged space.

With this aim let us introduce the spinor field

v~ 5(3) )

subject to the evolution equation

ihd,® = M, (10)
where M is the operator
B kTS mc2e2ifo/n
M = ( — e 2t/ -
= ,’]'[0'Z + mczez"‘%/hour — mcte 2/ (11)

In this equation, 0. = (0, * io,)/2 and o, are the
Pauli matrices.

This equation is now linear; i.e., if ® is a solution, then
so is a® for any complex constant «. The solutions to the
Bogolubov equation (5) are obtained by restricting the
solutions of Eq. (10) by the condition

o=, e, o = (12)

B. Bogolubov inner product

Taking into account that (f) has been defined as an
operator that annihilates atoms in the noncondensed part
of the gas (and hence creates them in the condensed part),
the expectation value of g?)‘t ¢3 will provide the number of
noncondensed atoms N; (under the assumption that this
number is small compared to the total number of atoms, as
mentioned above). This condition translates into the fol-
lowing normalization condition for the spinor ®:

(@, d) =N, 13)
in the standard inner product
@) = [arsorar = [exi s+ 58
(14)
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where D is the number of spatial dimensions under con-
sideration. Since there is a continuous exchange of atoms
between the condensed and noncondensed phases, this
norm will not be conserved in time. Indeed, this fact is
already encoded in the evolution equation (10). Actually, it
is straightforward to see that

ih%(@, Py = (Mt — M)D, D). (15)

However, the operator M is not self-adjoint in the positive-
definite inner product (14), but satisfies the following
properties:

oMo, = —M", oMo, = M, (16)

and hence this inner product is not preserved in the evolu-
tion, as we have already mentioned.

These are the relevant properties of M. In fact, in view
of the last equality, we can introduce a ‘“Bogolubov’ inner
product

(D D)y = /-de(I)Ta'ZCD’, (17)

in which M is self-adjoint. Indeed, it is straightforward to
check that

(DIMD ) = (MP|D)g. (18)

Therefore we see that the price to pay for making the
evolution operator M self-adjoint is the introduction of
an inner product (:|-)5 which is not positive definite.
Indeed, this Bogolubov inner product has the following
properties:
(i) It is conserved in the evolution of the lab time r.
(ii) It is Hermitian, i.e., (®|®'); = (P'|D)g.
(iii) It is antilinear in the first argument and linear in the
second; i.e., for any complex number «,

(a®[®)y = a™(P|D)g,

(19)
(Plad)g = a(P|P')g.
(iv) It is not positive definite, since it satisfies
<0-xq)*|a-xq)l*>B = _<(I)I|¢)>B (20)

Finally, note that the physical solutions, i.e. those that
satisfy o,®* = ® because of condition (12), have zero
norm, as can easily be seen from Eq. (20).

C. Mode expansion

The evolution operator M is self-adjoint in a non-posi-
tive-definite inner product, and therefore it may have com-
plex eigenvalues. We will assume that the condensate is
stable, which implies that genuinely complex frequencies
cannot be present.
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In view of the properties (16), it is easy to see that, if

-y e

is an eigenspinor of M with eigenvalue wy, i.e., if

MU, = o Uy, (22)
then
* * 1 v
V= o Uf = TE(LD (23)

is an eigenspinor of M with eigenvalue —w,. Besides,
o.U, is an eigenvector of Mt with eigenvalue w.
Furthermore, the modes U, and V, are orthogonal (and
can be chosen orthonormal) in the Bogolubov inner prod-
uct:

1
(U U = 2 [de(”ZMI — Vi) = by, (24)
* 1 D ® ok ® ok
(UlVig = 3 [d x(ujvy — viup) =0, (25)

1
(Vilvig = 5 '[a'Dx(vkv}k —uuy) = =8y (26)

Any spinor @ solution of Eq. (10) can be expanded in this
basis:

D =D (a Uy + byVy), (27)
k

and its norm is given by

(DY =D (laxl? — |byl?). (28)
k

We therefore again see that the physical solutions—those
satisfying the condition (12)—have zero norm, since they
satisfy a; = b;. Note that the modes themselves are not
physical, not only because they may be generalized eigen-
vectors normalized to the Dirac delta, but also because, in
general, they do not satisty Eq. (12): o, U; = V| # Uy, as
we have seen.

Finally, the number of field degrees of freedom carried
by the spinor @ is just two. Indeed, two complex (four real)
functions are needed at an initial time to obtain the value of
@ at any other time. Condition (12), which ensures the
physical nature of the configuration, reduces this number to
one (two real initial functions), which is precisely the
number of field degrees of freedom of a real relativistic
scalar field. In the next section we will actually describe the
condensate perturbations as a real scalar field satisfying (in
the appropriate limit of long wavelengths) a relativistic
wave equation.
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III. KLEIN-GORDON APPROACH

As an alternative to the approach followed in the pre-
vious section, we can linearize the continuity [(3)] and
Bernoulli [(4)] equations around a background condensate
characterized by n, and 6. Let us introduce the density 7i;
and phase 6, perturbations:

177!1, 0 = 00 + 61. (29)

n = ngm + 8 -
These perturbations obey the equations

a,ii; + V- (v + c2Vo,) =0, (30)

8,91 +V'V01 +(1 _®)ﬁ1 :O, (31)
where O is the operator
O = 1£°V[c* - V(e %)) (32)

& = h/(mc) is the healing length, and the * stands for the
argument upon which © acts.

Note that the perturbation fields ¢, ¢ introduced in the
previous sections are related to the complexified density 7i;
and phase 6, perturbations in the following way:

) 1 1 1
pmomn (Lo sits)

VgmAze ¢ (33)
~ . 1 1 1
(l):e_loo/h\/T_m(Zﬁ] _lgel);

in terms of which
n = C,/gm(e_i")o/hqb + emﬂ/hq’;), an
0, = _l.g«/gm(e_ieu/hqs _ e"eo/h(j;),

The condition (12) that ¢ and ¢ represent a physical
solution to the Bogolubov equation (5) translates into
reality conditions for 7i; and 6. It is also interesting to
note that the commutation relation for these two fields is

[7,(x, 1), 6,(x, )] = ighS(x — x'), (35)

as a direct consequence of the commutation relation (8) for
¢. Thus, 71; and #, are canonically conjugate fields.

A. Generalized Klein-Gordon equation

We can now combine the two equations (30) and (31) for
6, and 71, in order to obtain a second order (in time)
differential equation for 6;. More explicitly, we can obtain
fi; as a function of 6, from Eq. (31) by formally inverting
the operator (1 — ©):

iy =—-W@,+v-V)e, (36)
where
W=(1-0)!= i on. (37)
n=0
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Note that generally this is a well-defined procedure be-
cause of the negativity of the operator ®. Indeed, for
homogeneous profiles, © is proportional to the
Laplacian, which is obviously a negative operator. As
long as the profile is sufficiently smooth such that ¢ is
slowly varying on the healing length scale, this negative
character will not be altered. Relevant departures from this
behavior would require profiles whose densities vary sig-
nificantly within length scales comparable with the healing
length, which is not only easily avoidable in practice but
might actually be very hard to realize. Keeping these com-
ments in mind, we can insert Eq. (36) into Eq. (30) to
obtain the single equation

—[0, + V- (v W@, +v-V)8, + V- (c2V8,) = 0.
(38)

This equation is a higher order differential equation which
generalizes the Klein-Gordon equation.

In the limit ‘"W — 1, attained when the gradients in 6,
are relevant only for length scales much larger than the
healing length, a proper Klein-Gordon equation is recov-
ered. Indeed, in this case, this evolution equation can be
written in the form [4]

d,(J/—88"79,0,) =0, (39)
where g, is the acoustic metric
2 2 t
_ 2/(D-1) —(c>=v) —v
8ur = ¢ ( v ' (40)

The corresponding Klein-Gordon inner product can be
written as

01106 = i [ dPx\j3010,0,

=i [ dPx6;(d, +v- V), 41)

where /g = ¢?/P~V is the determinant of the metric in
the spatial slice 1 = constant, n* = ¢~ 2/P=1(1,v) is its
normal, and 9, = n"BM.

B. Generalized Klein-Gordon product

In the general case, we can introduce an inner product
that generalizes the Klein-Gordon product by taking into
account that the time derivative term is now modified by
the operator W. In D spatial dimensions, this W-Klein-
Gordon inner product turns out to be

(0,16 = i f x0T W0, +v- V). (42)

It is clear from this expression that it reduces to the
standard relativistic Klein-Gordon product in the limit
W—1.

It should be stressed that the operator W breaks the
local Lorentz invariance of the Klein-Gordon equation.
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This means that an effective curved-spacetime geometry
is recovered only for condensate perturbations such that
W is very close to 1. Furthermore, as we will see below,
the dispersion relation for this 'W-Klein-Gordon equation
is the same as that for the Klein-Gordon equation modified
with fourth-order spatial derivatives. Here, however, the
Klein-Gordon inner product is modified in each ¢ =
constant slice by the action of the operator W. The
Klein-Gordon equation modified with fourth-order spatial
derivatives, on the other hand, shares the Klein-Gordon
product in each t = constant slice (41) with the proper
Klein-Gordon equation [16].

In spite of these modifications, the “W-Klein-Gordon
product (42) shares the following properties with the stan-
dard Klein-Gordon product:

(1) Itis conserved in the lab time . However, unlike the
Klein-Gordon product, which is conserved in any
inertial time, the “W-Klein-Gordon product is con-
served only in the lab time. This is a logical conse-
quence of the fact that local Lorentz invariance is no
longer in operation.

(ii) It is Hermitian, i.e., (6,101)3, . = (01101)wxc-

(iii) It is antilinear in the first argument and linear in the
second.

(iv) It is not positive definite. Indeed,

G107 Wk = —(0110)W-ka- (43)

(v) There exists at least one basis {6;;} of orthonormal
solutions such that

01101 ) w-kc = 8ij» (01i107 ) w-kg = O,
<0Ti|0Tj>W—KG = =6, (44)

(vi) The norm of any solution 6; = Y ;(a;6,; + b} 07,) is

O1100)w-kg = Xail> = 16:). 45)

This norm vanishes for real scalar fields such as the
physical phase perturbation.

At this stage, it is worth noting that the “W-Klein-
Gordon inner product has the same properties that we
stated above for the Bogolubov inner product. In fact, we
will see that these two products are indeed equivalent.

C. Mode expansion

We will now discuss the form of the modes and their
normalization. For the sake of simplicity and definiteness,
let us concentrate on a case of particular interest, namely,
the case of a background profile which becomes time
independent in the asymptotic future. Then we can try an
ansatz of the form Ae '“X) which in the pure one-
dimensional Klein-Gordon case leads to exact orthonormal
modes (2¢|k|)~1/2e~wi=kv),
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Let us define

o(t, x) = wd,u, k(z,x) = —oVu. (46)
The condition that the profile becomes stationary in the
asymptotic future implies that @(t — o, X) = w and that
k(t, x) is time independent in this limit. Then Ae ™ *®“ is an
approximate solution which can be found in the regime
where k, @, and A are slowly varying functions (in space
and time). Introduction of this approximate solution into
the modified Klein-Gordon equation yields, to lowest or-

der, the dispersion relation
(@ —v- k)2 = kT2, 47)

and hence the form of u(z, x), where

Ty = +y1 + £k2/4. (48)

The next-to-lowest order yields the prefactor A so that a
complete set of approximate modes is given by

0 — Vrk —iwu
1k — e .
Jamclk|

The next order provides information about the spread of
these modes in the directions perpendicular to that of group
propagation. The relativistic limit "W — 1 obviously cor-
responds to I'y — 1, i.e., to the long-wavelength limit
£lk| < 1, which gives rise to the well-known Klein-
Gordon modes. These approximate modes are orthonormal
(in the same level of approximation) in the W-Klein-
Gordon product (42) as can be seen by evaluating it at  —
co. Evaluated at any other finite time #, small deviations
which are consistent with the level of approximation that
we are using may appear.

As mentioned above, any real solution 6, can be written
as a linear combination of these modes,

0= (axbi + aj03y), (50)
k

(49)

and therefore has zero norm.
For completeness, it is also straightforward to check
from Eq. (36) that

_ clk]|
nix = lr—glk. (51)
k

Finally, before examining the relation between the
Bogolubov and the Klein-Gordon formalisms, we mention
the existence of a third alternative approach [17], which
leads to a genuinely complex differential equation of sec-
ond order in time and fourth order in space for the field
perturbation ¢. Indeed, if we write ¢* in terms of ¢ from
the Bogolubov equation and use this expression in the
complex conjugate of this same equation, we obtain
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1

{[h(a, +v-V)—il, ][0, +v-V)+iT,]+ 2mTp}g0
C

=0, (52)

where ¢ = ¢/ and T, = — 2;‘1202V - (¢*V%). It might
seem at first sight that the number of degrees of freedom is
equivalent to that of a complex scalar field (i.e., two sets of
complex Fourier coefficients). However, ¢ and ¢* are not
independent but are related by the Bogolubov equation
itself, leaving—as before—just one field degree of free-
dom (a single set of complex Fourier coefficients), and, in
fact, the scalar product in the space of solutions of this
equation is the Bogolubov one.

IV. EQUIVALENCE BETWEEN BOTH PRODUCTS

The following question of interest regards the relation
between the Bogolubov product and the “W-Klein-Gordon
product introduced in the previous sections. More specifi-
cally, what is the relation between the concepts of quasi-
particle and antiquasiparticle in both formalisms?

Let us consider two spinors ® and &', solutions to the
Bogolubov evolution equation (10). Then, taking into ac-
count the relation (33) between both representations, i.e.,
between the perturbation fields ¢, ¢ and i, 6,, we obtain

(@D, = [ Px(g*d — §*F)

D I _ g
Zgh[d x(ny0) — 671}). (53)

Finally, the relation (36) between the density and phase
perturbation allows us to write this Bogolubov product as

(@D = —— f PxoTW, +v- V)8, (54)

1
= ﬂ<01 160D W-ka- (55)

So, we see that the Bogolubov and the “W-Klein-Gordon
products are indeed equivalent.

Also, provided a set of orthonormal modes 6y of the
“W-Klein-Gordon equation, it is straightforward to con-
struct an orthonormal set of modes for the Bogolubov
equation (10) by means of the relations (33) and (51):

) 1 k
Uy = 3“90/71 (1 + fl |>0lkr

2T
NS K (56)

— o—i0/N —1 <_ |k|)

Uk e \/g_m f 1+ 2rk Hlk

Therefore positive (resp. negative) norm modes in the "W-
Klein-Gordon product are mapped to positive (resp. nega-
tive) norm modes in the Bogolubov product and vice versa.
This means that, whether we choose to analyze quasipar-
ticle creation processes (e.g., Hawking radiation in a black
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hole configuration) in a modified relativistic framework
such as in [18] or a condensed-matter context such as in
[17], the results should coincide. The reason for this coin-
cidence is that, as we have seen, there is a one-to-one
relation between both formalisms, and the concepts of
quasiparticle and antiquasiparticle, as well as the ambigu-
ities inherent in these definitions (which are related to the
observer dependence of the concepts involved), are the
same in both formalisms.

V. THE CHOICE OF VACUUM STATE

One can now proceed with the quantization of the sys-
tem following the standard Fock procedure. One only
needs to find an orthonormal mode basis to expand the
field operators that characterize the quantum perturbations.
In this manner, one can define creation and annihilation
operators and a vacuum state for the system. The fact that
the inner product is not positive definite tells us that the
selection of a specific set of positive (negative) norm
modes can be done in many different ways. To illustrate
the procedure, let us consider a one-dimensional stationary
flow in the condensate, which simulates the presence of a
black hole, but with the internal singularity substituted by a
second asymptotic region [19]. Among the different sets of
modes that can be selected, there are three of special
relevance, which we will call the “in” set, the “out” set,
and the “‘stationary’ set, whose meaning will be discussed
shortly. Each positive energy mode of each set can be
characterized by its frequency (which is invariant due to
the stationarity of the system) and by a discrete label
which, depending on the frequency, can acquire the
values 1, 2 or 1, 2, 3 (see the discussion in [20] regarding
the number of normalizable modes in different
configurations).

We will now classify these modes, using the following
subscripts. The p and f subscripts represent “‘past’” and
“future” (in a scattering process), while u# and w represent
the “right-going” and “left-going” character of wave
packets centered around the particular mode frequency
with respect to the lab.

Let us consider the dispersion relation (47) formally as a
relation between w, k, and x [through v(x)]. Then, for any
given real frequency w and any point x in the configura-
tion, the dispersion relation may have two or four real roots
k; see Fig. 1. Actually, there exists a critical frequency w,
such that, for v > w,, independently of x, there always
exist two real roots only, one positive and one negative. We
denote by k,, the positive root when x — —o0, by k,,, the
absolute value of the negative root when x — +00, by k¢
the positive root when x — +00, and finally by k,, the
absolute value of the negative root when x — —oo. For 0 <
o < w,., depending on x, there can be either two or four
roots (there is a critical position at which there are just
three solutions; here we will not discuss this critical situ-
ation). Two of the roots are always equivalent to the
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C| k‘|Fk !
w — vk

FIG. 1 (color online). Dispersion relation (47) for various
values of @ and of |v], scaled at ¢ = 1. The intersection points
between the line w — vk (in blue) and the various branches of
the dispersion relation (in black) mark the real (normalizable)
mode solutions for a given w. The critical frequency w, repre-
sents the frequency at which additional, “‘extraordinary’ roots
appear for the maximal |v| attained in the configuration. Then,
for w > w,, there are always only two normalizable solutions.
For w < w., there can be either two or four normalizable
solutions, depending on the value of |v].

previous ones; we will use the same notation for them. In
the case of the existence of four real roots, the two addi-
tional ones always correspond to negative values of k. We
will call these additional modes ‘“‘extraordinary” because
they are absent in the subsonic regime. Let us then denote
by k., the absolute value of the most negative extraordi-
nary root when x — —oo and by k,; the absolute value of
the second most negative extraordinary root when x —
—oo. The corresponding wave packets are right-going
(k.p) and left-going (k,), respectively.
We summarize this classification in Table 1.

TABLE 1. Classification of normalizable mode solutions (real
roots) in the asymptotic regions. The arrows indicate the left- or
right-going character of the corresponding wave packets with
respect to the lab.

t— —oo t— +oo
X — +oo (U < C) kwp kuf
x— —©0 (v>c¢)and w > w, kup Ky f
x— —0 (v>c¢)and 0w < w, kup Ky
ke, kes
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Given the equivalence displayed in the previous section,
we are free to describe the perturbations either by a spinor
in the Bogolubov formulation or by the phase perturbation
operator 6 in the Klein-Gordon formulation. For notational
simplicity, we omit the subscript 1 for the perturbations in
this section.

A. In vacuum state

It can be shown [20] that the positive energy modes that
constitute the in set (such that, in the in vacuum defined by
them, there are no quasiparticles in the asymptotic past)
can be described as follows, up to a global mode-dependent
normalization constant:

(i) For w > w,,

. X— —00 . . ~ .
01:()1,1 N e—twt(etku,,x + Rlar)le_lkwfx), 5
pin R Y] i pik,pxy. 7
w,l e ( we " )s

2)1 2X_'+,°°e*ia)t(e*ikwpx + Riﬂr)leik,,/x)’

' (58)
in x_'_,ooe7iwt(Tin€*ikwfx)
w,2 [ .

(i1) For w < w,,

. x——00 . . ~ . ~- .
in —iwt( ik, ,x in ,—ik,,;x in ,—ik,x
o e et + Rijem Mt + R e Rer),

x—+00

ol == e (Tinethur); (59)
. x—>+too . . L
on T —y e*lwt(efzkwpx + Rmelkufx)’
,2 w (60)
in X:’;mefiwt(Tine*ikwfx + Tin e*ikefx).
,2 2] w,e s
. x——00 . . —. . —. .
02)13 —_ elwt(e ik,,x + Rlal')lelkwfx + Rg,l’eelk“fx),
. x—+o0 . — .
Oy = e (T e ), (61)

where the R’s and T’s are mode-dependent reflection and
transmission coefficients. In other words, every mode be-
haves in the specific form displayed by the above formulas
in the appropriate asymptotic limits. These modes can be
pictorially described as representing elementary scattering
processes (see Fig. 2). For w > w, there are two indepen-
dent and orthonormal scattering processes: (1) the scatter-
ing of an incoming wave from the left and (2) the scattering
of an incoming wave from the right. For 0 < w < w,. there
are three independent and orthonormal scattering pro-
cesses: (1’) an incoming wave from the left, (2’) an incom-
ing wave from the right, and (3/) an incoming
extraordinary wave from the left. All these three processes
end up being a combination of three outgoing waves at
future infinity, one of them extraordinary. Notice that w in
the exponential of the mode 2},3 appears with a positive
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w > we AV v
1 (2)
T T
< —_— = —_—
*~—3 —e

FIG. 2 (color online). The in basis. w > w,: (1) represents a
scattering process in which there is an incoming wave from the
left; (2) represents a scattering process in which there is an
incoming wave from the right. 0 < w < w,: (1’) represents a
scattering process in which there is an incoming wave from the
left; (2') represents a scattering process in which there is an
incoming wave from the right; (3') represents a scattering
process in which there is an extraordinary incoming wave
from the left. Solid arrows represent ordinary modes, while
dashed arrows represent extraordinary modes.

sign, contrarily to the negative sign in the other modes.
These signs are chosen in order to define positive energy
(norm) modes."

B. Out vacuum state

In an equivalent way, one can construct the positive
energy out basis (such that, in the out vacuum defined by
it, there are no quasiparticles in the asymptotic future) [20],
up to a global mode-dependent normalization constant:

I For w > w,,

x—+o00 . . .
62}?& s e twt(etkufx +R2,ut€ tkw,,x)’

_ (62)
03}1ft1x__,°°€*iwt(T((l)Juteikw,x);
eg)utzx:;ooe—iwt(e—ikwx + R({Luteikwx),

. (63)
02}3&){:—)006—iwt(f(t)l}lte—ikw,,x).

II) For0 < w < w,,
c
Hg)utlx:i)ooefiwt(eik,,fx + R(L)Uutefikwpx)’
’ (64)

X——00 _ . . .
HSUUtl s e lwl(TgU1€lkupX + T;))l:lzelk“,x);

X——00 o . ~ . ~ .
Hg)lftz e lwt(e ik, px +R2)m€lk”/’x _i_R(L)Utheezkepx)’

— + 00 . ~ .
Oy ="t (Tepteur); (65)

'In the notation of Ref. [20] our 0‘;}@ corresponds to ¢* .
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w > we AV v
1) (2)
T T

FIG. 3 (color online).
(time-reversed) Fig. 2.

The out basis. The interpretation is as in

X——00 . . - . _ .
9(;1{% ezwt(ezkpfx + Rz)ute ik, x + R‘j}f‘ee 1kel,x),

—+00 . — .
6o =" el (Toteibon). (66)

The pictorial representations of these elementary scattering
processes can be seen in Fig. 3. They correspond to the
elementary scattering processes of Fig. 2 running back-
wards in time (note that for this identification we have to
exchange labels 1 and 2).

For the case w < w,, it is not possible to express the
positive norm mode ;'] only in terms of the positive norm
modes 6, ), 61" ;. One has to use the negative norm

w,1°
modes 67, %, "% as well. Therefore, the in vacuum

state defined through the requirement ai(j},iIOm) =0 con-
tains quasiparticles coming out at the right asymptotic
region. This phenomenon is usually called mode mixing
and has been thoroughly analyzed in [20].

C. Stationary vacuum state

Let us finally describe the stationary set. As a prelimi-
nary stage, let us choose the following:
(i) For w > w,,

0,7 =0 and 6,7 =060, (67
(i) For0 < w < w,,
o1 =02, 0,5 =06", (68)

and the additional mode 02?5 given by

- — — 00 . . . .
025 N e*lwt(Awetkw,x + Aw,eelkepx + Bwe*zkwfx
—ikx
+ Bw,€€ ), (69)
st-p X—+00
et

if it has a positive norm, or by
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FIG. 4 (color online). Preliminary stationary basis. w > w.:
(1) represents a scattering process in which there is an outgoing
wave to the right; (2) represents a scattering process in which
there is an incoming wave from the right. 0 <w < w,.:
(1") represents a scattering process in which there is an outgoing
wave to the right; (2/) represents a scattering process in which
there is an incoming wave from the right; (3’) represents a
scattering process in which there are neither incoming nor out-
going waves on the right. These modes are not orthogonal. The
stationary orthonormal basis is obtained by linear combinations
of these modes. Solid arrows represent ordinary modes, while
dashed arrows represent extraordinary modes.

- X——00 . . . .
02; , ezwt(Awe—zku/,x +Awe€_lkel’X+Bw€lkax

+ Bw,eeik(’fx)’

st-p ¥——00
—_
w,3 ’

0 (70)
if it occurs that the conjugate of the expression in
Eq. (69) is the one with a positive norm (this will
depend on the specific shape of the velocity profile).
The ratio A, /A,, . is fixed by the condition that the
scattering leads to no transmission in the right
asymptotic region. Then, for a given A,, B, and
B, . become fixed. Finally the value of A, itself can
be fixed by requiring that the mode be normalized.
Figure 4 shows a pictorial representation of these
modes.

The previous three modes are clearly independent and
normalized, but they are not orthogonal. However, starting
from them, it is easy to define three new modes which are
orthonormal. Consider the transformation

-
py My My M\ (ol
05, |=( 0 My My || 6,7 ) (71)
03 0 0 Myu/\ol?
with
My = N7, (72)

My, = N"2(pypis — p)1 = Ipxl) 7, (73)
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M3 = N""2(piypsy — pi)(1 = Ipasl?) ) (74)

My, = (1 — |pxsl®) ™12, (75)
Myy = —p33(1 = |pys?) 12, (76)
My =1, (77)

where

N = (1= |pul»)7 11 = Ipsl® = Ipial* = Ip13l?
+ p1aPPlz + PP P13); (78)

Pij=DPi= <‘92,_F|02,_JI')>W—KG- (79)

It is easy to check that the new modes are indeed ortho-
normal. Then the corresponding annihilation operators
transform with the transposed inverse of the matrix M:

st

p
am,l aw,l
st _ - st=
ay, | =mhHr aw; . (80)
t z
a3 azt’g

Notice that M is an upper triangular matrix. Therefore, the
matrix (M ~")T appearing in this equation is lower triangu-
lar. Also, MT, which allows us to write the annihilation
operators af:lp as linear combinations of 4, ;, is a lower
triangular matrix. This implies that a;, ], a,} depend
linearly on aj, |, a} , only, and vice versa, never mixing
with the third mode, which would lead to particle presence
in the right asymptotic region.

Consider the stationary vacuum state defined by the

requirement
ay, il0g) = 0. 81

The important point is that this state does not contain any
quasiparticle coming in from or out at the right asymptotic
region. To realize that this is indeed so, one has to check
that the Bogolubov B coefficients defined by the products
(08 109" ) vy-kG and (0% ;105" )y g are identically zero
(i =1, 2, 3). Given the relation between the 63 ; and the
Hz_lp modes, this follows straightforwardly from the fol-
lowing argument.

By the definition of 6,7 and ;% it is obvious that

<02,_1P|02ft1*>W—KG =0 and <0i§,-ip|0i£,*2>W—KG =0 for i =
1, 2. In order to show that (6}, %16 )y _ = 0, evaluate
the spatial integral that defines this inner product at ¢ —
—o0. Then, it can be seen from the scattering diagrams that
the involved modes do not have intersecting support, and
therefore their product vanishes. A similar argument ap-
plies for (0, 716%"")y ks by evaluating it at = +oco.

(Note that this can be seen even more clearly by using a
wave packet basis.)
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Therefore in the stationary vacuum state there is no
quasiparticle coming in from or out at the right asymptotic
region. In other words, this state is a generalization to this
dispersive theory of the Boulware stationary state for black
holes and static stars.

In standard (nondispersive) general relativity, the
Boulware state is not regular at the horizon. Indeed, the
modes that characterize this state are not well defined
there, because of the infinite blueshift associated with the
horizon. In a Bose-Einstein condensate, the modes that
mimic Boulware modes (i.e., those that characterize the
stationary vacuum introduced above) are perfectly well
defined across the horizon because Lorentz symmetry
breaking in a Bose-Einstein condensate prevents the pres-
ence of infinite blueshifts at the (now nonstrict) horizon.
Consequently, it should, in principle, be an attainable state
in such a dispersive theory. In other words, it should, in
principle, be possible to design a black hole configuration
in a Bose-Einstein condensate not producing Hawking
radiation.

D. State preparation

Given a stationary configuration, one could prepare the
system to be in any of the vacuum states described above.
The in vacuum contains quasiparticles coming out at the
right infinity (x — +00), while the stationary vacuum state
does not (it does not contain quasiparticles coming in from
the right infinity either). In standard general relativity, one
can prove that starting from a Minkowskian spacetime at
past infinity and a relativistic field initially in its
Minkowski vacuum, if one dynamically produces a black
hole horizon, then the vacuum state at future infinity is
indistinguishable from the Unruh state [21,22]. In particu-
lar, if one takes a Lorentz invariant theory and engineers,
by using external means, a quasistatic collapse towards the
formation of a black hole, then before the formation of the
horizon, one can always make the collapse slow enough so
that an initial Minkowskian state first acquires and then
maintains, at each instant of time, the Boulware vacuum
structure, which is the appropriate vacuum state for a sta-
tionary star. However, no matter how slow the collapse is,
the quasistatic approximation breaks down when the hori-
zon forms due to the infinite slow-down of clock rates at
the horizon. As a consequence, the Boulware state is un-
avoidably modified and becomes, after some transient
phase, the Unruh state with its associated Hawking emis-
sion. Note that this is also necessary for consistency: The
renormalized stress-energy tensor in the Boulware state is
divergent at the horizon and the state itself is not well
defined there, because of the infinite blueshift of the cor-
responding modes caused by the presence of the (non-
dispersive) horizon, as pointed out above. The Unruh
state, on the contrary, is perfectly regular at the (future)
horizon (we do not mention here states, such as the Hartle-
Hawking state, which are not vacuum states in the past).
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Thus, within standard general relativity a field in a black
hole spacetime can only be in the Unruh vacuum state
(obviously, modulus the presence of any finite amount of
particles) and never in the Boulware vacuum state.

In dispersive theories, the previous arguments are no
longer valid and, depending on the specific preparation of
the configuration—for instance, the specific dynamical
way in which one sets up the subsonic-to-supersonic tran-
sition in the Bose-Einstein condensate flow—one could, in
principle, end up having different final states for the final
stationary flow. Indeed, in a Bose-Einstein condensate
there is no infinite delay of the clocks, and so it should
be possible to maintain the Boulware vacuum structure
even after the horizon has been formed. In principle, one
could, for example, end up in the stationary vacuum state
described above, which is a regular extrapolation of the
Boulware vacuum to the dispersive theory. Therefore,
although, in general, the formation of a horizon in a
Bose-Einstein condensate leads to a Hawking-like radia-
tion associated with the in vacuum (as shown numerically
in [10] and studied in detail in [17]), it remains to be seen
which the precise sufficient conditions are in order to
recover the presence of such Hawking radiation in systems
with superluminal dispersion relations. This could, for
instance, be relevant when analyzing the effect of high-
frequency superluminal dispersion in proper black hole
configurations and the influence of the black hole’s internal
region.

This issue has recently created some controversy. In
Ref. [18] the present authors argued that, under the as-
sumption that a quasistatic condition for the creation of a
black hole applies, one does not need to take into account
all the modes of the system to calculate the quasiparticle
content at the right infinity, but only those that can be
traced as rays escaping from the black hole configuration
just before the actual horizon was formed. Quasiparticle
production due to the formation of a black hole in the lab
would then appear as just a transient regime that disappears
in time: The system settles down to the stationary state
described above. However, other authors claim that the
relevant state for the final configuration is the in vacuum
state (see, for example, [20]). This vacuum state produces
an everlasting stationary stream of quasiparticles traveling
towards the right asymptotic region, mimicking, in this
way, a Hawking flux (the precise spectrum acquires some
deviations with respect to a perfect blackbody but, in
normal situations, these deviations are relegated to the
high-frequency tail of the spectrum). If the in vacuum state
were the only one available for the configuration, one could
conclude that it is not possible to create a stable sub-to-
supersonic transition in the lab: One would have to main-
tain it there by external means or it would eventually
dissolve due to backreaction. This is what happens in
standard general relativity: The existence of stationary
black holes is not semiclassically consistent; they have to
evaporate.
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In the Bose-Einstein-condensate dispersive theory, the
availability of the stationary vacuum implies that, in prin-
ciple, it should be possible to produce a semiclassically
stable analogue of a stationary black hole in the lab. Which
is the precise vacuum state selected by the dynamical
formation of the black hole horizon configuration under
discussion remains to be calculated.

VI. CONCLUSIONS AND COMMENTS

When establishing a gravitational analogy in condensed-
matter systems, a low-energy Klein-Gordon dynamics
emerges for the perturbations around a background con-
figuration. In this paper, we have addressed the issue of the
appropriate formulation for dealing with the quantum dy-
namics of such fluctuations: the one obtained by directly
dealing with the quantum creation and annihilation opera-
tors for the excited quasiparticles (the Bogolubov formal-
ism), or the relativistic approach consisting in obtaining a
generalized Klein-Gordon equation and dealing with it in
the relativistic quantum-field-theoretic way. This question
applies, in particular, to the quasiparticle Hawking radia-
tion when the background configuration supports an acous-
tic black hole, either stationary or externally generated. As
we have seen, both methods are entirely equivalent, lead-
ing to the same quasiparticle concept, and hence to the
same description.

It should be stressed that these results are actually more
general than presented here. Indeed, if instead of a Bose-
Einstein condensate we had considered an arbitrary baro-
tropic, inviscid and irrotational fluid described by an arbi-
trary enthalpy function i(n), we would have drawn the
same conclusions. Furthermore, for regimes in which the
quantum potential is not significant (long wavelengths), the
fluid is described in pure hydrodynamical terms and a
proper Klein-Gordon equation is recovered. Therefore,
we can conclude that the relativistic analogy with a hydro-
dynamic fluid is actually more than just an analogy: There
is a complete equivalence leading to a hydrodynamical
description of relativistic massless scalar fields and vice
versa, even at the quantum level and in strong gravity
regimes such as black holes.

Once the inner product is defined, one can find a com-
plete and orthonormal set of positive norm modes, and an
associated set of negative norm ones. One can then define
quasiparticle creation and annihilation operators and make
a choice of vacuum state. This procedure, as is well known,
can be carried out in many equally valid ways, related
through Bogolubov transformations. To illustrate the pro-
cedure, we considered a simple configuration of special
interest with regard to the possible experimental detection
of analogue Hawking radiation: a one-dimensional con-
figuration simulating the presence of a black hole horizon
for acoustic perturbations or, in other words, a flow with a
subsonic-to-supersonic transition.
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In the last section, we have shown that there are several
sets of modes and vacuum states with a particularly simple
interpretation: the in modes and the out modes (with their
associated in vacuum and out vacuum states), already
present in previous analyses in the literature [20], and the
stationary modes and stationary vacuum state, presented
here for the first time. Contrarily to standard general rela-
tivity, the dispersive character of the Bogolubov theory
allows the existence of a regular vacuum state which
does not contain any incoming or outgoing quasiparticles
in the external asymptotic region, namely, the stationary
state. This state is a regular generalization of the notion of
the Boulware state in black hole physics. Since it is regular,
this state can, in principle, be attained by adequately
preparing the system. In general, the formation of a horizon
in a Bose-Einstein condensate should lead to a Hawking-
like radiation associated with the in vacuum [10,17].
However, in the light of the present discussion, it should
at least theoretically be possible to produce a black hole
analogue in a Bose-Einstein condensate without causing
the emission of a stationary Hawking flux. Whether a black
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hole analogue in a Bose-Einstein condensate radiates or
not might depend on the specific path followed in setting
up the configuration. This could be an important issue for
experimentalists trying to reproduce Hawking radiation in
a lab. From a relativistic point of view, it could also be of
considerable importance when analyzing the effect of
modified dispersion at high energies in gravitational black
hole configurations in which the characteristics of the
internal region are uncertain. We will return to these issues
in future studies.
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