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Abstract 

 

The carbon supersaturation of bainitic ferrite was investigated by means of atom probe 

tomography in three steels with different carbon and silicon contents, to elucidate the 

effect of transformation temperature and the reaction velocity on the mechanisms 

controlling bainite formation with and without the interference of cementite 

precipitation. Results indicated no difference in the growth mechanism over the 
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temperature range investigated. These results provide new evidence that the bainite 

transformation is essentially martensitic in nature. 

 

After decades of debate [1] on the mechanism for the formation of bainite, two primary 

opposing viewpoints have formally evolved. The shear or displacive theory [2,3] states 

that bainitic ferrite forms by shear and that the transformation is essentially martensitic 

in nature (i.e., the individual atom movements are less than one interatomic spacing) 

and proceeds by the formation of sub-units. The ledge-wise or reconstructive theory 

[4,5] states that bainite is a product of a reconstructive transformation (i.e. the majority 

of the phase transformations that occur in the solid state take place by thermally 

activated atom movements) and grows by the migration of growth ledges on the broad 

faces of the interface. 

Today it is accepted that bainite grows via a displacive mechanism [6,7] i.e., as plate-

shaped transformation products exhibiting an invariant plane strain surface relief effect. 

But there is still much discussion on the diffusion or diffusionless nature of bainite. 

When it is stated that ferrite grows by a displacive mechanism, it does not imply that it 

is also diffusionless. For instance, Widmanstätten ferrite forms with a displacive, but 

diffusional, growth mechanism [8].  

Therefore, two different explanations about the growth nature of bainitic ferrite in steels 

are discussed: the diffusionless hypothesis, which states that bainitic ferrite grows 

without any diffusion of carbon, and carbon supersaturation is subsequently relieved by 

partitioning to austenite, and/or through carbide precipitation; and the diffusional 

hypothesis, which states that bainitic ferrite growth is controlled by carbon diffusion, 
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and not distinctly different in character from Widmanstätten ferrite, with carbide 

precipitation at the austenite/ferrite boundaries [6,7]. 

The traditional criterion for distinguishing between the two bainite transformation 

theories is whether the newly-formed bainitic ferrite has the para-equilibrium (PE) 

carbon content or if it is super-saturated in carbon. However, in most alloys, it is 

impossible to experimentally estimate the initial carbon content of bainitic ferrite since 

the time taken for any carbon to diffuse into austenite can be extremely short. Carbon 

resides on interstitial sites in the crystal lattice because its atomic size is sufficiently 

small relative to that of iron and it can be very mobile even at low temperatures [9]. 

Recently, the extremely slow transformation kinetics of a nanocrystalline bainitic steel 

transforming at abnormally low temperatures (200 ºC) allowed for experimental 

measurements, which demonstrated that bainitic ferrite grows with a high 

supersaturation of carbon [10]. Results indicated that iron and substitutional atoms, such 

as Mn, Cr, and Si, do not diffuse during the bainite transformation, but the partitioning 

of carbon into the residual austenite occurs immediately after formation [10]. The 

bainite reaction ceases well before the austenite carbon content reaches PE. All these 

results were explained in terms of the diffusionless growth of bainite sub-units. In 

addition, atom probe tomography (APT) revealed the presence of a high level of carbon 

in bainitic ferrite, which was well above that expected from PE with austenite once the 

reaction proceeds to completion [11]. 

The relatively slow reaction rate of bainite has been traditionally used as an argument 

for the diffusional hypothesis because it seemed likely that a growth process, which is 

martensitic in nature, should be very rapid for trapping carbon in the growing ferrite 

[12]. In the present work, the carbon content of the bainitic ferrite was analysed by APT 
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in bainitic steels transformed over a wide range of temperatures (200-525 ºC) to 

elucidate the role of reaction rate and diffusion in the formation of bainite with and 

without cementite precipitation. 

 

Three steels with different carbon and silicon contents were selected to evaluate the 

effect of transformation temperature on carbon supersaturation of ferrite in bainitic 

steels with and without the interference of cementite precipitation during bainite 

formation. The bainite transformation temperature range of the steel is mainly a 

consequence of the carbon content, whereas the inhibition of cementite precipitation 

during bainite reaction is controlled by the addition of 1.5 wt.% Si, which retards the 

precipitation of cementite from austenite because of its low solubility in the cementite 

crystal structure. The chemical composition of the studied steels is given in Table 1. 

Details about the manufacturing processes can be found elsewhere [13-15]. 

Cylindrical dilatometric test pieces [16] were austenitized (at 1200 ºC for 60 s for MC-

LSi steel, at 925 ºC for 300 s for MC-HSi steel and at 1000 ºC for 900 s for HC-HSi 

steel) and then isothermally transformed at temperatures ranging from 200 to 525 ºC for 

different times before quenching. Prior austenite grain size (PAGS) was revealed by 

means of a thermal etching technique [17] and measured by the linear intercept method 

to be (39  14) m in MC-LSi steel, (12  5) m in MC-HSi steel and (49  3) m in 

HC-HSi steel). 

The martensite start temperatures (MS) listed in Table 2 were estimated by dilatometry. 

Conventional metallographic examination by Light Optical Microscopy (LOM) and 

Scanning Electron Microscopy (SEM) were used to determine the bainite start 

temperatures (BS) that are shown in Table 2. A JEOL JEM-2010 Transmission Electron 
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Microscopy (TEM) was used to examine the carbide distribution, inter-lath and intra-

lath, in the bainitic microstructure, and to identify the different morphologies of bainite, 

upper and lower bainite, respectively. The observation of both inter- and intra-lath 

carbide distributions in the same bainitic microstructure enabled the transition 

temperatures (LBS) from upper to lower bainite listed in Table 2 to be determined. 

APT specimens were cut from bulk material and electropolished with the standard 

double layer and micropolishing methods [18]. Atom probe analyses were performed in 

the Oak Ridge National Laboratory (ORNL) local electrode atom probes (Cameca 

Instruments LEAP 2017 and LEAP 4000X HR). The local electrode atom probes were 

operated in voltage-pulse mode with a specimen temperature of 60 K, a pulse repetition 

rate of 200 kHz, and a pulse fraction of 0.2. 

 

Overall transformation kinetics data reported elsewhere [19,20] are presented in Fig. 1. 

These data focus only on the start and finish reaction times to allow for an easier 

comparison; the start time corresponds to the first stage at which bainite could be 

detected (estimated fraction 0.01) and the finish time is when the fraction ceases to 

change. As expected, the time-temperature-transformation (TTT) bainitic curves shown 

in Fig. 1 are shifted to lower temperatures and longer times as the content of carbon is 

increased in the steel. In addition, alloying elements such Mn, and to lesser extent Cr, 

decrease the temperature range where ferrite can form [21]. 

Examples of TEM images for the different products of transformation identified in the 

studied steels are shown in Fig. 2. The difference in carbide distribution, intra-lath and 

inter-lath, respectively, makes the classical nomenclature of upper and lower bainite 

useful, both in describing the microstructural appearance and in classifying the overall 
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reaction mechanism. Upper bainitic ferrite () itself is free from precipitates, as 

illustrated in Fig. 2a. In contrast, lower bainitic microstructure with cementite inside the 

ferrite laths is shown in Fig. 2b. Mixed microstructures of upper and lower bainite can 

be observed defining the lower bainite start temperature (Table 2). This is because the 

carbon enrichment of the austenite caused by upper bainite transformation can result in 

the subsequent formation of lower bainite [22].  

Silicon additions can avoid the precipitation of cementite between the laths of bainitic 

ferrite (i.e., upper bainite is carbide-free in high Si steels). A typical carbide-free 

bainitic microstructure is displayed in Fig. 2c, where it is possible to observe the 

subunits of bainitic ferrite with retained austenite () among them. However, Si does not 

have a significant effect on the precipitation of cementite inside the ferrite laths. Thus, 

the formation of lower bainite is not inhibited in the MC-HSi steel at temperatures 

ranging from 325-375 ºC (See LBS in Table 2).  

Remarkably, the image shown in Fig. 2e failed to reveal carbide particles inside the 

bainitic ferrite after transformation at 300 ºC in the HC-HSi steel, leading to the 

doubtful hypothesis that upper bainite was formed at this extremely low temperature. 

After an extensive TEM examination, just a few 20 nm wide and 175 nm long cementite 

() particles were observed in a thicker bainitic ferrite lath (see also Fig. 2e). The 

presence of cementite as the lower bainite carbide in the HC-HSi steel was confirmed 

by APT after isothermal transformation at 200 and 300 ºC [11]. 

TEM examination also revealed that the growth of bainite is accompanied by the 

formation of dislocations in and around the bainitic ferrite (see Figs. 2a, 2d, and 2f). As 

bainitic transformation takes place at a temperature at which the shape change cannot be 

accommodated elastically, the plastic deformation that is driven by the shape change 
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causes the accumulation of dislocations, which increase in number as the transformation 

temperature decreases [23,24].  

The carbon contents in ferrite, as determined from APT, after transformation at different 

temperatures in the three studied steels, are shown in Fig. 3. The APT values are 

estimated using concentration profiles in selected volumes of ferrite that did not contain 

any carbon-enriched regions, such as cementite particles, dislocations and boundaries. 

Examples of 3D carbon atom maps showing the carbon distribution in bainitic ferrite 

regions in contact with austenite or cementite are reported elsewhere [10,11,25]. These 

APT results reveal the presence of a significant amount of carbon in bainitic ferrite, 

which was well above that expected from PE phase boundaries, in microstructures 

transformed below 350 ºC. Results suggest that bainitic ferrite forms as a supersaturated 

solution of carbon, in spite of the fact that slow reaction rates had been determined at 

these temperatures (Fig. 1). 

The explanation is that a sheaf of bainite consists of several sub-units and the 

experimental reaction rate applies to the whole bainite constituent, whereas it is 

proposed that each sub-unit grows with a velocity high enough to trap the carbon of the 

parent austenite. The rate of sub-units formed was measured using hot-stage 

photoemission electron microscopy to be 75 ms
-1

 [26], which is many orders of 

magnitude larger than that calculated assuming PE at the transformation front (0.083 

ms
-1

) [27]. Therefore, sub-unit growth occurs at a rate much faster than expected from 

carbon diffusion-controlled growth. The average lengthening rate of a sheaf must be 

then smaller than that of a sub-unit because of the delay between successive sub-units.  

The examination of experimental data from materials treated at 525 ºC down to 200 ºC 

in Fig. 3 did not show any abrupt change of the carbon content in bainitic ferrite that 



  

8 

could indicate a difference in bainite growth mechanism between high and low 

temperatures. In addition, there is no essential difference in the observed results 

between steels that transform to bainite with and without the interference of cementite 

precipitation. This observation lends strong support for the opinion that the bainitic 

ferrite grows supersaturated with carbon independent of the transformation temperature 

and the overall reaction rate.  

 

In summary, significant amounts of carbon in bainitic ferrite, which was well above that 

expected from para-equilibrium phase boundaries, were clearly observed in 

microstructures transformed below 350 ºC, confirming that bainitic ferrite forms as a 

supersaturated solution of carbon in spite of the slow reaction rates that had been 

determined at these temperatures. As the transformation temperature is increased, 

carbon diffusion is enhanced, providing an opportunity for the decarburization of the 

supersaturated ferrite soon after the growth event. The excess carbon may then partition 

into the residual austenite or precipitate in the ferrite in the form of carbides or carbon 

clusters. Results did not show any discontinuity on the carbon content in bainitic ferrite 

that could indicate a difference in bainite growth mechanism between high and low 

temperatures. This investigation provides strong evidence that the bainite 

transformation is essentially martensitic in nature. 
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Table Caption: 

 

Table 1: Chemical composition of studied steels, wt-%. The balance is Fe. 

 

Table 2: Experimental critical transformation temperatures. 
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Figure Captions: 

 

Fig. 1. Start and finish bainite reaction times as a function of transformation temperature. 

The start time corresponds to the first stage at which bainite could be detected (estimated 

fraction 0.01), whereas the finish time is when the bainite fraction ceases to change. 

 

Fig. 2. TEM images of (a) upper bainite (i.e. bainitic ferrite and inter-lath cementite 

particles) obtained at 500 ºC for 180 s in the MC-LSi steel; (b) lower bainite (i.e. bainitic 

ferrite and intra-lath cementite particles) obtained at 375 ºC for 180 s in the MC-LSi 

steel; (c) carbide-free bainite consisting of laths of bainitic ferrite separated by films of 

retained austenite obtained at 425 ºC for 1800 s in the MC-HSi steel; (d) dislocation 

debris in microstructure formed at 425 ºC for 1800 s in the MC-HSi steel; (e) bainitic 

microstructure containing bainitic ferrite, retained austenite and intra-lath cementite 

particles (see detail) obtained at 300 ºC for 28800 s in the HC-HSi steel; (f) dislocation 

debris in microstructure formed at 200 ºC for 345600 s in the MC-HSi steel;   is bainitic 

ferrite,  is retained austenite, and  is cementite. 

 

Fig. 3. Carbon content in bainitic ferrite as a function of transformation temperature. The 

para-equilibrium (PE) phase boundary between ferrite and austenite, and ferrite and 

cementite were calculated for the studied steels (dashed lines-graph has been enlarged to 

show more clearly calculated PE values) using commercially available software in 

combination with the SGSOL-SGTE Solution Database 3.0. 
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Table 1: Chemical composition of studied steels, wt-%. The balance is Fe. 

Steel C Si Mn Ni Cr Mo V 

MC-LSi 

(at. %) 

0.30 

(1.38) 

0.25 

(0.49) 

1.22 

(1.22) 

0.10 

(0.09) 

0.14 

(0.15) 

0.03 

(0.02) 
--- 

MC-HSi 

(at. %) 

0.29 

(1.32) 

1.48 

(2.87) 

2.06 

(2.04) 
--- 

0.43 

(0.45) 

0.27 

(0.15) 
--- 

HC-HSi 

(at. %) 

0.98 

(4.34) 

1.46 

(2.76) 

1.89 

(1.82) 
--- 

1.26 

(1.28) 

0.26 

(0.14) 

0.09 

(0.09) 

 

Table(s)
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Table 2: Experimental critical transformation temperatures 

Steel BS, ºC LBS, ºC MS, ºC 

MC-LSi 525  12 450  12 342  2 

MC-HSi 450  12 400  12 299  8 

HC-HSi 335  12 335  12 123  4 
BS bainite start, LBS lower bainite start and MS martensite start temperatures 
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