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Phase-locked stationary soliton states
in birefringent nonlinear optical fibers

N. N. Akhmediev and A. V. Buryak

Optical Sciences Center, Australian National University, Canberra, A.C.T. 0200, Australia

J. M. Soto-Crespo
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We consider stationary soliton states in a birefringent optical fiber with two components locked in phase.
Two values of the phase difference between the two components of the soliton states are studied: 0 and py2.
These cases allow us to find composite soliton states in a simple way. The bifurcation diagrams for the coupled
soliton states in these two cases are constructed. The stability of these soliton states is examined also.
Propagation of soliton pulses in birefringent nonlinear
fibers has been studied intensively in recent years.1–11

It was shown by Menyuk7 that two extreme cases are
of importance: the approximation of high birefringence
and the approximation of low birefringence. The approx-
imation of high birefringence was considered in detail in
Ref. 7. In this approximation the components of the field
have different phase velocities and different group veloci-
ties. Owing to the nonlinearity, the pulses in these two
components can capture each other, but their frequencies
(and phases) become different. The approximation of low
birefringence, where the difference in phase velocities of
two components is taken into account but the difference in
group velocities is ignored, was considered numerically by
Blow et al.2 In particular, polarization instabilities were
found in Ref. 2. Polarization instabilities were studied
in more detail by Wright et al.8 In the present paper
we concentrate on the approximation of low birefringence.
Specifically, we find the solutions that are locked in phase,
and we study the stability properties of these solutions.

It has been shown by Evangelides et al.,11 through ex-
tensive numerical simulations, that the same state of po-
larization applies to a soliton as a whole. This means
that the phase difference between the two components
of the solitonlike pulses in a birefringent optical fiber is
fixed across the pulse. If the components are locked in
phase, then the state of polarization can be fixed along
the fiber as well. These types of solution are the subject
of investigation in this paper.

The coupled nonlinear Schrödinger equations (NLS’s)
describing pulse propagation in a linearly birefringent
lossless fiber are11
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where U and V are slowly varying components of the field
on the slow and the fast axes, respectively, 2b is the
wave-number difference spyb is the beat length), 2d is
the corresponding inverse group-velocity difference, and
A is the cross-phase-modulation coefficient. All variables
and parameters in Eqs. (1) are normalized. A is equal to
2/3 in the case of a linearly birefringent fiber, but it can
be different in more complicated cases.7

Equations (1) are complex and are difficult to solve
in general. They are usually simplified. One way to
simplify them is to represent the field components in the
form

U sj, td ­ ust, jdexpsibjd,

V sj, td ­ vst, jdexps2ibjd . (2)

Then Eqs. (1) can be written in the form
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with rapid phase variations along j in the last terms.
The last terms are usually neglected,7 because, when av-
eraged over j, they equal zero. Then the factor in the
cross-phase-modulation term (A) is exactly 2/3 of the fac-
tor in the self-phase-modulation term.
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However, this approximation can be made if b is
high and the two components are propagating with dif-
ferent phase velocities.7 Then birefringence manifests
itself only in the different group velocities of the two
components. Because of the nonlinearity, pulses con-
sisting of two components can still move with the same
group velocity, but then the two components must have
different frequencies.7 Consequently the phases of the
two components rotate relative to each other. This can
also be seen clearly from Eqs. (3): without the third
nonlinear coupling terms [proportional to s1 2 Ad], each
component of the field can be multiplied by an arbitrary
phase factor that does not depend on the phase of the
other component.

In the case of low birefringence the difference in group
velocities can be ignored. The effect of birefringence is
taken into account in equations as the difference in phase
velocities. Nonlinearity does not shift the frequencies
of the two components, but it can change the phase ve-
locities. In this case the third nonlinear coupling term
[proportional to s1 2 Ad] becomes important. Now any
changes in the phase of one component must be related
to phase changes of another component. As a result the
two components of the field can be locked in phase.

In fact, when representing the fields in form (2), one
assumes that the two field components have different
phase velocities along the fiber, as in the linear limit. In
the nonlinear case two coupled components of the field can
be locked in phase as a result of the nonlinear changes
in phase velocities, and thus the last terms in Eqs. (1)
become important and cannot be neglected or averaged.
Because of the phase locking, instead of substitution (2),
we separate out the common fast oscillatory part of the
functions U and V in the form

U sj, td ­ ust, qdexpsiqjd,

V sj, td ­ vst, qdexpsiqj 1 ifd , (4)

where u and v are soliton envelopes, q is the common
spatial frequency, and f is the phase difference between
the U and the V functions.

We consider here only stationary solutions in j, so that
the functions u and v do not depend on j. However, these
functions are complex and can have complicated forms in
t. The shape of solitons now depends on q, which can
be considered an independent parameter of the soliton-
state family of solutions. As soon as two components U
and V are locked in phase, the relative phase f between
them becomes important. It can be considered a second
independent parameter of soliton-state families.

Since the functions u and v are complex, we have
to solve four equations in four real unknown functions.
However, there are two cases for which this set of equa-
tions can be reduced to two real equations. In this paper
we consider only these two simplest cases. Each of them
has no group-velocity difference sd ­ 0d.

1. Both functions U and V have the same phase
sf ­ 0d. Without loss of generality, we can consider u
and v purely real:

U sj, td ­ ust, qdexpsiqjd, V sj, td ­ vst, qdexpsiqjd .

(5a)
2. The function V is py2 out of phase with the func-
tion U (i.e., f ­ py2). Thus we can consider u real and
the other envelope component purely imaginary. Trans-
formations (4) then can be written as

U sj, td ­ ust, qdexpsiqjd,

V sj, td ­ ivst, qdexpsiqjd , (5b)

where v is again purely real.
Substituting Eqs. (5a) or (5b) into Eq. (1) and taking

into account that d ­ 0, we obtain the following set of
equations:
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where g ­ A 1 s1 2 Ad ­ 1 in case 1 and g ­ 2A 2 1 ­ 1y3
in case 2. We remind the reader that u and v in Eqs. (6)
are real in both cases.

The difference between the two cases comes from the
terms responsible for the cross-phase modulation. We
use this name for the terms with the factor g, although
after the transformations that we have made above they
are not conventional cross-phase-modulation terms. If
we choose the relative phase between U and the V func-
tions to be neither 0 nor py2, then the functions u and
v are complex and have a complicated dependence on t.
We leave the consideration of this general problem for
the future.
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Eqs. (6) with g ­ 1y3 can be further transformed to de-
scribe propagation of two circularly polarized waves with
amplitudes x and y:
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This transformation is the particular case of general
transformations that were performed previously in Ref. 2.
We can see that the cross-phase-modulation coefficient
in Eqs. (8) is equal to g0 ­ s3 2 gdys1 1 gd (so g0 ­ 2
for g ­ 1y3). However, in contrast to Eqs. (6), Eqs. (8)
have linear terms that are responsible for energy ex-
change between the modes. This transformation shows
that Eqs. (6) with g ­ 1y3 and Eqs. (8) with g0 ­ 2 have
physically equivalent solutions.

Now we concentrate on the solutions of Eqs. (6). We
consider two limiting cases, g ­ 1 and g ­ 1y3. The
set of Eqs. (6) with g ­ 1 is integrable. Its lowest-order
soliton solutions follow:

Solitons polarized along the u axis,

u ­
p

2sq 2 bd sechf
p

2sq 2 bdtg, v ­ 0 ; (9)

Solitons polarized along the v axis,
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u ­ 0, v ­
p

2sq 1 bd sechf
p

2sq 1 bdtg . (10)

For these two solutions the phases of the two components
are independent. The phases of the two components are
locked in the following composite (nonpolarized) soliton-
state solutions12,13:
u ­ 2
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p
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2 sinhfl1st 2 t1dg

l1 coshfl1st 2 t1dgcoshfl2st 2 t2dg 2 l2 sinhfl1st 2 t1dgsinhfl2st 2 t2dg
,
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where l1 ­
p

2sq 1 bd, l2 ­
p

2sq 2 bd, and t1 and t2

are arbitrary real constants. The solution, Eqs. (11), at
each fixed q is still a two-parameter family of solutions
(effectively these two parameters can be reduced to one
parameter, Dt ­ t1 2 t2, which corresponds to the dis-
tance between the two solitons involved in the nonlin-
ear superposition). The particular case corresponding to
Eqs. (11) at Dt ­ fsl2 2 l1dys2l2l1dglnfsl2 1 l1dysl2 2 l1dg
was obtained in Ref. 5. In the limit q ­ b, the solution,
Eqs. (11), converges to the polarized solution, Eqs. (10).

A convenient way to consider the soliton states is to
represent them on the energy-versus-spatial-frequency
diagram.14 The total energy carried by the coupled soli-
ton states is defined by
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The energies of two polarized solitons, Eqs. (9) and (10),
are given by Q ­ 2

p
2sq 2 bd and Q ­ 2

p
2sq 1 bd, re-

spectively. The energy of the soliton state, Eqs. (11), is
given by

Q ­ 2
q

2sq 2 bd 1 2
q

2sq 1 bd . (13)

The curves Q(q), with Q and q normalized by the param-
eter b, for three different types of soliton state are shown
in Fig. 1(a). The energy dispersion curves for solutions
(9) and (10) have square-root dependencies on q and are
shifted with respect to each other because of their dif-
ferent phase velocities. We denote these curves Fu and
Fv respectively. The soliton states, Eqs. (11), bifurcate
from curve Fv at the point q ­ b. This bifurcation point
is denoted point H. We call this new branch of solutions
the C-type soliton states. Each point of this branch cor-
responds to an infinite number of different soliton states
[different Dt’s in Eqs. (11)]. This is the consequence of
the integrability of the set of Eqs. (6) with g ­ 1. Ex-
amples of the envelope functions u and v at some point
of the branch C for two different values of Dt are given
in Fig. 2.

The polarized solitons of the set of Eqs. (6) with g ­ 1y3
are the same as for the set of Eqs. (6) with g ­ 1, i.e.,
Eqs. (9) and (10) (Fu- and Fv-type branches). More com-
plicated solutions of Eqs. (6) cannot be found analytically,
but it is possible to find them numerically.12,14 Analyti-
cally we can find only the points of bifurcation at which
these states split off from the polarized ones.

It can be shown that there is no bifurcation from the
polarized states, Eqs. (9), in the range 0 , g , 1. To
study the bifurcation from the states of Eqs. (10), we
perturb these solutions in a specific way:

u ­ eG, v ­ a sechsatd 1 e2F , (14)

where a ­ f2sq 1 bdg1/2 and e is a small parameter. Sub-
stituting Eqs. (14) into Eqs. (6) and linearizing with re-
spect to the small parameter e, we find

Fig. 1. Bifurcation diagram for polarized and composite soliton
states in a birefringent optical fiber: (a) g ­ 1, (b) g ­ 1y3.
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Fig. 2. Examples of functions u and v for the C-branch soliton
states at qyb ­ 2.0: (a) Dt ­ 0, (b) Dt

p
b ­ 2.0.

G̈ 2 m2a2G 1
2ga2

cosh2 at
G ­ 0 , (15)

where m ­ fsq 2 bdysq 1 bdg1/2. When g is in the inter-
val 0 , g , 1, then only the lowest-order even bounded
solution exists when the condition

2g ­ ms m 1 1d (16)

is fulfilled. The soliton states, Eqs. (10), exist at q . 2b.
In the case g ­ 1y3 we then have qyb ­ s1 1 m2dys1 2

m2d ø 1.529. We call the composite states, which split
off from the Fv-type soliton states at this point, A-type
soliton states. The set of curves for different types of
soliton state at g ­ 1y3 is shown in Fig. 1(b). The arrows
in this figure show the direction in which the bifurcation
points shift as the value of g in Eqs. (6) changes from
1 to 1/3. At g ­ 1 curve C bifurcates from the Fv-type
polarized states at the point qyb ­ 1 (point H). The
other bifurcation point is formally located at qyb ­ 1`.
While g changes from 1 to 1/3, point H moves along the
curve Q ­ 4f2sq 2 bdg1/2 1 2f2sq 1 bdg1/2 from qyb ­ 1
to qyb ø 1.834, and point M moves along the Fv-type
polarized branch from qyb ­ 1` to qyb ø 1.529. At
g fi 1 the integrability is lost. The consequence is that
any point of curve C in Fig. 1(b) corresponds to a single
soliton state with fixed Dt ­ 0.

An example of the envelope functions u and v at some
point of branch A (which bifurcates at point M) calculated
numerically, is given in Fig. 3. The smaller component
(u in Fig. 3) is usually considered a shadow.7 In princi-
ple it is an essential part of the composite soliton state,
rather than just a shadow of the larger component. The
whole pulse can be considered to be elliptically polarized
with its larger axis of polarization along the v axis, be-
cause component v has a bigger amplitude, and the phase
difference between the two components is py2.

The stability of soliton states in this kind of problem
was considered, for example, in Refs. 8 and 15. We stud-
ied the stability of the soliton states presented above by
the linearization method.16–19 Although the case of the
single NLS was studied in Refs. 16–19, the linearization
method can be extended to cover the coupled NLS case as
well. The numerical technique for calculating the eigen-
functions of the perturbation and the instability growth
rates for NLS-type equations with a linearized parabolic
equation used for the perturbation is presented in Ref. 20.
The results are shown in Fig. 4. The instability growth
rate for the fast mode is shown in Fig. 4 by the solid
curves. There are two intervals of qyb for which the fast
mode is unstable. The region of instability to the right of
the bifurcation point at qyb . 1.53 relates to the appear-
ance of the A-type states in this region and can be called
the symmetry-breaking instability region. In the region
to the left of qyb . 1.475 the instability is related to the
radiation of small-amplitude waves by the soliton.

We found that the A-type soliton states are unstable
in the whole region of the parameter qyb where they
exist. Their instability growth rate is shown by the lower
dashed curve in Fig. 4. The growth rate is lower than the
growth rate for branch Fv at the same value of qyb. This
instability is related to the radiation of small-amplitude
waves from the A-type soliton states. The perspective

Fig. 3. Example of functions u and v for the A-branch soliton
states at qyb ­ 2.0.



438 J. Opt. Soc. Am. B/Vol. 12, No. 3 /March 1995 Akhmediev et al.
Fig. 4. Instability growth rates for the fast soliton (solid curves),
for the A-type soliton states (lower dashed curve), and for the
C-type soliton states at Dt ­ 0 (leftmost dashed curve) at Dt ­ 2
(dotted curve). The curve for Dt ­ 6 practically coincides with
the curve for the fast soliton.

plot of the evolution of the A-type states is shown in Fig. 5.
The figure shows that for small perturbations the A-type
soliton state can propagate long distances without visible
changes. A propagation distance larger than j ­ 300 is
necessary to let us appreciate a significant modification
of the initial field profile. Then the pulse starts to oscil-
late around some stationary state. These oscillations are
accompanied by the radiation of small-amplitude waves.

The C-type soliton states can be considered a combi-
nation of two solitons polarized along the fast and the
slow axes. Therefore C-type states can be unstable, and
the result of such instability will be disintegration of the
soliton’s constituents. We have observed this unstable
behavior in our numerical solutions of Eqs. (1) for such
input fields. Figure 6 shows the evolution of the C-type
state corresponding to q ­ 1, b ­ 0.01, and Dt ­ 0.
Below a certain value of j the soliton state remains
stationary, as it corresponds to a stationary solution of
Eqs. (1). Starting from some value of j (in this particu-
lar case j ø 25), which depends on the initial perturba-
tion, the pulse splits into two pulses, which separate on
propagation and whose amplitudes oscillate periodically.
These two pulses are perturbed A-type states rather than
linearly polarized solitons.

Figure 7 represents the real part versus the imaginary
part of the field amplitudes at the center of the left and
the right pulses. The variable j in this figure changes
from 150 to 300. L’s in the figure indicate the trajec-
tory for the left pulse, R’s indicate the trajectories for
the right pulse, and U and V indicate the slow and the
fast components, respectively. Trajectories are plotted
in Fig. 7 with additional phase factors exps0.498jd, for
the left pulse and exps1.411jd for the right pulse to pre-
vent their rotation around the origin. The arrows point
to the center of those four quasi-elliptical trajectories.
The solid arrows are for the left pulse and the dashed
arrows for the right pulse. We can see that the angle
formed between the solid (or dashed) arrows is constant
and ø90±. These four trajectories show that a periodic
motion around two different A-type states with q ­ 0.498
and q ­ 1.411 sb ­ 0.01d is taking place. Although the
A-type states are unstable, their growth rates at high val-
ues of qyb are negligible. The trajectories for the left

Fig. 5. Perspective plot for propagation of the A-type soliton
states with a small initial perturbation. Parameters of the
simulation are A ­ 2y3 and qyb ­ 10.

Fig. 6. Perspective plot for propagation of the C-type soliton
states with a small initial perturbation. Parameters of the
simulation are A ­ 2y3, Dt ­ 0, and qyb ­ 100.
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Fig. 7. Trajectories in the complex plane of variables U and V
of the right (R) and the left (L) pulses of Fig. 6 after the C-type
state splits into two pulses. Variables Yi, j denote U or V for the
right or left pulses at the point of maximum amplitude.

pulse (solid curves) consist of three loops that are su-
perimposed on one another with high accuracy. For the
right pulse there are six periods of oscillation, and al-
though the curve that represents them is dotted, the su-
perposition is so good that it appears to be continuous.

This type of instability takes place in the whole region
of qyb where C-type soliton states exist. The instability
growth rates for these solutions are shown in Fig. 4. The
leftmost dashed curve is the instability growth rate of the
C-type solutions for Dt ­ 0. For Dt ­ 6 these solutions
correspond practically to two temporarily separated lin-
early polarized pulses along the fast and the slow axes.
As a result the growth rates coincide with those for the
fast solitons of the same parameters sq, bd. In the in-
termediate case, Dt ­ 2 (dotted curve), the growth rate
follows the dashed curve at small qyb (where Dt is large
relative to the width of the pulse).

Our simulations show that, generally speaking, the
combined states of two solitons in the birefringent fiber
are unstable even though they are stationary solutions
of initial equations (1). This is in agreement with the
numerical simulations of Ref. 2; Blow et al. noticed that
any pulse with an energy higher than the energy of a
single soliton breaks up into two or more pulses. More-
over, our numerical simulations show that input pulses of
the composite shape can be split into two solitons that are
A-type elliptically polarized solitons rather than linearly
polarized ones. After some distance they can transform
into slow, linearly polarized solitons, but this requires
long propagation distances. On the other hand, A-type
elliptically polarized pulses can be excited directly in a
polarization-preserving fiber by a single solitonlike pulse
if the input pulse has elliptic polarization, with the
main axis of the ellipse being the fast principal axis of
birefringence.

In conclusion, we have considered stationary soliton
states in nonlinear birefringent fibers with two compo-
nents locked in phase, investigated the influence of the
phase difference between these two components on the
structure of soliton states, and constructed the bifurca-
tion diagrams for two simple cases. The stability of these
soliton states is also studied numerically.
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