CONCEBIDO EL REGISTRO DE ACUERDO

con los datos que figuran en la presente descripción y según el contenido de la Memoria adjunta.

PATENTE DE INVENCIÓN

<table>
<thead>
<tr>
<th>20</th>
<th>PRIORIDADES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>NÚMERO</td>
</tr>
<tr>
<td>22</td>
<td>FECHA</td>
</tr>
<tr>
<td>23</td>
<td>PAÍS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>FECHA DE PUBLICIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>CLASIFICACIÓN INTERNACIONAL</td>
</tr>
<tr>
<td>26</td>
<td>PATENTE DE LA QUE ES DIVISIONARIA</td>
</tr>
</tbody>
</table>

TÍTULO DE LA INVENCIÓN

"Procedimiento de preparación de catalizadores de platino y/o paladio soportados de alta actividad"

<table>
<thead>
<tr>
<th>27</th>
<th>SOLICITANTE (ES):</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Consejo Superior Investigaciones Científicas</td>
</tr>
</tbody>
</table>

DOMICILIO DEL SOLICITANTE

Serrano, 150 - MADRID-6

<table>
<thead>
<tr>
<th>29</th>
<th>INVENTOR (ES):</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>J. Soria, M. Royo, C. Chacón y J. Blanco</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31</th>
<th>TITULAR (ES):</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Consejo Superior Investigaciones Científicas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33</th>
<th>REPRESENTANTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>D. Javier Trueba Gutiérrez</td>
</tr>
</tbody>
</table>

Firma

Diciembre de 1.977
MEMORIA DESCRIP'TIVA

La utilización de metales nobles como fase activa de catalizadores es ampliamente conocida en numerosas reacciones químicas. Sin embargo, el uso industrial de estos catalizadores de gran actividad está limitado en muchos casos por razón de su elevado coste. Por ello, la investigación en este campo se ha orientado generalmente por dos vertientes diferentes: 1a. la sustitución de estos catalizadores por otros más económicos; 2a. la mejor utilización del metal noble soportado.

La preparación de los catalizadores objeto de esta patente sigue el segundo camino: el procedimiento desarrollado consigue situar las partículas de metal noble en lugares accesibles para los reactantes y obtener relaciones superficie/peso del metal de valor elevado, con el consiguiente uso económico del metal noble utilizado.

Son diversos los trabajos publicados en este sentido. Así, Ivannikov et al. (1), Natta y Agliardi (2) y Turkevich y Kim (3) utilizando suspensiones coloidales consiguen depositar pequeños cristales de metales nobles sobre diversos soportes.

En general, la preparación de partículas metálicas coloidales depende de las impurezas presentes y de los agentes reductores utilizados (4) (5) (6). En el procedimiento que se describe a continuación se han variado esencialmente estas variables con el fin de optimizar las propiedades catalíticas del metal noble una vez depositado sobre soportes convencionales.

El procedimiento de preparación de estos catalizadores consta principalmente de tres etapas:

(3) J. Turkevich y G. Kim; Science 169, 873 (1970)
(4) R.H. Morriss y W.O. Milligan; J. Electromicroscopy 8, 17 (1960)
(5) J. Turkevich, P.C. Stevenson y J. Hillier; Discussions Faraday Soc. 11, 55 (1951)
(6) M. Bowdart, A. Aldag, J.E. Benson, N. Dougherty, C.G. Harkins; J. Catalysis, 6, 92 (1966)
- Preparación de una solución semi-coloidal del metal noble
- Impregnación de un soporte seleccionado con la solución anterior
- Secado y tratamiento del sólido obtenido en atmósfera de hidrógeno hasta reducción total

La preparación de las soluciones metálicas semi-coloidales se ha llevado a cabo mediante la reducción parcial de soluciones diluidas de compuestos de los metales nobles, en presencia de un catalizador y en medio generalmente acuoso de carácter ácido. El catalizador utilizado en esta transformación (Pt, Pd, Cu, etc.) preferiblemente se dispara en las paredes de la vasija utilizada en la preparación de la suspensión semi-coloidal. La presencia del catalizador aumenta muy significativamente la velocidad de formación del coloide. La suspensión semi-coloidal se obtiene interrumpiendo la transformación del catión metálico a coloide retirando el catalizador del medio de reacción y enfriando la mezcla en un tiempo previamente determinado.

La impregnación se realiza poniendo en contacto cantidades adecuadas de la solución semi-coloidal con soportes convencionales (alúmina, sílice, carbón, etc.) a temperaturas próximas al ambiente. Transcurridas 24-48 horas el sólido se separa por decantación.

Seguidamente, el sólido obtenido se seca y se trata con hidrógeno a 500°C, con lo que se consigue que el platino que todavía permanecía en forma catiónica pase a estado metálico.

Los catalizadores así preparados presentan un tamaño medio de cristal del metal noble depositado inferior a los 100 Å (generalmente oscila entre los 25 y 50 Å) y el metal se encuentra localizado, de forma casi total, en la superficie externa del soporte.

Ejemplo nº 1. Reacción de oxidación

En un matraz de vidrio de 1.000 cc de capacidad cuyas paredes fueron previamente recubiertas de una película de platino, se introducen 200 cc de una disolución al 0,1% en peso de ácido cloroplatínico en ácido clorhídrico 0,1 N y 100 cc de una disolución acuosa al 2% en peso de citrato sódico completando con agua hasta 600 cc. La mezcla se pone en ebullición con refluo y después de 25 minutos se corta la calefacción y la solución semi-coloidal se vierte sobre 100 gr de \(\gamma \)-Al\(_2\)O\(_3\) (pasti-
llas cilíndricas de 4 x 4 mm, 190 m²/g, y de elevada pureza).

La impregnación se realiza manteniendo la alúmina en contacto con
la solución durante 24 horas a temperatura ambiente. Posteriormente se descanta, se
seca a temperaturas entre 20 y 250°C para finalmente someter al sólido a un tratamien-
to reductor con hidrógeno a 500°C durante 6 horas. El tamaño de cristal del platino
soportado se encuentra entre 16 y 75 Å siendo los de mayor concentración de 36 Å
y se halla localizado de forma casi total en la superficie externa del soporte.

Este catalizador se ensayó en un reactor adiabático diseñado para la
combustión total de trazas de hidrocarburos en aire contaminado. Operando con una
velocidad espacial de 15.000 h⁻¹, temperaturas de ignición de 200 - 240°C y alimen-
tando el reactor con aire que contiene el 1% vol. de propano se consigue la transfor-
mación de más del 90% del hidrocarburo en anhídrido carbónico y vapor de agua.

Ejemplo nº 2. Reacción de reducción

En un matraz de 1000 cc de capacidad cuyas paredes fueron previa-
mente recubiertas de una película de platino se introducen 125 cc de una disolución
de ácido cloroplátnico con contenido de 0.0483 gr de platino, 250 cc de una disolu-
ción de citrato sódico al 0.1% y 125 cc de agua. La mezcla se lleva a ebullición y
la formación del platino coloidal se interrumpe al cabo de 35 minutos. La solución se
mi-coloidal se vierte sobre 50 gr de γ-Al₂O₃ (extrudidos de 3 x 30 mm, 170 m²/g de
alta pureza). Transcurridas 24 horas, se separa el sólido, se seca entre 20 y 220°C
de temperatura y se somete a un tratamiento reductor con hidrógeno a 500°C durante
6 horas.

El catalizador así preparado se ensayó en un reactor isotermo diseñado
para la reducción de trazas de óxidos de nitrógeno presentes en los gases de chimenea
de las fábricas de ácido nítrico. Las condiciones de operación fueron las siguientes:

Alimentación:
3000 cc/min C.N. Nitrógeno
80 cc/min C.N. Oxígeno
10 cc/min C.N. Oxido nítrico
10 cc/min C.N. Amoníaco

Catalizador: 14 gramos

Temperatura de reacción: 170 - 220°C
La reducción óxido nítrico a nitrógeno y vapor de agua en estas condiciones fue superior al 95%.

NOTA

La Patente de Invención, que se solicita por veinte años, para España, de acuerdo con la vigente Legislación, deberá recaer sobre: "PROCEDIMIENTO DE PREPARACION DE CATALIZADORES DE PLATINO Y/O PALADIO SOPORTADOS DE ALTA ACTIVIDAD", según las características esenciales de las siguientes:

REIVINDICACIONES

Se reivindica como de nueva y propia invención la propiedad y explotación exclusiva de:

1a.- "PROCEDIMIENTO DE PREPARACION DE CATALIZADORES DE PLATINO Y/O PALADIO SOPORTADOS DE ALTA ACTIVIDAD" caracterizado porque en una primera etapa se lleva a cabo la preparación de suspensiones semi-coloidales de metales nobles en presencia de un catalizador apropiado mediante la reducción previa de los compuestos metálicos correspondientes.

2.- Un procedimiento caracterizado porque en una segunda y tercera etapa se consigue la preparación de metales nobles soportados fundamentado en la utilización de suspensiones semi-coloidales fabricadas según la reivindicación 1a., que impregnan cualquiera de los soportes rígidos empleados en la fabricación industrial de catalizadores y en el tratamiento posterior con gases reductores a alta temperatura.

3a.- Un procedimiento según la reivindicaciones 1a. y 2a. y caracterizado porque la relación superficie/peso del metal noble está ampliamente favorecida y la distribución de dicho metal en la superficie del soporte es adecuada para ejercer una función catalítica.

4a.- PROCEDIMIENTO DE PREPARACION DE CATALIZADORES DE PLATINO Y/O PALADIO SOPORTADOS DE ALTA ACTIVIDAD" tal y como se des-
cribe en el cuerpo de esta memoria y reivindicaciones que consta de seis páginas escritas por una sola cara.