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Instituto de Óptica ‘‘Daza de Valdés’’

(CSIC)
Serrano 121, Madrid-28006
Spain

Abstract. We describe a new image fusion paradigm that provides an
enhanced image from a set of source images that present regions with
different spatial degradation patterns. The fusion procedure is based on
the use of a new defocusing pixel-level measure. Such a measure is
defined through a 1-D pseudo-Wigner distribution function (PWD) ap-
plied to nonoverlapping N-pixel window slices of the original image. The
process is repeated to cover the full image size. By taking a low-
resolution image as a reference image, which can be defined by blurring
and averaging the two source images, a pixel-level distance measure of
the defocus degree can be obtained from the PWD of each image. This
procedure makes it possible to choose from a focusing point of view the
in-focus pixels from each one of the given source images. The method is
illustrated with different pairs of images of the same scene, which are
partly focused and partly defocused in different regions. The image fu-
sion approach that we propose here can work for any source of images
available, and the comparison using evaluation measures such as mean
square error or percentage of correct decisions shows that our frame-
work can outperform the current approaches for the analyzed cases.
One additional advantage of the present approach is its reduced com-
putational cost when compared with other methods based on a full
2-D implementation of the PWD. © 2005 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1881412]

Subject terms: Wigner distribution; image fusion; multifocus; image enhance-
ment.
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1 Introduction

Image blurring can be regarded as a consequence of som
imperfect image formation process, which limits the image
bandwidth. Hence, blurring can be produced by differen
causes, i.e., camera or object motion, defocused optical sy
tems, and atmospheric turbulence. Sometimes these deg
dations can be modeled to recover the original image, bu
in many cases this information is not available. The recov
ering of the original image from a degraded input has bee
the subject of many papers in the area of image restoratio
that can be indexed with the keywords of image deblurring
or image deconvolution.1 When image restoration is ac-
complished without anya priori knowledge about the deg-
radation cause, we are dealing with blind image deconvo
lution methods.2 If the blurring is not homogeneously
distributed, the defocusing process will affect different re-
gions of the image with different strength. This scenario is
referred to as space-variant blurring.3 A special case of
space-variant deblurring occurs when more than one de
graded image is available and therefore image fusion
methods4,5 can be applied. We present a fusion algorithm
based on the use of the pseudo-Wigner distribution, whic
is suitable for blind space-variant deblurring. One addi-
tional advantage of the current method, which is based in
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1-D PWD sliding window implementation, is its reduce
computational cost compared with other methods based
full 2-D PWD implementation.

This work is structured as follows. In Sec. 2, the discre
PWD is briefly outlined and its usefulness for spatial filte
ing is described. In Sec. 3 a pixel-based distance schem
between PWD vectors is described as the basis of the
sion procedure. Image fusion results, using the PWD,
given in Sec. 4, and a quantitative fusion quality asse
ment is presented that considers some ground-truth tes
ages. Finally, conclusions are drawn in Sec. 5.

2 Wigner Distribution

Blurring can be described as the convolution of the origi
image with a 2-D point-spread function~PSF!. If such a
function is not a function of the spatial location under co
sideration, it is said to be spatially invariant~essentially this
means that the image is blurred exactly in the same wa
every spatial location!. Therefore, if the PSF is a know
function, it is possible to remove the blur by means of
inverse operation in the spectral domain called deconvo
tion. Importantly, modeling and restoring images degrad
by spatially varying blurs are more challenging problem
that still require further attention to achieve a success
solution. The use of a spatial/spatial-frequency represe
tion is greatly appropriated for addressing a spatially va
ing blurring problem because of the local character of
degradation process. Our fusion method is based on the
-1 April 2005/Vol. 44(4)
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of many input realizations of the same object at the sa
time. Deblurring is obtained by comparing the PWD of t
degraded image with the PWD of a worst-case prototy
Hence, we approach the spatially varying blur case
means of one of the conjoint spatial/spatial-frequency r
resentations. A general formulation of the spatial/spat
frequency representations was given by Cohen6,7 and later
generalized toN-D signals by Jacobson and Wechsler.8 It
has been claimed that the Wigner distribution functi
~WD! has the best properties to be used in image proc
ing, against other representations of this kind. In fact, so
researchers have considered the WD as a ‘‘masterfo
distribution from which the rest of the distributions can
obtained.8,9 Thus it has the best resolution, which
matched to that of the image in both domains. It overcom
the resolution tradeoffs that traditionally have limited t
utility of windowed power spectrum analysis. Besides th
the WD is a joint bilinear representation, very close to po
tive, invariant within linear transformations, and it contai
all the image information. It presents two main advanta
with respect to other local representations. First, the WD
a real-valued function and encodes directly the Fou
phase information. Second, the election of the appropr
window size, which depends on the kind of analyzed inf
mation, is not required for the computation of the W
However, the use of other Cohen’s class distributions
pears to be feasible following this approach, but their p
formance needs to be validated in future experiments.

The Wigner distribution~WD! is a bilinear~quadratic!
signal representation introduced by Wigner.10 A compre-
hensive discussion of the WD properties can be found
series of classical articles by Claasen a
Mecklenbräuker.11 Originally, the WD was applied to con
tinuous variables as follows. Let us consider an arbitr
1-D functionz(x). The WD ofz(x) is given by

W~x,u!5E
2`

`

zS x1
a

2 D z* S x2
a

2 Dexp@2 i ~u•a!#da, ~1!

where* denotes complex conjugation.
By considering the shifting parametera as a variable,

Eq. ~1! represents the Fourier transform~FT! of the product
z(x1a/2)z* (x2a/2), where u denotes the spatial
frequency variable and, hence, the WD can be interpre
as the local spectrum of the signalz(x). The Wigner dis-
tribution satisfies many desirable mathematical propertie11

Although the PWD was initially defined for continuou
variable functions, Claasen and Mecklenbrauker propo
at the beginning of the 1980s a first definition for discre
variable functions. However, some attempts to extend d
nitions of the WD to discrete signals have not been co
pletely successful.12 For this application, we have selecte
the following discrete Wigner distribution, similar to th
one proposed by Claasen and Mecklembra¨uker and also by
Brenner13

W~n,m!52 (
k52N/2

N/221

z~n1k!z* ~n2k!expF22i S 2pm

N D kG .
~2!
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This equation is limited to a spatial interval@2N/2, N/2
21#, and it has to be considered as a pseudo-Wigner
tribution ~PWD!. In Eq. ~2!, n and m represent the spatia
and space-frequency discrete variables, respectively, ak
is the shifting parameter, which is also discrete. Equat
~2! can be interpreted as the discrete Fourier transfo
~DFT! of product r (n,k)5z(n1k)z* (n2k). It is worth
noting that the discretizing process implies a loss of so
properties of the continuous WD. One important prope
preserved within the definition given by Eq.~2! is the in-
version property, which is a very desirable feature for t
recovering of the original signal, and which allows loc
filtering operations on the images under consideration.

According to the inversion property,11 the even samples
can be recovered from Eq.~2! from the following
expression14

z~2n!z* ~0!5 (
m52N/2

N/221

W~n,m!expF22i S 2pm

N DnG , ~3!

and the odd samples can be recovered from

z~2n21!z* ~1!5 (
m52N/2

N/221

W~n,m!expF22i S 2pm

N DnG . ~4!

To get the original values, we have to perform an inve
DFT for recovering of the functionr (n,k), which gathers
all the information included in the original discrete signa
Equation~3! is obtained by writingn5k in r (n,k), which
implies that the valuesz(2n)z* (0) are on the main diago
nal of the matrixr (n,k). Similarly, Eq. ~4! results from
taking k5n21 in the product functionr (n,k), thus the
odd sample values are located above the main diagona
recover the exact values of the samples, we have to div
the diagonal values byz* (0) and z* (1), respectively.14

Unless the sign of the samples are undetermined due to
product sign rule, they can always be considered posit
because we are dealing with digital images of real posit
gray-value levels. From Eqs.~3! and ~4!, it can be shown
that n varies in the interval@2N/4, N/421#, due to the
factor 2, which affects the left side of both equations. T
2-D PWD can be considered as a generalization of the
case, but to reduce the computational cost to a minim
the 1-D PWD will be used as defined before, by takingN
58, i.e., a 1-D window of 8 pixels.

3 Pixel-Based Distance Between PWD Vectors

The 1-D, N-pixels windowed PWD, as described earlie
can be used to process the data of images, with the o
requirement being that the gray levels must be defined
real and positive values. The method proposed herein
volves scanning the original image by nonoverlapping s
ing window blocks ofN pixels in a row and assigning to
each pixel of the row itsN-component PWD vector. In suc
a way, we are gathering both spatial and spatial-freque
information of every pixel of the image. If we have mu
tiple input information, i.e., two images partly defocused
complementary regions, it is possible, after the theoret
-2 April 2005/Vol. 44(4)
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considerations that follow, to propose a method for fus
both images and to obtain an enhanced one, which ca
considered as the unknown original.

Our method is based on the idea that every pixel on
image has a differentN-component PWD vector associate
with it; thus, a measure can be taken for determining th
greatest distance to a reference image. This approac
closely related with shape matching.15 The selection of a
similarity measure is required to take an accurate decis
since dissimilarity can be coupled with the notion of d
tance. Because we are dealing with a distance metric,
required to set a reference value. It is well known that
more defocused an image is, the more the high frequen
will be diminished and consequently its PWD will be a
fected. Therefore, by taking as a reference a blurred a
age from the two originals given byzr5(z1* h1z2* h)/2,
z1 andz2 represent the two input images andh represents a
box filter whose values are detailed later. The main id
behind this reference is to have a worst case that allows
establishing of a distance measurement at pixel level fr
the PWD of each image,

di~z!5iWi~n,m!2Wr~n,m!in5z , ~5!

wherez represents an arbitrary pixel of the image, subin
ces i and r stand for input and reference images, resp
tively, andn, m are defined as in Eq.~2!. Wi(n,m) indicates
the PWD for imagei, and Wr(n,m) is the N-component
PWD for the reference image. The normal operator in
~5! is defined as usual,

iji5F (
i 52N/2

N/221

j2~ i !G1/2

, ~6!

wherej represents any arbitrary real function. The selec
distance@Eq. ~5!# is an Euclidean distance, which belon
to the more general family of Minkowsky distances.15

The rationale of using Eq.~5! can be formulated as fol
lows. Let us consider an original imagez and a blurring
process given byg5z* h0 , where* denotes the convolu
tion operation. After applying the PWD toz(n) and g(n)
separately, their respective representationsWz and Wg are
obtained. From a filtering point of view, it can be helpful
consider that the PWDs of the functionsz(n) andg(n) are
related by the product

Wg~n,m!5Wz~n,m!H1~n,m!, ~7!

where H1(n,m) can be interpreted as a pseudo-filteri
function, sinceg might not exist.14,16 For a thorough dis-
cussion see Ref. 17. If the Fourier transformation is rep
sented byF@•#, Eq. ~7! can be rewritten as

F@r z~n,k!* h1~n,k!#5F@r z~n,k!#•F@h1~n,k!#, ~8!

where the convolution affects only variablek, and the rela-
tionship r g(n,k)5r z(n,k)* h1(n,k) between their respec
tive product functions holds, after the convolution prope
of the Fourier transform, wherez(n), g(n), r z(n,k), and
r g(n,k) all represent real non-negative functions. On t
other hand, according with the energy conservation p
047001Optical Engineering
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ciple h0(n), h1(n,k) will not present negative coefficients
Consequently, the following conditions are satisfied

(
n52N/2

N/221

h0~n!51 and ;n/h0~n!>0⇒ih0~n!i<1, ~9!

(
k52N/2

N/221

h1~n,k!51 and ;n,k/h1~n,k!

>0⇒ih1~n,k!in5z<1. ~10!

Then, by applying the properties of the Euclidean distan
to Eq. ~8!, the following expression is achieved

iF@r z~n,k!* h1~n,k!#in5z<iF@r z~n,k!#in5z . ~11!

If both images to be fused have the same energy, Parse
theorem tells us that equality holds in Eq.~11!. Neverthe-
less, differences between PWDs belonging to different
graded versions of the same image will not necessarily n
lify. Consequently, these differences can be used
defining an Euclidean distance. Thus, by means of Eq.~5!
and by taking the blurred averaged image as a refere
distancesd1 and d2 can be obtained for the same pixelz
from input imagesz1(n) andz2(n). Theoretically, the larg-
est Euclidean distance corresponds to the pixel belongin
the less locally defocused image. Then, by comparing
tancesd1 and d2 , an activity map can be obtained@see
Figs. 1~d! and 1~e!# that provides an image mask of region
of high resolution~in-focus! and low resolution~out of fo-
cus!. Therefore, the pixels from the two input images c
be assigned to two different classes: one class corresp
ing to the set of pixels with a better in-focus measure, a
the other class for the set of pixels with the worst in-foc
measure. Thus, fusion of imagesz1 andz2 can be attained,
and therefore an all-in-focus enhanced version of the or
nal image is produced. The suitability of the method
based on two features. The first one is the advantage o
local frequency information provided by the PWD, and t
second one is the use of a metric measurement provide
the Euclidean distance applied to the PWDs of the in
signals. The combination of these two features leads us
way of selecting the best choice for the value of a pixel
a local context of the image.

4 Experimental Results

Several examples are presented for quantitative evalua
of the method, based on the use of artificially genera
space-variant registered input images. This method us
pixel-based neighborhood and requires prior registration
the images to be considered. Otherwise, the resulting fu
procedure introduces a blurring effect that is more noti
able for severe misregistration. The scheme described
is not a deconvolution method, and its main feature is
detecting the best focused pixels among a set of oc
rences provided by different input images. If a sharp vi
of a given area is not present in any of the inputs, a blur
spot will result in the output, as the method cannot prov
better results than the least defocused image in a local
text. Summarizing, there are no constrains in the blurr
affecting the input images to the process except the ene
-3 April 2005/Vol. 44(4)
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Fig. 1 (a) and (b): Two complementary space-variant defocused images. (c) Mixed reference as
described in the text. (d) Binary activity map from PWD distance measures at pixel level. (e) Smooth-
ing step for eliminating isolated pixels. (f) Resulting enhanced image.
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limitations described in Sec. 3. Nevertheless, accurate
istration of the input images and local blur-free informati
in at least one of the input images are requirements to
fulfilled for a correct performance of the method. Th
worst-case reference image can be obtained by any sui
energy preserving convolution kernel but is spatially lim
ited to the window size used for computing the PWD.

Figures 1~a! and 1~b! show two images that present in
focus regions located in different~and complementary!
parts of the image. As mentioned before, they can be p
cessed by comparing them with the mixed reference im
shown in Fig. 1~c!, which was obtained as previously d
scribed using a blurring convolution kernelh05(1/16)
3@1 4 6 4 1#, applied by rows and then by columns. Th
fusion procedure can be summarized as follows. First, e
image row is divided into 8 pixel arrays, and then a 1
PWD of each segment of 8 pixels is computed according
Eq. ~2!. The small value of such an analysis mask (N58)
permits higher computational savings and a localized sp
tral analysis. As result of such computation, an 838 matrix
of data is obtained, where each column provides the P
of each pixel. This procedure is repeated for every ima
row to cover the full image. Then, the Euclidean distance
the mixed reference image is obtained pixel-by-pixel us
Eq. ~5!. The highest distance according to such criteria
lows extracting the in-focus pixels of the referred imag
Since the input images@Figs. 1~a! and 1~b!# can be consid-
ered complementary versions of an unknown ground-tr
image, the activity map shown in Fig. 1~d! allows comput-
ing of the fused image@Fig. 1~f!#. This activity map is a
binary image whose elements are related one-to-one
the pixels from the images. It has a value of 1 wh
047001g
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d1(z).d2(z), and a value of 0 otherwise. During this pro
cess, a smoothing binary filter is used to eliminate isola
pixels from the binary activity map. Despite that differe
criteria can be used for this purpose, i.e., median filte
morphological erosion, etc., a new algorithm is used
described in Appendix A in Sec. 6. Figure 1~e! shows the
result of applying such an algorithm to Fig. 1~d! for remov-
ing isolated errors. Figures 2 and 3 illustrate, with synthe
blurred versions of the Cameraman and Lena images,
performance of the method. Results and comments
similar to those given for Fig. 1. From a qualitative point
view, the results shown in Figs. 1, 2, and 3 are satisfact
Nevertheless, to provide a quantitative assessment, s
objective quality measures have been used.5 With this goal
we tested several ground-truth images of 2563256 pixels
with 8-bit resolution. Two complementary degraded imag
were generated by blurring, both horizontally and ver
cally, in predefined regions of each original with the fun
tion h05(1/16)@1 4 6 4 1#, but similar results were
achieved using other energy preserving kernels. Thus, e
fused image can be compared with its original ground-tr
image. As quality indicators, we used the mean squa
error~MSE!, the peak signal-to-noise ratio~PSNR!, and the
percentage of correct decisions (Pc) as defined in Appen-
dix B in Sec. 7. The results from processing the we
known Cameraman and Lena images are summarize
Table 1. This new scheme appears to provide equal or
ter performance than the best existing methods in
literature5 when comparing similarly generated inputs. O
the other hand, the computational complexity of the sche
proposed is bounded by the FFT, which isO(N log2 N),
-4 April 2005/Vol. 44(4)
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Fig. 2 (a) and (b): Two complementary space-variant defocused images. (c) Mixed reference as
described in the text. (d) Binary activity map from PWD distance measures at pixel level. (e) Smooth-
ing step for eliminating isolated pixels. (f) Resulting enhanced image.

Fig. 3 (a) and (b): Two complementary space-variant defocused images. (c) Mixed reference as
described in the text. (d) Binary activity map from PWD distance measures at pixel level. (e) Smooth-
ing step for eliminating isolated pixels. (f) Resulting enhanced image.
047001-5 April 2005/Vol. 44(4)
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whereN is the number of pixels involved in the operatio
The PWD requires a FFT for each pixel of the image, the
fore the computational complexity can be estimated
O(MN log2 N), where M is the number of pixels in the
image andN is the window size used for implementing th
PWD. The benefits of using a 1-D over a 2-D PWD pr
cessing scheme can be better illustrated by comparing
dow sizes. Let us considerN the length of the window in
the 1-D case, and aK3K window for the 2-D case. The
comparison factor between both schemes can be d
mined asO(N log2 N/K2 log2 K2), i.e., if we takeN5K, the
complexity of a 1-D compared with a 2-D scheme is
duced by a factor of 2N. As this method is based on selec
ing a pixel out of a set of input values, only a noisy fr
scenario can be considered here. That means that the n
free regions can be obtained at least from one of the in

Fig. 4 PSNR values for different degraded realizations by adding
Gaussian noise versus original image. Circles: noisy copy of the
original image. Triangles: noisy version A. Squares: noisy version B.
Diamonds: fused image from corresponding noisy A and B versions.

Table 1 Quality measurements.

Cameraman

Measure

Blurred
version 1

versus
original

Blurred
version 2

versus
original

Enhanced
image
versus
original

PSNR 28.86dB 27.36dB 46.92dB

RMSE 9.20 10.93 1.15

Pc 58.25 58.47 98.55

Lena

Measure

Blurred
version1
versus
original

Blurred
version2
versus
original

Enhanced
image
versus
original

PSNR 36.32dB 35.79dB 49.75dB

RMSE 3.89 4.14 0.83

Pc 63.32 58.01 97.33
047001Optical Engineering
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images to be fused. Hence, this method is not able to
form denoising, and implies that if all input images a
noisy, the output will be noisy as well. The Lena image w
taken as an example for testing the noise influence on
image fusion process. This was accomplished by addin
the input images different amounts of Gaussian noise. F
ure 4 shows a plot of the results for different levels of no
degradation. The two different degraded versions A and
of the original image are represented by squares and
angles, respectively. Diamonds represent the fused im
and the circles represent a noisy original with the sa
amount of Gaussian noise as their respective A and B
puts. From such graphics, it can be observed that the fu
image approximates the noisy copy of the original, bu
appears noisier. As more Gaussian noise is added, the
ferences between input and output images are less rele
For a small amount of additive noise, there is a noticea
gain in the signal-to-noise ratio of the fused image, but
higher levels of noise the performance of the method
grades fast.

5 Conclusions

A new fusion method based on the use of PWD is presen
and applied to spatial-variant defocused images. Qua
measures show that the results provide enhanced vers
of the input images with equal or better performance th
the best existing methods. This scheme can also be
tended when more than two images are available. Ano
advantage of the present scheme is its reduced comp
tional cost and simultaneous performance of a localiz
spectral analysis. The use of a short window for PW
analysis greatly decreases computational time. In addit
a new noise cleaning edge-preserving method is prese
as an auxiliary tool for removing isolated error pixels fro
the activity maps. Despite the fact that the Lena and Ca
eraman images were artificially blurred for quantitative a
sessment, this method can be easily extended for dea
with arbitrary images with spatial-variant blur.

6 Appendix A

In a binary segmentation process, small isolated area
single pixels are generally considered as noise and hav
be eliminated. Therefore, the binary-segmented image m
be postprocessed by a denoising algorithm. This proc
can be achieved in different ways.15 Here we have devel-
oped a method that can be classified among the fuzzy d
tal topology methods.18,19By defining a characteristic func
tion ~probability! for the degree of connectedness~DOC!,

Fig. 5 Examples of different binarized pixels inside an analysis
window.
-6 April 2005/Vol. 44(4)
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isolated points can be removed from the object while
lecting their size and keeping the edges of the remain
areas~object! unaffected.

When exploring a binary image with a window ofw
3w pixels, different configurations of 1’s and 0’s are o
tained ~Fig. 5!. The window boundary divides the imag
into two sets: inside and outside window pixels. The ins
of the window is connected with the outside on the top
ogy of the 1’s and 0’s around the boundary of the windo
To keep a consistency, we require the central pixel of
window to be a 1. A measure of the number of pixels clo
to the boundary is taken, and a DOC value is assigne
the central pixel of the window as a probability valueP
P@0,1#. Then, the suppression of the 1’s inside the wind
is decided by a threshold value. Moreover, a small DO
value provides a strong argument to delete the inside of
window. This uncertainty in connectedness, which is
due to randomness but to the ambiguity about the situa
of 1’s and 0’s on the image, provides a solution to th
problem from a fuzzy image processing approach.

As stated earlier, the criterion in which the algorithm
based refers to the connectivity of the pixels inside a
outside the window through a probability measure. For t
analysis, the inner pixels~I! and the outer pixels~E! next to
the window boundary are taken. Next, 0’s and 1’s are co
pared in both sets to evaluate the probabilityP of region I
being connected to regionE. The fuzzy rule imposed to
delete all 1’s inside a window is as follows: ‘‘Given a b
nary image and a window centered in a pixel, whose va
is 1, if the degree of connectednessP between inside~I!
and outside~E! window regions is smaller than a certa
value P0 , then the 1’s inside such a window must b
changed to 0’s.’’ A given region of the image limited by
square window must be considered for estimating the pr
ability P required to make a decision~Fig. 5!. The inbound
pixels of the window are connected with the outbound p
els under a 4 neighborhood connectivity criterion.15 Ac-
cordingly, two pixels are considered neighbor pixels if th
are adjacent in the same line~row or column!. Thus, the
inner region of the window is connected with the ou
region if there are at least two neighboring pixels of va
1, and, one of the pixels is inbound while the other one
outbound the window.

Let us consider the assumption thatQ is the total num-
ber of pixels for setE, with q 1’s andQ-q 0’s. Similarly,
the setI hasQ-4 pixels, of whichp are 1’s and the rest ar
0’s. After straightforward combinatory calculations, th
probability of regionsI andE to be connected is given by

P512

(k50
min~4,p!S Q28

p2k D S 4
kD S Q2p2k

q D
S Q

q D S Q24
p D , ~12!

where

S Q28
p2k D5H S Q28

p2k D if Q28>p2k

0 otherwise
,
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S Q2p2k
q D5H S Q2p2k

q D if Q2p2k>q

0 otherwise
.

Equation~12! entails a high computational cost, hence w
have derived a simpler approximated expression by con
ering that areasI andE have the same number of pixelsQ.
Such approximation is based on the assumption that co
pixels in the inner region have a double connectivity v
lence. Moreover, we can assign the same number of
(p0) to E and I, since they are neighboring areas with t
same number of pixels, and therefore their expected va
are the same. Since the probabilitya of finding a 1 filling a
corner is the same of filling any other location, it follow
that a5p0 /(Q24). Therefore, the probability to havek
corners filled by 1’s in regionI is

P~k!5S 4
kDak~12a!42k 0<4<k. ~13!

The expectation value of 1’s in the corners isPcor54a,
and the effective number or 1’s to be considered in e
region is given byp5p014p0 /(Q24). This yields the
following probability

P512

S Q2p
p D

S Q
p D , ~14!

where

Fig. 6 Comparative results for exact and approximate connectivity
in a window of 15315 pixels. (1) Plot from Eq. (12) with p5p0 and
q5p014p0 /(Q24). (s) Plot from Eq. (14) with p5q5p0

14p0 /(Q24).
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Download
Fig. 7 Activity map from Fig. 1(d), smoothed by using a threshold value of P050.5 and different
window sizes: (a) 333, (b) 737, (c) 11311, and (d) 15315. Note the robustness of the scheme in
relation with the smoothing window size. The main structures are preserved without introducing
smoothing and the isolated points are removed. In the examples described in Sec. 4, a window size of
11311 pixels was chosen.
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S Q2p
p D5H S Q2p

p D if Q2p>p

0 otherwise
.

Figure 6 shows the connection probability plots for a w
dow size of 15315 pixels. Results of using both exact@Eq.
~12!# and approximate@Eq. ~14!# equations are practically
identical when considering appropriatep and q values.
However, the computational cost of using Eq.~14! is much
lower than of Eq.~12!. Figure 7 shows an example of th
behavior of the algorithm for different window sizes. No
that the holes in the object can be suppressed by in
changing the role of 0’s and 1’s in the previously describ
algorithm.

7 Appendix B

The quality measures selected to compare two given
agesX andY are: 1. the root mean square error

RMSE5H ( i 51
N ( j 51

N @X~ i , j !2Y~ i , j !#2

N2 J 1/2

,

2. peak signal-to-noise ratio

PSNR510 log10S 2552

MSED ,

where MSE stands for the mean square error between
images~note that the RMSE is the square root of the MS!,
and 3. the percentage of correct decisions

Pc5
Nc

Nt
3100,

whereNc and Nt are the number of correct decisions a
the total number of decisions, respectively.
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