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Multifocus image fusion through pseudo-Wigner
distribution

Salvador Gabarda Abstract. We describe a new image fusion paradigm that provides an
Gabriel Cristo” bal enhanced image from a set of source images that present regions with
Instituto de Optica “Daza de Valdés” different spatial degradation patterns. The fusion procedure is based on
(CsIC) the use of a new defocusing pixel-level measure. Such a measure is
Serrano 121, Madrid-28006 defined through a 1-D pseudo-Wigner distribution function (PWD) ap-
Spain plied to nonoverlapping N-pixel window slices of the original image. The
process is repeated to cover the full image size. By taking a low-
resolution image as a reference image, which can be defined by blurring
and averaging the two source images, a pixel-level distance measure of
the defocus degree can be obtained from the PWD of each image. This
procedure makes it possible to choose from a focusing point of view the
in-focus pixels from each one of the given source images. The method is
illustrated with different pairs of images of the same scene, which are
partly focused and partly defocused in different regions. The image fu-
sion approach that we propose here can work for any source of images
available, and the comparison using evaluation measures such as mean
square error or percentage of correct decisions shows that our frame-
work can outperform the current approaches for the analyzed cases.
One additional advantage of the present approach is its reduced com-
putational cost when compared with other methods based on a full
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1 Introduction 1-D PWD sliding window implementation, is its reduced

. omputational cost compared with other methods based on
Image blurring can be regarded as a consequence of som Ull 2-D PWD implementation.

imperfgct image formatiqn process, which limits the.image This work is structured as follows. In Sec. 2, the discrete
bandwidth. Hence, blurring can be produced by different p\p s priefly outlined and its usefulness for spatial filter-
causes, i.e., camera or object motion, defocused optical sysing js described. In Se@ a pixel-based distance scheme
tems, and atmospheric turbulence. Sometimes these degrapetween PWD vectors is described as the basis of the fu-
dations can be modeled to recover the original image, butsion procedure. Image fusion results, using the PWD, are
in many cases this information is not available. The recov- given in Sec. 4, and a quantitative fusion quality assess-
ering of the original image from a degraded input has been ment is presented that considers some ground-truth test im-
the subject of many papers in the area of image restorationages. Finally, conclusions are drawn in Sec. 5.

that can be indexed with the keywords of image deblurring

or image deconvolutioh.When image restoration is ac- 2 Wigner Distribution

complished without any priori knowledge about the deg-  Bjurring can be described as the convolution of the original
rac_iatlon cause, we are dealllng vylth blind image deconvo- jmage with a 2-D point-spread functiof®SH. If such a
lution method€. If the blurring is not homogeneously function is not a function of the spatial location under con-
distributed, the defocusing process will affect different re- sideration, it is said to be spatially invarigiessentially this
gions of the image with different strength. This scenario is means that the ime_lge is blurred exactly in theT same way at
referred to as space-variant blurringd special case of  every spatial location Therefore, if the PSF is a known
space-variant deblurring occurs when more than one de-function, it is possible to remove the blur by means of an
graded image is available and therefore image fusion Inverse operation in the spectral domain called deconvolu-
method4® can be applied. We present a fusion algorithm tion. Im.portantly,'modelmg and restoring images degraded
based on the use of the pseudo-Wigner distribution, which BY SPatially varying blurs are more challenging problems
. : . . . ' . that still require further attention to achieve a successful
is suitable for blind space-variant deblurring. One addi-

) e . _solution. The use of a spatial/spatial-frequency representa-
tional advantage of the current method, which is based in ajon, is greatly appropriated for addressing a spatially vary-

ing blurring problem because of the local character of the
0091-3286/2005/$22.00 © 2005 SPIE degradation process. Our fusion method is based on the use
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of many input realizations of the same object at the same This equation is limited to a spatial intervig N/2, N/2
time. Deblurring is obtained by comparing the PWD of the —1], and it has to be considered as a pseudo-Wigner dis-
degraded image with the PWD of a worst-case prototype. tribution (PWD). In Eq. (2), n andm represent the spatial
Hence, we approach the spatially varying blur case by and space-frequency discrete variables, respectivelykand
means of one of the conjoint spatial/spatial-frequency rep- js the shifting parameter, which is also discrete. Equation
resentations. A general formulation of the spatial/spatial- (2) can be interpreted as the discrete Fourier transform
frequency representations was given by CéHeand later  (DFT) of product r (n,k) =z(n+k)z* (n—K). It is worth
generalized t\-D signals by Jacobson and Wech$iét.  noting that the discretizing process implies a loss of some
has been claimed that the Wigner dlstnbytlon function properties of the continuous WD. One important property
(WD) has the best properties to be used in image processpreserved within the definition given by E(p) is the in-

ing, against other representations of this kind. In fact, some version property, which is a very desirable feature for the
researchers have considered the WD as a “masterform” recovering of the original signal, and which allows local

distribution from which the rest of the distributions can be fi|tering operations on the images under consideration.
obtaineoe.'g Thus it has the best resolution, which is According to the inversion properﬂnthe even Samp|es
matched to that of the image in both domains. It overcomes can be recovered from Eq(2) from the following
the resolution tradeoffs that traditionally have limited the expressioff

utility of windowed power spectrum analysis. Besides that,

the WD is a joint bilinear representation, very close to posi- N/2—1

tive, invariant within linear transformations, and it contains 2(2n)z* (0) = z W(n m)ex;{ _2i(277_m) n 3)
all the image information. It presents two main advantages m=—N/2 ' N ’

with respect to other local representations. First, the WD is

a real-valued function and encodes directly the Fourier 5n4 the odd samples can be recovered from

phase information. Second, the election of the appropriate

window size, which depends on the kind of analyzed infor- N/2—1 )

mation, is not required for the computation of the WD. , s .

However, the use of other Cohen’s class distributions ap- 2(2n—1)z (1)_m:E_N,2 W(n,m)ex;{—m(T) ni.- 4

pears to be feasible following this approach, but their per-

formance needs to be validated in future experiments.
The Wigner distribution(\WD) is a bilinear(quadrati¢

signal representation introduced by Wigh%A compre-

To get the original values, we have to perform an inverse
DFT for recovering of the functiom(n,k), which gathers

hensive discussion of the WD properties can be found in aaII the information included in the original discrete signal.
series of classical articles by Claasen and E9uation(3)is obtained by writingn=k in r(n,k), which

Mecklenbraiker! Originally, the WD was applied to con-  implies that the valueg(2n)z*(0) are on the main diago-
tinuous variables as follows. Let us consider an arbitrary nal of the matrixr(n,k). Similarly, Eq. (4) results from
1-D functionz(x). The WD ofz(x) is given by taking k=n—1 in the product functiorr(n,k), thus the
odd sample values are located above the main diagonal. To
recover the exact values of the samples, we have to divide
the diagonal values by* (0) and z* (1), respectively*
Unless the sign of the samples are undetermined due to the
product sign rule, they can always be considered positive,
because we are dealing with digital images of real positive
where* denotes complex conjugation. gray-value levels. From Eq$3) and (4), it can be shown
By considering the shifting parameteras a variable,  that n varies in the interva] —N/4, N/4—1], due to the
Eq. (1) represents the Fourier transfoffir) of the product  factor 2, which affects the left side of both equations. The
z(X+ al2)z* (x— al2), where u denotes the spatial- 2-D PWD can be considered as a generalization of the 1-D
frequency variable and, hence, the WD can be interpretedcase, but to reduce the computational cost to a minimum,
as the local spectrum of the sigr#lx). The Wigner dis- the 1-D PWD will be used as defined before, by taking
tribution satisfies many desirable mathematical propetties. =8, i.e., a 1-D window of 8 pixels.
Although the PWD was initially defined for continuous
variable functions, Claasen and Mecklenbrauker proposed
at the beginning of the 1980s a first definition for discrete 3 Pixel-Based Distance Between PWD Vectors
vg_riable functions. Hovx_/ever, some attempts to extend defi- The 1-D, N-pixels windowed PWD, as described earlier,
nitions of the WD to discrete signals have not been com- 5, e ysed to process the data of images, with the only
pletely successfuf. For this application, we have selected requirement being that the gray levels must be defined by
the following discrete Wigner distribution, similar to the .5/ 3nd positive values. The method proposed herein in-
gl:gn%r:}psosed by Claasen and Mecklemiser and also by volves scanning the original image by nonoverlapping slid-
ing window blocks ofN pixels in a row and assigning to
each pixel of the row itf-component PWD vector. In such
N/2—1 2. a way, we are gathering both spatial and spatial-frequency
W(n,m)=2 E z(n+k)z*(n—k)exr{ —2i(—> k}. information of every pixel of the image. If we have mul-
k=—N/2 N tiple input information, i.e., two images partly defocused in
2 complementary regions, it is possible, after the theoretical

*° 22
X+ =
2

z*(x— 3) exg —i(u-a)]de, (1)

W(x,u)zf z 5

— o0
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considerations that follow, to propose a method for fusing ciple hy(n), h;(n,k) will not present negative coefficients.
both images and to obtain an enhanced one, which can beConsequently, the following conditions are satisfied
considered as the unknown original.

Our method is based on the idea that every pixel on the N2-1
image has a differerii-component PWD vector associated > he(n)=1 andVn/hy(n)=0=|he(n)|<1, (9)
with it; thus, a measure can be taken for determining their n=-N/2
greatest distance to a reference iLrgage. This approach is,,,_,
closely related with shape matchirmyThe selection of a _
similarity measure is required to take an accurate decision,kzg,\,,2 hy(n.k)=1and ¥n,k/hy(n,k)
since dissimilarity can be coupled with the notion of dis-
tance. Because we are dealing with a distance metric, it is =0=|lhy(n,k)|[h-,<1. (10)
required to set a reference value. It is well known that the
more defocused an image is, the more the high frequenciesThen, by applying the properties of the Euclidean distance
will be diminished and consequently its PWD will be af- to Eq.(8), the following expression is achieved
fected. Therefore, by taking as a reference a blurred aver-
age from the two originals given bg = (z;*h+z,%h)/2, [FLr 20, K)*ha(n,K) T <L 20, K) Jlln= - (11)

z, andz, represent the two input images amdepresents a . ,
box filter whose values are detailed later. The main idea ' POth images to be fused have the same energy, Parseval's
behind this reference is to have a worst case that allows the}heorzr_?f tells us Lha{t equallgt\y//vgok:)s Im E(_d,l).tNgy??rthe; q
establishing of a distance measurement at pixel level from ‘€SS, dIfferénces between FWLDS belonging to ditierent de-
the PWD of each image graded versions of the same image will not necessarily nul-
' lify. Consequently, these differences can be used for
A — I _ defining an Euclidean distance. Thus, by means of(k).
di(O)=[Wi(n,m)—W,(n,m)||,—, ®) and by taking the blurred averaged image as a reference,
where{ represents an arbitrary pixel of the image, subindi- distancesd; andd, can be obtained for the same pixgl
cesi andr stand for input and reference images, respec- from inputimages;(n) andz,(n). Theoretically, the larg-
tively, andn, m are defined as in Eq2). W;(n,m) indicates est Euclidean distance corresponds to the pixel belonging to
the PWD for imagei, and W, (n,m) is the N-component the less locally defocuseq image. Then, by comparing dis-
PWD for the reference image. The normal operator in Eq. tancesd; andd,, an activity map can be obtainddee

(5) is defined as usual, Figs. 1d) and Xe)] that provides an image mask of regions
of high resolution(in-focus and low resolutior(out of fo-
N/2-1 12 cus. Therefore, the pixels from the two input images can
&= > &) (6) be assigned to two different classes: one class correspond-
i=—N/2 ing to the set of pixels with a better in-focus measure, and

the other class for the set of pixels with the worst in-focus
where{ represents any arbitrary real function. The selected measure. Thus, fusion of imagesandz, can be attained,
distance[Eq. (5)] is an Euclidean distance, which belongs and therefore an all-in-focus enhanced version of the origi-
to the more general family of Minkowsky distancés. nal image is produced. The suitability of the method is

The rationale of using Ed5) can be formulated as fol-  pased on two features. The first one is the advantage of the

lows. Let us consider an original imageand a blurring local frequency information provided by the PWD, and the
process given bg=z*xhy, where* denotes the convolu-  second one is the use of a metric measurement provided by
tion operation. After applying the PWD tg(n) andg(n) the Euclidean distance applied to the PWDs of the input
separately, their respective representatidfisand W, are signals. The combination of these two features leads us to a
obtained. From a filtering point of view, it can be helpful to way of selecting the best choice for the value of a pixel in
consider that the PWDs of the function@) andg(n) are a local context of the image.
related by the product

4 Experimental Results

Wq(n,m)=W,(n,m)H,(n,m), (7 Several examples are presented for quantitative evaluation
. _ of the method, based on the use of artificially generated
where H,(n,m) can be mterpre‘tlel(g as a pseudo-filtering space-variant registered input images. This method uses a
function, sinceg might not exist.**® For a thorough dis- pixel-based neighborhood and requires prior registration of
cussion see Ref. 17. If the Fourier transformation is repre- the images to be considered. Otherwise, the resulting fusion

sented by7|-], Eq. (7) can be rewritten as procedure introduces a blurring effect that is more notice-
able for severe misregistration. The scheme described here
FLr(n,k)*hy(n,k)]=Fr,(n,k)]- FLhy(n,k) ], ) is not a deconvolution method, and its main feature is for

) ) detecting the best focused pixels among a set of occur-
v_vhere_ the convolution affects only varlabteand_the rela- rences provided by different input images. If a sharp view
tionship ry(n,k)=r,(n,k)*hy(n,k) between their respec-  of a given area is not present in any of the inputs, a blurred
tive product functions holds, after the convolution property spot will result in the output, as the method cannot provide
of the Fourier transform, wherg(n), g(n), r,(n,k), and better results than the least defocused image in a local con-
rq(n,k) all represent real non-negative functions. On the text. Summarizing, there are no constrains in the blurring
other hand, according with the energy conservation prin- affecting the input images to the process except the energy
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Fig. 1 (a) and (b): Two complementary space-variant defocused images. (c) Mixed reference as
described in the text. (d) Binary activity map from PWD distance measures at pixel level. () Smooth-
ing step for eliminating isolated pixels. (f) Resulting enhanced image.

limitations described in Sec. 3. Nevertheless, accurate reg-d,(£)>d,({), and a value of 0 otherwise. During this pro-
istration of the input images and local blur-free information cess, a smoothing binary filter is used to eliminate isolated
in at least one of the input images are requirements to bepixels from the binary activity map. Despite that different
fulfilled for a correct performance of the method. The criteria can be used for this purpose, i.e., median filters,
worst-case reference image can be obtained by any suitablgnorphological erosion, etc., a new algorithm is used as
energy presgerving cpnvolution kernel bL_Jt is spatially lim- yescribed in Appendix A in Sec. 6. Figuréel shows the
ited to the window size used for computing the PWD. . result of applying such an algorithm to Figidl for remov-
Figures 1a) and 1b) show two images that present in- i isolated errors. Figures 2 and 3 illustrate, with synthetic
focus regions located in differentand complementaly ) ired versions of the Cameraman and Lena images, the
parts of the image. As mentioned before, they can be pro- o tormance of the method. Results and comments are
cessed by comparing them with the mixed reference 'MAYesimilar to those given for Fig. 1. From a qualitative point of

shown in Fig. 1c), which was obtained as previously de- view, the results shown in Figs. 1, 2, and 3 are satisfactory.

scribed using a _qurnng convolution kerné=(1/16) Nevertheless, to provide a quantitative assessment, some
x[14641], applied by rows and then by columns. The ,i0chive quality measures have been uedth this goal
fusmn procgdurg can be S“m”?a”zed as follows. First, eaChwe tested several ground-truth images of 2266 pixels
image ;ow |§ divided mtfo 8 _plxlel_arrays, ang then g. 1D \yith 8-bit resolution. Two complementary degraded images
PWD of each segment of 8 pixels is computed according 0 ;o g generated by blurring, both horizontally and verti-
Eq. (2.)' The small value .Of such an analysis mab!<:(8) cally, in predefined regions of each original with the func-
permits higher computational savings and a localized SPec-4 ho=(1/16f14 64 1], but similar results were

tral analysis. As result of such computation, an8matrix . . .
of data is obtained, where each column provides the PWD achlev_ed using other energy preserving kgrnels. Thus, each
' fused image can be compared with its original ground-truth

of each pixel. This procedure is repeated for every image . R
row to cover the full image. Then, the Euclidean distance to IMad€. As quality indicators, we used the mean squared
the mixed reference image is obtained pixel-by-pixel using €T (MSE), the peak signal-to-noise ratieSNR, and the

Eq. (5). The highest distance according to such criteria al- Percentage of correct decisionB as defined in Appen-
lows extracting the in-focus pixels of the referred images. dix B in Sec. 7. The results from processing the well-
Since the input imagegigs. 1a) and Xb)] can be consid- ~ known Cameraman and Lena images are summarized in
ered complementary versions of an unknown ground-truth Table 1. This new scheme appears to provide equal or bet-
image, the activity map shown in Fig(d) allows comput- ter performance than the best existing methods in the
ing of the fused imagéFig. 1(f)]. This activity map is a literatur@ when comparing similarly generated inputs. On
binary image whose elements are related one-to-one withthe other hand, the computational complexity of the scheme
the pixels from the images. It has a value of 1 when proposed is bounded by the FFT, which @{N log, N),
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(@) (b) (c)

(d) (e)

Fig. 2 (a) and (b): Two complementary space-variant defocused images. (c) Mixed reference as
described in the text. (d) Binary activity map from PWD distance measures at pixel level. () Smooth-
ing step for eliminating isolated pixels. (f) Resulting enhanced image.

w 5(

(@ _ (b)

(d) (e) ()

Fig. 3 (a) and (b): Two complementary space-variant defocused images. (c) Mixed reference as
described in the text. (d) Binary activity map from PWD distance measures at pixel level. () Smooth-
ing step for eliminating isolated pixels. (f) Resulting enhanced image.
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3 =

Table 1 Quality measurements.

Cameraman
Blurred Blurred Enhanced
version 1 version 2 image
versus versus versus window 1 window 2 window 3 window 4
Measure original original original
B one
PSNR 28.86dB 27.36dB 46.92dB
[] =zero
RMSE 9.20 10.93 1.15
P, 58.25 58.47 98.55 Fig. 5 Examples of different binarized pixels inside an analysis
Lena window.
Blurred Blurred Enhanced
V\%f'scl’:‘sl V\%f's‘l’]f L@;‘;%‘; images to be fused. Hence, this method is not able to per-
Measure original original original form denoising, arjd |mpI|_es that if all input images are
noisy, the output will be noisy as well. The Lena image was
PSNR 36.32dB 35.79dB 49.75dB taken as an example for testing the noise influence on the
RMSE 3.89 4.14 0.83 image fusion process. This was accomplished by adding to
P, 63.32 58.01 97.33 the input images different amounts of Gaussian noise. Fig-

ure 4 shows a plot of the results for different levels of noise
degradation. The two different degraded versions A and B
of the original image are represented by squares and tri-
whereN is the number of pixels involved in the operation. angles, respectively. Diamonds represent the fused image
The PWD requires a FFT for each pixel of the image, there- and the circles represent a noisy original with the same
fore the computational complexity can be estimated as amount of Gaussian noise as their respective A and B in-
O(MN log,N), where M is the number of pixels in the puts. From such graphics, it can be observed that the fused
image andN is the window size used for implementing the image approximates the noisy copy of the original, but it
PWD. The benefits of using a 1-D over a 2-D PWD pro- appears noisier. As more Gaussian noise is added, the dif-
cessing scheme can be better illustrated by comparing win-ferences between input and output images are less relevant.
dow sizes. Let us considét the length of the window in ~ For a small amount of additive noise, there is a noticeable
the 1-D case, and K XK window for the 2-D case. The gain in the signal-to-noise ratio of the fused image, but for
Comparison factor between both schemes can be deterhlgher levels of noise the performance of the method de-
mined asO(N log, N/K?log, K?), i.e., if we takeN=K, the grades fast.

complexity of a 1-D compared with a 2-D scheme is re- _

duced by a factor of . As this method is based on select- 9 Conclusions

ing a pixel out of a set of input values, only a noisy free A new fusion method based on the use of PWD is presented
scenario can be considered here. That means that the noiseand applied to spatial-variant defocused images. Quality
free regions can be obtained at least from one of the inputmeasures show that the results provide enhanced versions
of the input images with equal or better performance than
the best existing methods. This scheme can also be ex-
tended when more than two images are available. Another
advantage of the present scheme is its reduced computa-
tional cost and simultaneous performance of a localized
spectral analysis. The use of a short window for PWD
analysis greatly decreases computational time. In addition,
a new noise cleaning edge-preserving method is presented
as an auxiliary tool for removing isolated error pixels from
the activity maps. Despite the fact that the Lena and Cam-
eraman images were artificially blurred for quantitative as-
sessment, this method can be easily extended for dealing
with arbitrary images with spatial-variant blur.
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6 Appendix A

In a binary segmentation process, small isolated areas or
single pixels are generally considered as noise and have to
0 be eliminated. Therefore, the binary-segmented image must
be postprocessed by a denoising algorithm. This process
can be achieved in different waySHere we have devel-

201

5 10 15 20 )

15 1 1
a
% of Gaussian naise

Fig. 4 PSNR values for different degraded realizations by adding

Gaussian noise versus original image. Circles: noisy copy of the
original image. Triangles: noisy version A. Squares: noisy version B.
Diamonds: fused image from corresponding noisy A and B versions.
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oped a method that can be classified among the fuzzy digi-
tal topology method$®°By defining a characteristic func-
tion (probability) for the degree of connectedne$30C),
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isolated points can be removed from the object while se-
lecting their size and keeping the edges of the remaining
areas(objec) unaffected.

When exploring a binary image with a window of
Xw pixels, different configurations of 1's and Q’s are ob-
tained (Fig. 5. The window boundary divides the image
into two sets: inside and outside window pixels. The inside
of the window is connected with the outside on the topol-
ogy of the 1's and 0’s around the boundary of the window.
To keep a consistency, we require the central pixel of the
window to be a 1. A measure of the number of pixels close
to the boundary is taken, and a DOC value is assigned to
the central pixel of the window as a probability valie
e[0,1]. Then, the suppression of the 1's inside the window
is decided by a threshold value. Moreover, a small DOC
value provides a strong argument to delete the inside of the
window. This uncertainty in connectedness, which is not

1
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due to randomness but to the ambiguity about the situation

of 1's and QO’s on the image, provides a solution to this
problem from a fuzzy image processing approach.

As stated earlier, the criterion in which the algorithm is
based refers to the connectivity of the pixels inside and
outside the window through a probability measure. For this
analysis, the inner pixeld) and the outer pixeléE) next to
the window boundary are taken. Next, 0’s and 1's are com-
pared in both sets to evaluate the probabikitpf regionl
being connected to regioB. The fuzzy rule imposed to
delete all 1's inside a window is as follows: “Given a bi-
nary image and a window centered in a pixel, whose value
is 1, if the degree of connectedneBsbetween insidgl)
and outside(E) window regions is smaller than a certain
value Py, then the 1's inside such a window must be
changed to 0's.” A given region of the image limited by a
square window must be considered for estimating the prob-
ability P required to make a decisidirig. 5. The inbound
pixels of the window are connected with the outbound pix-
els unde a 4 neighborhood connectivity criteridn.Ac-
cordingly, two pixels are considered neighbor pixels if they
are adjacent in the same lifeow or column. Thus, the
inner region of the window is connected with the outer
region if there are at least two neighboring pixels of value
1, and, one of the pixels is inbound while the other one is
outbound the window.

Let us consider the assumption ti@atis the total num-
ber of pixels for seg, with g 1's andQ-q 0’s. Similarly,
the setl hasQ-4 pixels, of whichp are 1's and the rest are
0's. After straightforward combinatory calculations, the
probability of regiond andE to be connected is given by

5 min(4,p) Q_S) 4 Q_p_k)

poq— o \PkIIKL g (12

_ B A .

q p

where

Q-8 ((S:E) if Q—8=p—k
(p—k): o

0 otherwise
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Fig. 6 Comparative results for exact and approximate connectivity
in a window of 15X 15 pixels. (+) Plot from Eq. (12) with p=p, and
q=po+4py/(Q—4). (O) Plot from Eg. (14) with p=g=p,
+4py[(Q—4).

(Q—p—k): (Q_;’_") if Q—p—k=q
N .

0 otherwise

Equation(12) entails a high computational cost, hence we
have derived a simpler approximated expression by consid-
ering that areas andE have the same number of pixels
Such approximation is based on the assumption that corner
pixels in the inner region have a double connectivity va-
lence. Moreover, we can assign the same number of 1's
(po) to E andl, since they are neighboring areas with the
same number of pixels, and therefore their expected values
are the same. Since the probabilityof finding a 1 filling a
corner is the same of filling any other location, it follows
that a=py/(Q—4). Therefore, the probability to have
corners filled by 1's in regioi is

dX1-a)* K 0=4=<k.

4
) 13

Pwr{

The expectation value of 1's in the cornersRs,=4a«,

and the effective number or 1's to be considered in each
region is given byp=pgy+4pe/(Q—4). This yields the
following probability

%)

p

P=1- , 14
p

where
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Fig. 7 Activity map from Fig. 1(d), smoothed by using a threshold value of P,=0.5 and different
window sizes: (a) 3X3, (b) 7X7, (c) 11x11, and (d) 15X15. Note the robustness of the scheme in
relation with the smoothing window size. The main structures are preserved without introducing
smoothing and the isolated points are removed. In the examples described in Sec. 4, a window size of
11X11 pixels was chosen.
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