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Abstract 

This chapter reviews some fundamentals of laser-induced breakdown spectroscopy (LIBS) and 

describes some experimental studies developed in our laboratory on gases such as nitrogen, 

oxygen and air. LIBS of these gases at different pressures, in the spectral range ultraviolet-visible-

near infrared (UV-Vis-NIR), was excited by using a high-power transverse excitation atmospheric 

(TEA) CO2 laser (λ=9.621 and 10.591 µm; tFWHM=64 ns; and different laser power densities). The 

spectra of the generated plasmas are dominated by emission of strong atomic, ionic species and 

molecular bands. Excitation temperatures were estimated by means of atomic and ionic lines. 

Electron number densities were deduced from the Stark broadening of several ionic lines. The 

characteristics of the spectral emission intensities from different species have been investigated as 

functions of the gas pressure and laser irradiance. Optical breakdown threshold intensities in 

different gases have been measured experimentally. The physical processes leading to laser-

induced breakdown of the gases have been analyzed. Plasma characteristics in LIBS of air were 

examined in detail on the emission lines of N+, O+ and C by means of time-resolved optical-

emission spectroscopy (OES) technique. The results show a faster decay of continuum and ionic 

spectral species than of neutral atomic and molecular ones. The velocity and kinetic energy 

distributions for different species were obtained from time-of-flight (TOF) OES measurements. 

Excitation temperature and electron density in the laser-induced plasma were estimated from the 

analysis of spectral data at various times from the laser pulse incidence. Temporal evolution of 

electron density has been used for the estimation of the three-body recombination rate constant. 
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1. Introduction 

A remarkable demonstration of the interaction of radiation with matter is the plasma 

production which occurs when a powerful laser is focused in a gas. Strong pulses of infrared (IR) 

laser light can cause breakdown and plasma formation in gases which are usually transparent at 

these wavelengths. By this means gases are transformed into opaque, highly conducting plasmas 

in times of the order of nanoseconds. If the radiant energy in the focus exceeds the threshold value 

for breakdown, as happens with high-power lasers (ruby, Nd:YAG, CO2, excimer, etc), the gas 

becomes highly ionized and the plasma thus produced will practically absorb the beam. In 

atmospheric air, for example, laser-beam-induced breakdown is characterized by a brilliant flash 

of bluish-white light at the lens focus accompanied by a distinctive cracking noise. This 

transformation from neutral gas into hot plasma takes place in three quite distinct stages: 

initiation, formative growth, and plasma development accompanied by shock wave generation and 

propagation in the surrounding gas. A fourth and final stage, extinction, follows.  

The formation of laser-induced breakdown (LIB) plasma in a gas has been investigated 

since its discovery by Maker et al [1] resulting in several studies that have been summarized by 

different authors [2-16]. Several hundred papers describing various aspects of the phenomenon 

have been published, and a healthy controversy appears to be in existence concerning the 

mechanisms by which gases can become almost perfect conductors under the influence of short-

duration pulses of long-wavelength light alone. The LIB plasma develops a shock wave into the 

ambient medium and the gas is heated to high temperatures [17]. It is evident that after 

breakdown, the plasma becomes very opaque and an abrupt shutoff of the laser transmitted light 

occurs. Due to the many experimental parameters involved in the LIB, an exhaustive investigation 

of the plasma would involve the processing of an impressive number of records. To investigate 

LIB of gases several diagnostic techniques have been employed in the last years. Optical emission 

spectroscopy (OES) is a powerful tool to get information on the LIB species. Because of the 

transient features of the plume created by LIB, OES technique with time and space resolution is 
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especially appropriate to obtain information about the behaviour of the created species in space 

and time as well as the dynamics of the plasma evolution. Although OES gives only partial 

information about the plasma particles, this diagnostic technique helped us to draw a picture of the 

plasma in terms of the emitting chemical species, to evaluate their possible mechanisms of 

excitation and formation and to study the role of gas-phase reactions in the plasma expansion 

process.  

The objectives of this work are: (i) to show some fundamentals of laser-induced breakdown 

spectroscopy (LIBS) and, (ii) to review of our recent results on LIBS analysis of chemical species 

in gases plasmas induced by high-power IR CO2 laser, adding some new results. This chapter 

describes the experimental results obtained from UV-Visible-near IR spectra of LIB plasmas 

generated by carbon dioxide laser pulses in gases such as N2, O2 and air. The major parts of this 

work are already published by us in different journals [18-21]. We consider here only research on 

the plasma induced when a high-intensity laser radiation is focused in a gas. The emission 

observed in the laser-induced plasma region is due to electronic relaxation of excited atoms, ions 

and molecular bands of different diatomic molecules. Excitation temperatures and electron 

number densities were calculated by means of different atomic and ionic lines. Estimates of 

vibrational and rotational temperatures of some molecules electronically excited species are also 

reported. The characteristics of the spectral emission intensities from different species have been 

investigated as functions of the gas pressure and laser irradiance. Optical breakdown threshold 

intensities in the different studied gases have been determined.  

 For air we discuss the dynamics of the plume expansion and formation of different atomic, 

ionic and molecular species for different delay times with respect to the beginning of the laser 

pulse. The velocity and kinetic distributions for the different species were obtained from the time-

of-flight (TOF) measurements using time-resolved OES. Possible mechanisms for the production 

of these distributions are discussed. Line intensities from different atomic and ionic species were 

used for determining electron temperature and Stark-broadened profiles of some lines were 
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employed to calculate electron density. The temporal behavior of electron number density has 

been employed for the estimation of three-body recombination rate constant and recombination 

time. The present paper is aimed at discussing thermo-chemical processes produced by a high-

power IR CO2 pulsed laser on several gases and at evaluating LIB changes which are of 

fundamental importance in establishing the mechanisms responsible for the plasma emission. 

 
1.1 Laser-Induced Breakdown Spectroscopy (LIBS) 

 Excellent textbooks and reviews about the fundamentals of laser-induced breakdown 

spectroscopy (LIBS) and examples of various processes are readily available today [13-16]. LIBS, 

also sometimes called laser-induced plasma spectroscopy, is a technique of atomic-molecular 

emission spectroscopy which utilizes a highly-power laser pulse as the excitation source. LIBS 

can analyze any matter regardless of its physical state, being it solid, liquid or gas. Because all 

elements emit light when excited to sufficiently high energy, LIBS can detect different species 

(atomic, ionic and molecular) and limited only by the power of the laser as well as the sensitivity 

and wavelength range of the spectrograph/detector. Basically LIBS makes use of OES and is to 

this extent very similar to arc/spark emission spectroscopy. LIBS operates by focusing the laser 

onto a small volume of the sample; when the laser is triggered it breaks a very small amount of 

gas which instantaneously generates a plasma plume with temperatures of about 10000–30000 K. 

At these temperatures, the gas dissociates (breakdown) into excited ionic and atomic species. At 

the early time, the plasma emits a continuum of radiation which does not contain any known 

information about the species present in the plume and within a very small timeframe the plasma 

expands at supersonic velocities and cools. At this point the characteristic atomic/ionic and 

molecular emission lines of the species can be observed. The delay between the emission of the 

continuum and characteristic radiation is of the order of 1 µs, this is one of the reasons for 

temporally gating the detector. LIBS is technically similar and complementary to a number of 

other laser-based techniques (Raman spectroscopy, laser-induced fluorescence etc). In fact devices 
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are now being manufactured which combine these techniques in a single instrument, allowing the 

atomic, molecular and structural characterization of a sample as well as giving a deeper insight 

into physical properties. A typical LIBS system consists of a pulsed laser and a spectrometer with 

a wide spectral range and a high sensitivity, fast response rate and time gated detector. The 

principal advantages of LIBS over the conventional analytical spectroscopic techniques are its 

simplicity and the sampling speed.  

 

1.2 Laser parameters 

 
 The variables that can influence the LIBS measurements are mainly the laser properties i.e. 

wavelength, energy, pulse duration, focusing spot size, shot-to-shot energy fluctuations, ambient 

conditions, physical properties of the sample and the detection window (delay time and gate 

width). How these parameters affect the precision and accuracy of LIBS are addressed below. In 

LIBS a high-power laser is used to breakdown a gaseous sample in the form of plasma. The 

primary energy related parameters influencing the laser-gas interaction are the laser peak power 

PW (or radiant pulse energy per time, in W) and the laser peak intensity IW (power density or 

irradiance; energy per unit area and time, W cm-2) given by 

,/ Las
FWHMWW τEP =           (1.1) 

2
WW / rPI π= ,            (1.2) 

where EW (in J) is the pulse energy,  (in s) is the laser pulse duration of the full width at half 

maximum (FWHM) and  is the focal spot area (cm

Las
FWHMτ

2rπ 2). The fluence ΦW (in J cm-2) on the 

focused spot area, the photon flux density Fph (photon cm-2 s-1), electric field FE (V cm-1) and 

pressure radiation pR (in Pa) are given by 

2
WW / rE π=Φ ,          (1.3) 

hcIF /Wph λ= ,                     (1.4) 
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0WE / εcIF = ,               (1.5) 

cIp /2 WR = ,                       (1.6) 

where λ is the laser wavelength, h is the Planck constant, c is the speed of light, and ε0 is the 

electric constant. In Eq. (1.6) we suppose that the laser radiation is totally reflected and therefore 

the pressure radiation can be doubled. The laser peak intensity IW, fluence, photon flux, electric 

field and pressure radiation are inversely proportional to the focused spot area. For LIBS, the peak 

intensity IW (and the other properties ΦW, Fph, FE and pR) that can be delivered to the sample is 

more important than the absolute value of the laser power. For the formation of plasma, the laser 

irradiance needs to exceed the threshold value, typically of the order of several GWäcm-2 for a 

nanosecond laser pulse. If the laser energy is very close to the breakdown threshold, the pulse-to-

pulse fluctuations can cause the plasma condition to be irreproducible, which results in poor 

measurement precision. The intensities of the emission lines are proportional to the laser energy 

while the laser plasma is in the optical thin region. When the laser energy increases further, it 

produces very dense and hot plasma that can absorb laser energy. This will lead to an increase in 

the continuum emission and a decrease in the signal intensity. Besides, the laser pulse duration 

and the shot-to-shot fluctuations can also affect the signal reproducibility and hence LIBS 

precision. 

 

1.3 Focal properties 

 
 The laser power density at the focal volume is inversely proportional to the focused spot 

size. For a laser beam with a Gaussian profile, the focused bean waist w0 is given by 

s
0 w

fw
π
λ

= ,           (1.7) 

where f is the focal length of the lens and ws is the radius of the unfocused beam. The higher laser 

power density at the focal point can be achieved by reducing the focused beam waist using a 
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shorter focal length lens. On the other hand, the angular spread in laser light generated by the 

diffraction of plane waves passing through a circular aperture consists of a central, bright circular 

spot (the Airy disk) surrounded by a series of bright rings. The beam divergence angle q, measured 

to edges of Airy disk, is given by q=2.44äλ/d, where λ is the laser wavelength and d is the 

diameter of the circular aperture. It can be shown that a laser beam, with beam divergence qi, 

incident on a lens of focal length f, whose diameter is several times larger than the width of the 

incident beam, is focused to a diffraction-limited spot of diameter approximately equal to fäqi. If 

the focal region of the laser beam is assumed to be cylindrical is shape, the spot size in terms of 

length l, can be approximated as  

dfl i /)12( 2θ−= .          (1.8) 

2. Optical breakdown in gases 

 Optical breakdown in gases leads to the generation of free electrons and ions, electrons in 

gases are either bound to a particular molecule or are quasifree when they have sufficient kinetic 

energy to move without being captured by local molecular energy potentials. Thus, transitions 

bound and quasi-free states are the equivalent of ionization of molecules in gases. The optical 

breakdown process describes in greater detail by Raizer [2-3, 23], starts when a laser beam with 

sufficient power density is focused down, and a sufficient radiation flux density is achieved, 

leading to a discharge/spark. This discharge is somewhat similar to the discharge induced by a 

sufficient electric field between the electrodes of a spark plug in an internal combustion engine. 

The temperature and pressure of the gas in the region of this discharge will be increased 

significantly as the energy of the laser is absorbed to cause this so called laser induced optical 

breakdown. The energy deposition into a gas by a focused laser beam can be described by four 

progressive steps: (i) initial release of electrons by multi-photon effect; (ii) ionization of the gas in 

the focal region by the cascade release of electrons; (iii) absorption and reflection of laser energy 

by the gaseous plasma, rapid expansion of the plasma and detonation wave formation; and (iv) the 
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propagation of the detonation wave into the surrounding gas and relaxation of the focal plasma 

region.   
 

2.1 LIB plasma 

 Plasma is a local assembly of atoms, molecules, ions and free electrons, overall electrically 

neutral, in which the charged species often act collectively. The LIB plasma is initiated by a single 

laser pulse. If we consider the temporal evolution of LIB plasma, at early times the ionization 

grade is high. As electron-ion recombination proceeds, neutral atoms and molecules form. A 

recombination occurs when a free electron is captured into an ionic or atomic energy level and 

gives up its excess kinetic energy in the form of a photon.  LIB plasmas are characterized by a 

variety of parameters, the most basic being the degree of ionization. A weakly ionized plasma is 

one in which the ratio of electrons to other species is less than 10%. At the other extreme, high 

ionized plasmas may have atoms stripped of many of their electrons, resulting in very high 

electron to atom/ion ratios. LIB plasmas typically, for low power laser intensities, fall in the 

category of weak ionized plasmas. At high laser power densities, LIB plasmas correspond to 

strong ionized plasmas. 

 
2.2. Initiation mechanism: Multiphoton ionization (MPI) and electron impact 

ionization (EII) 

 
 Plasma is initiated by electron generation and electron density growth. The conventional 

LIB plasma can be initiated in two methods: multiphoton ionization (MPI) and electron impact 

ionization (EII) both followed by electron cascade. EII is sometimes denominated as cascade 

ionization process or avalanche ionization due to inverse bremsstrahlung (IB) heating of 

electrons. MPI involves the simultaneous absorption of a number of photons n, required to equal 

the ionization potential IP(A) of an atom or molecule A  

nhn + A Ø A+ + e + IP(A); nhn ¥ IP(A),       (2.1) 
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where n is the number of photons needed to strip off an electron, which corresponds to the integer 

part of the quantity: 

1oscP +
+

=
ν
ε

h
In .          (2.2)  

Here oscε  is the oscillation energy of a free electron in the alternating electric field. Within the 

classical microwave breakdown theory [22], a free electron oscillates in the alternating electric 

field E of the laser electromagnetic wave with frequency ω  and wavelength λ (µm), and its 

oscillation energy,  

[ ] 2
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e
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EeeV −×=== ,                                      (2.3) 

remains constant. In Eq. (2.3) e is the electron charge and Iw is the laser intensity [irradiance, 

power density or flux density in Wäcm-2; Eq. 1.2]. The probability of MPI , by absorbing 

simultaneously n laser photons to strip off an electron, is expressed by the classical formula [23] 

MPIW
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14

2/31215

P

osc2/31
MPI

1035.61088.136.1s λεω  ,            (2.4) 

where IP is in eV. Besides, the probability of simultaneous absorption of photons decreases with 

the number of photons n necessary to cause ionization. Therefore, the MPI rate is proportional to 

IW
n and inversely proportional to IP

n. 

 EII process consists on the absorption of light photon by free or quasifree electrons, 

producing electrons with enough kinetic energy e* to ionize one atom or molecule 

e + nhn + A Ø e* + A Ø 2e + A+.        (2.5)  

Two conditions must co-exist for EII to initiate: (i) an initial electron must reside in the focal 

volume; and (ii) the initial electron must acquire energy which exceeds the ionization energy of 

the material in the focus. These free or quasifree electrons can be produced by the effect of cosmic 

ray ionization (natural ionization), by means of MPI, or by a breakdown induced in some 

impurity. The equilibrium number of free electrons and ions per cm3 in the atmosphere at the 

earth’s surface is about 500 [24]. The electron cascade ionization process requires the presence of 
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either free electrons or excited atoms or molecules in the focal region for their initiation, but the 

possibility of a free electron or an excited atom produced by natural causes being present there 

during the laser flash can be discounted, as Tozer pointed out [25]. They occur naturally in the 

earth’s atmosphere, produced at a rate of about 10 cm-3äs-1 at the earth’s surface by the presence 

of local radioactivity and the passage of ultraviolet radiation and cosmic rays. Most electrons 

become rapidly attached to electronegative atoms and molecules to form negative ions. The mean 

lifetime of a free electron in the atmosphere is about 10-7 s, so that the aggregate life of free 

electrons is about 10-6 s when liberated at the rate of º 10 cm-3äs-1. The probability of finding a 

free electron in the focal region º 10-4 cm3 during a laser flash º 10-8 s is thus entirely negligible, 

as is the chance for finding an excited atom. One concludes that the laser light itself produces the 

initiatory electrons. These electrons in the focal volume gain sufficient energy, from the laser field 

through IB collision with neutrals, to ionize atoms, molecules or ions by inelastic electron-particle 

collision resulting in two electrons of lower energy being available to start the process again  

e*[e ¥IP(A)] + A Ø A+ + 2e; e*[e ¥IP(A+)] + A+ Ø A2+ + 2e.     (2.6) 

Thus a third species (atom-molecule/ion) is necessary for conserving momentum and energy 

during optical absorption. The recurring sequences of IB absorption events and subsequent EII 

lead to a rapid growth in the number of free electrons, if the laser intensity is sufficient to 

overcome the losses of free electrons through diffusion out of the focal volume and through 

recombination. The MPI mechanism dominates electron generation only for low exciting 

wavelengths. Therefore initial EII becomes a problem at a higher wavelength because neither 

cascade nor MPI can furnish sufficient number of electrons. At higher laser intensities, electric 

field of the laser is able to pull an outer shell electron out of its orbit. After the initial electron 

ejection the LIB plasma is commonly maintained by the absorption of optical energy and the EII. 

Electrons in the laser field will gain energy through electron-neutral IB collisions and will lose 

energy by elastic and inelastic collisions with the neutral species through excitation of rotational 

and vibrational degree of freedom of molecules and excitation of electronic states. While some 
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electrons will be lost by attachment, new electrons will be produced by ionizing collisions. At 

high laser intensity, few electrons will be generated with energy larger than the ionization energy. 

The wavelength-resolved emission spectra from the laser plasma are not expected to vary due to 

the plasma origin. However plasma origin may be relevant, if the enhancement is observed 

between UV, visible and IR excitation wavelengths.  

 Once that LIB plasma is formed, its growth is governed by the continuity rate equation for 

the electron density [26] due to the combined effect of EII and MPI 

e
2

e
2

eReaWnei
e nDnnNIWn

dt
dn n ∇+−−+= ννν ,       (2.7) 

where ni is the impact ionization rate, Wn is the multiphoton ionization rate coefficient, Iw is the 

intensity of the laser beam, n is the number of photons required for MPI, N is the number of 

atoms/molecules per unit volume, na is the attachment rate, nR is the recombination rate and De is 

the electron diffusion coefficient. The term dne/dt is the net rate of change in electron 

concentration at a point in the focal volume at a time t after the release of initiatory electrons. On 

the right side of the equation (2.7), the first term is the electron generation due to impact 

ionization. The second term on the right is MPI rate. The third, fourth and fifth terms are sink 

terms which represent electron attachment, recombination and diffusion, respectively. Impact 

ionization is defined by multiplying the number of electrons per unit volume to the impact 

ionization rate ni. The impact ionization rate refers to the rate at which electrons are generated as a 

result of ionizing collisions. At high laser intensity, a few new electrons can be generated and gain 

energy larger than their ionization energy which leads to the generation of new electrons by 

impact ionization, thereby leading to the cascade growth. Recombination losses are usually not 

important in the breakdown forming stage. 

 
2.3 . Electron attachment, recombination and diffusion 

 Electron attachment is the rate of electron attachment na multiplied by the number of 

electrons per unit volume. The LIB plasma typically loose electrons to the neutral species via the 
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attachment mechanism in the form of three-body attachment or two-body dissociative attachment.  

Three-body attachment is: e + AB + X Ø AB- + X, where X appears to be a facilitator that allows 

the electrons to be gained by AB even through X remains unchanged throughout the process. Two-

body dissociative attachment is: e + AB Ø A- + B. In this mechanism the electrons must exhibit a 

threshold electron energy that is equal to the difference between the dissociative energy of AB and 

the attachment energy of A, which results in the separation of A and B. 

 Electron recombination is the rate of electron recombination nR multiplied to the number of 

electrons per unit volume. When the electron density is high, such as during the last stage of 

cascade breakdown, the LIB plasma can lose electrons to ions through electron-ion recombination. 

Similar to the electron attachment, three-body recombination and two-body recombination occurs 

as: e + AB+ + X Ø AB + X, e + AB+ Ø A + B. The electron-ion recombination rate has been studied 

theoretically for a three-body recombination by Gurevich and Pitaevskii [27]  

][108.8 1
3.5

e

2
e27 −−×= s

T
n

Rν ,         (2.8)  

where ne is the electron density in cm-3 and Te is the electron temperature in eV. The electron 

diffusion term is expressed as [Eq. (2.7)]. This loss mechanism, more important for a small 

diameter laser beam, is the diffusion of electrons out of the focal volume. Morgan [6] referred to 

the combined effect of diffusion and cascade ionization as the responsible for top-hat intensity 

profile. By imposing an electron skin at the edge of the intensity profile, they found that the 

electron density grows exponentially as 

e
2

e nD ∇

2
e

e
408.2
r

Dv = ,          (2.9)  

where ev  is the average electron velocity, De is electron diffusion coefficient and r is the radius 

of the beam. The equation (2.9) is intended to be an upper boundary for diffusion losses only 

because laser beams typically have a radial distribution closer to the Gaussian rather than top-hat 

distribution.  
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 In LIB plasmas, the decrease of electron density ne is mainly due to recombination between 

electrons and ions in the plasma. These processes correspond to the so-called radiative 

recombination and three-body recombination processes in which a third body may be either a 

heavy particle or an electron. The electron number density ne (cm-3) in the laser induced plasma is 

governed by the kinetic balance equation [28, 29] 

,
d

d 3
erecieion

e nkNnk
t

n
−=          (2.10) 

where Ni  indicates the concentration of heavy particles (neutrals and ions) and kion (cm3 s-1) and 

krec (cm6 s-1) denote the rate constants of ionization (e + A Ø A+ + 2e) and tree-body electron-ion 

recombination (2e + A+ Ø A* + e), respectively. The excess of energy in three-body electron-ion 

recombination is deposited as kinetic energy to a free electron, which participates in the 

recombination process as a third body partner. The three-body electron-ion recombination energy 

can be converted into radiation in the process of radiative electron-ion recombination (e + A+ Ø A* 

Ø A + hn). The cross section of this process is relatively low and it can be competitive with three-

body electron-ion recombination only when the plasma density is low. If dne/dt=0 an equilibrium 

condition can be established; if dne/dt≠0, then the ionization (dne/dt>0) or the three-body 

recombination (dne/dt<0) prevails and departure from equilibrium occurs [28]. The second 

derivative of Y=dne/dt with respect to the electron number density is given by  

.6
d
d

erec2
e

2

nk
n
Y

−=           (2.11) 

The recombination time can be determined by the value of the rate constant of the recombination 

process as trec=1/(ne
2.krec) [29].  

 In summary, the process of plasma initiation essentially consists of the formation of free or 

quasi-free electrons by interplay of MPI and EII. Therefore, two mechanisms MPI and EII can 

initiate a conventional LIB plasma formation. After the LIB plasma formation the temporal 

growth is governed by the equation (2.7). The recombination of these two source terms (MPI and 

EII) and three sink terms (electron attachment, electron recombination and electron diffusion) 
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controls the development of the conventional LIB plasma. The decrease of ne is mainly due to the 

so-called radiative recombination and three-body recombination processes in which a third body 

may be either a heavy particle or an electron. These mechanisms that directly affect the temporal 

development of the LIB plasma, determine the necessary spectroscopic techniques required to 

spectrally resolve elemental species inside the LIB plasma. 

 
2.4 . Optical breakdown threshold intensities 

 The minimum power density required to form a plasma is called the breakdown threshold; 

different types of laser, sample, and environmental conditions will have different breakdown 

thresholds. Breakdown thresholds of solids and liquids are usually much lower than those for 

gases. The principal method of investigation has been to measure the beam intensity required for 

electron liberation and the minimum intensity needed to produce breakdown as a function of the 

radiation wavelength and pressure of a variety of gases. Precise measurements of the intensities of 

laser radiation required to release initiatory electrons or to lead to breakdown are made only with 

the greatest difficulty. The difficulties arise on account of the imprecise definition of the extent of 

the focal region and inaccurate knowledge of the spatial-temporal characteristics of the beam 

intensity within the focal region, which, in turn, lead to uncertainties in the absolute value of the 

instantaneous radiation intensity. The parameters which characterize a focused laser beam are its 

polarization, wavelength, line width, duration, divergence and the temporal and spatial distribution 

of intensity. For a given pulse these are functions of the laser and focusing system governed by the 

mode structure within the laser cavity, by the aberration functions of the lens or focusing mirror, 

and by the beam diameter at the lens or mirror. In specifying the electron liberation or breakdown 

threshold intensities all these factors should ideally be specified, but, regrettably, in the literature 

there is often inadequate detail and essential features of experimental procedures are frequently 

omitted. In consequence many published data are of little value, serving merely to indicate orders 

of magnitude and broad trends only rather than absolute values in well-defined conditions. For 
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these reasons data published by various workers are often contradictory, and reliable interpretation 

is sometimes difficult to make. 

 For gases to breakdown, a certain concentration of electrons has to be reached before the 

end of the laser pulse. Laser-induced breakdown is frequently defined [5, 30] as an electron 

density multiplication during the laser pulse by a factor of 1013 corresponding to 43 electron 

generations. In fact, multiplying the natural electron density by 1013 leads to neº1016 cm−3 which is 

the electron density of plasmas at atmospheric pressure for which electron-ion IB dominates 

electron-neutral IB. With respect to electron-neutral IB, the electron-ion IB has a much higher 

efficiency as a result of the long range Coulomb interaction, and a plasma with an electron density 

ne=1016 cm−3 is quasi instantaneously completely ionized. 

 The condition for optical breakdown is taken to occur when the number density of the 

induced electrons equals the critical density for the laser wavelength. The critical plasma density 

[ ] [ ]µm/101.14/cm 221223crit
e λπω ×≅=− emn  (  for CO319crit

e 10 −≅ cmn 2 laser) is the density where 

the electron plasma frequency equals to the laser frequency. When the electron density exceeds the 

critical density the sample is not transparent any more. Energetic electrons produce excited species 

through impact excitation, dissociation and ionization of gas molecules. According to the 

microwave theory [22], electrons gain energy from the laser radiation field by elastic collisions 

with neutral atoms at the rate: , where F)]/([)/()d/d( 2
c

22
c

2
E

2
gain νωνε +⋅= mFet E and ω are the 

root-mean-square electric field and angular frequency of the radiation and νc is the electron-neutral 

collision frequency. 

 Several models have been developed to describe the optical breakdown and to compute the 

breakdown threshold. Chan et al. [30] proposed a model based on the energy balance of electrons 

neglecting their energy distribution. According to this work, breakdown occurred if the laser 

heating of electrons by IB induces a gain of electron energy that overcomes the energy losses. 

Thus, one requires a laser power density (power threshold density) 
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where m and e are the mass and charge of electrons, c is the light velocity, and IP and M are the 

ionization potential and the atomic mass of the gas. The terms ω, nc, τlas, De, L and <e> are the 

laser frequency, effective electron-neutral collision frequency, laser pulse duration, diffusion 

coefficient, diffusion length and average electron energy, respectively. The terms a 

(dimensionless) and b (length2) are two parameters which depend on the atomic structure of the 

gas. The terms inside the brackets represent various loss terms. The first term in the brackets 

stands for the generation of 43 electrons necessary for breakdown. The second, third, and fourth 

terms take into account the electron energy loss due to diffusion out of the focal volume, elastic 

and inelastic collisions, respectively. The loss due to electron attachment is very low and therefore 

not considered in Eq. (2.12). The losses due to elastic and inelastic collisions are proportional to nc 

that increases linearly with the gas pressure p. At low pressure, collisional loss can be neglected 

and electron heating by IB varies linearly with p according to nc
2<<ω. Thus, the threshold 

decreases with p in the low-pressure range. When increasing p to sufficiently high values, the 

collisional losses overcome the terms of electron generation and diffusion loss. If nc
2<<ω still 

holds, both gain and loss terms are proportional to p and the threshold is pressure independent. In 

the high pressure range (nc
2>>ω) the gain by IB diminishes as p−1 and the threshold increases. 

Thus, it exists an optimum pressure for which the optical breakdown threshold is minimum. 

According to Eq. (2.12), the breakdown power threshold density in general is directly proportional 

to the ionization potential of the gas. Moreover, the breakdown threshold passes through a 

minimum at the pressure when laser angular frequency ω is equal to the effective electron-neutral 

collision frequency nc as indicated by the term outside the brackets. Depending on their relative 

magnitudes, breakdown may be termed to be limited, diffusion limited or attachment limited [30].  

Time-limited breakdown occurs if the first term in the brackets dominates, that is when the laser 

pulse duration τlas is so short that the growth rate of electron density required to induce a visible 
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breakdown exceeds any losses. Thus, the threshold power density varies inversely with pulse 

duration and the breakdown is determined by the product of the intensity times the pulse duration. 

Diffusion-limited processes occur when the second term in the brackets dominates, that is for gas 

breakdown to take place in a small focal volume at low gas pressure. The breakdown power 

density threshold in this case decreases as L-2 with the focal size and it also decreases as p-2 with 

the gas pressure in the range of pressure so that ω>>nc. The third and fourth terms are the 

attachment and elastic collision loses. They are relatively unimportant and are dependent on the 

type and masses of the gas. For inert gases, the attachment loss can be completely neglected. The 

last term is the energy loss due to inelastic collision and it should be important for molecular gases 

because the large number of excited states they possess. Because the attachment rate and collision 

frequency are assumed to be proportional to the gas pressure p, these three terms are independent 

of the gas pressure. 

 At low pressure and in particular for small waist, the electron diffusion out of the focal 

volume is the dominating loss term. The electron diffusion length L can be estimated assuming a 

focal volume of cylindrical shape with radius 

2
Θ

=
fr ,            (2.13) 

and length ( )
d

fl Θ
−=

2

12  (Eq. 1.8), where f is the focal length of the focussing lens, Q the angle 

of laser beam divergence, and d the laser beam diameter incident on the lens. For a Gaussian laser 

beam, one has 

22
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For a large numerical opening (¥f /5), Eq. (2.14) is simplified to L=r/2.405. Using this expression 

with r from Eq. (2.13) and computing the electron diffusion coefficient as 

eff
e 3

2
ν
ε

m
D = ,            (2.15) 
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the energy loss due to electron diffusion is evaluated. With respect to the loss due to elastic 

collisions, the energy loss by diffusion can be neglected if 

Θ
>>

mf
MI P

3
81.4

effν .           (2.16) 

A large dispersion of breakdown threshold values exists in literature. It is attributed to the large 

number of parameters on which the optical breakdown depends. Several mechanisms have been 

found to reduce the threshold of optical breakdown. Smith and Haught [31] observed threshold 

lowering by Penning effect during ruby laser breakdown in a high-pressure Ar atmosphere when 

adding 1% Ne. The phenomenon was due to Ar ionization by collisions with excited Ne atoms 

which were produced by a resonant excitation process. However, the threshold lowering was at 

maximum of about 50% [31]. For CO2 laser radiation, a resonant excitation process can be 

excluded because of the small photon energy and the Penning effect does not contribute to optical 

breakdown threshold lowering in the far IR spectral range. For laser radiation of sufficiently high 

photon energy, the presence of impurities with low ionization energy led to the threshold lowering 

[32] that was attributed to multiphoton ionization. However, this effect was not observed for CO2 

laser radiation. Gas impurities with the lowest ionization potential like hydrocarbon radicals 

require at least the simultaneous absorption of more than 50 photons that is a process of vanishing 

probability. Contrarily, molecular species such as hydrocarbon or other radicals brake the 

ionization avalanche. They have many vibrational and rotational excitation levels which cause 

electron energy loss by inelastic collisions [see Eq. (2.12)].  

 Several authors [33, 34] reported threshold lowering when initiating the breakdown by 

ablation of a solid target. A threshold reduction by a factor of 102 was observed for CO2 laser 

radiation [33]. The threshold lowering was explained by shock wave generation as an effect of 

strong material ablation. The shock wave heats up the surrounding gas which is instantaneously 

transformed in a strongly ionized plasma. The optical breakdown from solid material ablation has 

been shown to be a multistage plasma initiation process that is characterized by three thresholds 
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[34]: (i) the material ablation threshold Ivap; (ii) the breakdown threshold of the evaporated 

material Ivap
*; and (iii) the breakdown threshold of the surrounding gas Igas

*. It is noted that Ivap* 

and Igas
* are the thresholds of preionized vapour and the gas, respectively. For the case of CO2 

laser ablation, the initial ionization stage of the ablated material vapour is ne/nvap<10−5-10−4[34], 

nvap being the ablated material vapor density. As a consequence of preionization, the number of 

electrons generations necessary for complete ionization is strongly reduced (<<43). Thus, the 

electron generation term can be neglected in Eq. (2.12). The diffusion loss can be also neglected 

according to the relative large volume preionized by the shock wave. In the case of rare gases, the 

loss by inelastic collisions is much smaller than that due to elastic collisions and the avalanche 

ionization is determined by the balance between IB heating of electrons and losses by elastic 

collisions. The breakdown threshold (in Wäcm-2) given by Eq. (2.12) is simplified to [34] 

M
III EC

P7*
las 108.1 ×=≥ ,         (2.17) 

where the ionization potential is in eV and the atomic mass of the gas is in atomic mass units. The 

index EC stands for elastic collisions to recall that only this loss term has been taken into account. 

Barchukov et al. [33] proposed a threshold criterion similar to Eq. (2.17) with a three times larger 

numerical constant. The difference is due to the average electron energy which was supposed to be 

equal to the ionization potential by Barchukov et al. [33] while <e>=(1/3)IP was taken for Eq. 

(2.17).  

 
2.5 . Laser-plasma interaction 

 The interaction between the laser radiation and free electrons of the plasma is described by 

the Drude model considering the electron motion in the laser field as a harmonic oscillator. For 

collision frequencies ωP
2>>nc

2, where ωP is the plasma frequency. The dielectric constant is given 

by eº1 – ωP
2/ω2, where ω is the laser frequency. Optical breakdown in gases at atmospheric 

pressure leads to an electron density equal to the critical density (for CO2 laser radiation 

). In the region where the critical density is reached, the plasma frequency is 319crit
e cm10 −≅n
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equal to the laser frequency and 0== εn . The plasma is thus completely reflecting in the 

corresponding zone. Only a few authors have investigated the laser beam reflection by the plasma. 

In fact, the studies show that breakdown plasmas reaching the critical density absorb most of the 

incident laser energy [35-37]. The fraction of reflected radiation is small because of strong 

absorption in the zone adjacent to the plasma sheet of critical density. Donaldson et al. [36] 

showed that 80% of incident laser energy was absorbed in a zone of weak thickness where the 

electronic density varied from 0.83ne
crit to ne

crit when generating breakdown with a (Nd:YAG) 

laser of τlas=35 ps and IW=1014 Wcm−2. Offenberger and Burnett [35] measured the reflected and 

transmitted power of TEA-CO2 laser pulses during breakdown in hydrogen. The reflected power 

was always below 2% of the incident laser power. The major absorption mechanism of CO2 laser 

radiation during breakdown ignition is electron-neutral IB. Once strongly ionized plasma is 

formed, the electron impact ionization or electron-ion IB dominates as a result of the long range 

Coulomb interaction between charged particles.  

 Several experimental and theoretical studies have been performed to investigate the IB 

effect. Among numerous expressions for the determination of the IB absorption coefficient [2, 5, 

36] the formula 

( Tkhi Be
T

Zfn
πω

ν
α 2/

3
e

2
ii

2
e

8
IB 11069.3 −−×=

∑
) [cm-1],       (2.18) 

proposed by Spitzer [38] was used by many authors to estimate the laser energy absorption by the 

plasma. Here, Te and ne are in K and cm−3, respectively. The factors fi are the fractional 

abundances of ions, Zi the corresponding ion charge. In the case of CO2 laser radiation, one has 

( ) Tkhe B
Tkh B πωπω 2/1 2/ ≈− − and Eq. (2.18) simplifies for a singly ionized plasma to 

2/3

2
e35

IB 108.1
eT
n−×=α  [cm-1],          (2.19) 

where Te is in eV. Equation (2.19) shows that the efficiency of IB absorption decreases with 

increasing electron temperature. At high plasma temperatures, other absorption mechanisms 
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dominate. They have been made in evidence during studies of laser-plasma interaction related to 

thermonuclear fusion using power densities several orders of magnitude higher than breakdown 

thresholds.  

 
2.6 . Absorption wave propagation 

After breakdown ignition, the strongly absorbing plasma will propagate in the direction opposite 

to the laser beam. The absorption wave formation has been observed in many experiments using 

CO2 laser sources [33, 35, 39].  The theoretical analyses of optical breakdown and absorption 

wave propagation performed by Raizer [2] using a hydrodynamic model have been widely 

accepted and became a standard theory in the field. According to this model, the laser-induced 

absorption waves propagate by the following stepwise mechanisms: (i) A small plasma zone is 

heated up by the laser beam. It reaches the critical density and strongly absorbs the laser radiation. 

(ii) The electron density in the adjacent zones increases. (iii) The adjacent preionized zone that is 

irradiated by the laser beam is heated up and becomes absorbent. Thus, the strongly absorbing 

plasma zone propagates in the direction opposite to the laser beam. 

 Three different propagation modes are distinguished. The breakdown wave is characterized 

by the following propagation mechanism: (i) breakdown occurs initially in the region of the 

highest laser power density and later in the zones of lower power density. The expansion of high 

pressure plasma compresses the surrounding gas and drives a shock wave. Thus, the breakdown 

propagates in the direction opposite to the laser beam. The plasma also tends to expand back along 

the beam path toward the laser, a phenomenon known as moving breakdown. The velocity of the 

breakdown wave is given by 

ϕtg
v 0

bw
bt
w

=  ,           (2.20) 

where w0 and j are the minimum radius and opening angle of the focused laser beam, 

respectively. For example, for our typical experimental conditions with the CO2 laser, taking 

w0=0.05 cm, tb=100 ns and tgj=0.2, the breakdown wave propagates with vbw=2.5ä106 cm/s; 
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(ii) Propagation through the detonation wave mechanisms occurs when rapid heating of the gas in 

the region of strong absorption induces a spherical shock wave. The latter propagates into the 

surrounding gas that is heated and preionized. The part of the preionized gas that is further 

illuminated by the laser beam absorbs the laser radiation and becomes opaque. Thus, the 

absorption zone follows the shock wave. The propagation velocity of the detonation wave is given 

by 

( )
3/1

0

W2
bw 12v ⎥

⎦

⎤
⎢
⎣

⎡
−=

ρ
γ I  ,          (2.21) 

where g and r0 are the adiabatic constant of the gas and the specific mass, respectively. The 

specific energy that is injected into the gas is 

( )( )
2
bw2bw v

11 +−
=

γγ
γε  .          (2.22) 

It is noted that detonation wave propagation velocity and injected specific energy are independent 

of the atomic structure of the gas. The gas influences the detonation wave propagation only 

through its specific mass and adiabatic constant. Thus, a change of gas nature is equivalent to a 

pressure variation if g is unchanged. Consequently, the detonation wave propagation velocity in 

Ar is equal to that in Xe at three times lower pressure. For Xe at atmospheric pressure and IW=108 

W cm−2, the detonation wave propagates with a velocity of 6ä105 cm s−1 and heats up the gas to a 

temperature of 28 eV. The temperature is obtained by assuming an ideal gas, for which the 

specific energy is related to the temperature by ebw=(3/2) kB T NA/M. Here, kB, T, NA and M are 

Boltzmann’s constant, plasma temperature, Avogadro’s constant and mass, respectively. 

 (iii) For IW>1010 Wcm−2, the plasma is heated up to T<102 eV. According to the high 

temperature, the plasma strongly radiates in the UV and soft X-ray spectral range ionizing thus the 

surrounding gas. Once preionized, the gas in the zone illuminated by the laser beam absorbs the 

laser radiation and a laser sustained radiation wave propagates in the direction opposite to the laser 

beam. The dominating propagation mechanism of the absorption wave depends on the 
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experimental conditions. Breakdown waves are formed in the case of very small opening angle of 

the focused laser beam whereas radiation waves occur at very high laser power density. For 

moderate power density and sufficiently wide opening angle, the optical breakdown propagates as 

a detonation wave. 

 A portion of the laser pulse energy is absorbed by the expanding plasma generating three 

different types of waves: (i) laser-supported combustion (LSC) waves; (ii) laser-supported 

detonation (LSD) waves; and (iii) laser-supported radiation (LSR) waves [40]. They differ in their 

predictions of the opacity and energy transfer properties of the plasma to the surrounding gas. At 

low-power laser regime (IW<1 MW/cm2), LSC waves are produced, which comprise of a precursor 

shock, that is separated from the absorption zone and the plasma. The shock wave results in an 

increase in the ambient gas density, temperature and pressure, whereas the shock edges remain 

transparent to the laser light. At medium-power laser regime (1 MW/cm2<IW<4 GW/cm2), the 

precursor shock is sufficiently strong and the shocked gas is hot enough to begin absorbing the 

laser radiation without requiring additional heating by energy from the plasma. The laser 

absorption zone follows directly behind the shock wave and moves at the same velocity. In this 

case a LSD wave is produced and has been modelled by several Raizer [2-3, 23]. The propagation 

of the LSD wave is controlled by the absorption of the laser energy. At high-power laser regime 

(IW >4 GW/cm2), the plasma is so hot that, prior to the arrival of the shock wave, the gas it heated 

to temperatures at which laser absorption begins. Laser radiation is initiated without any density 

change and the pressure profile results mainly from the strong local heating of the gas rather than a 

propagating shock wave. The LSR wave velocity increases much more rapidly with irradiance 

than those of the LSC and LSD waves. 

3. LIB plasma analysis 

In contrast to conventional spectroscopy, where one is mainly concerned with the structure of an 

isolated atom and molecule, the radiation from the plasma also depends on the properties of the 
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plasma in the intermediate environment of the atomic or molecular radiator. This dependence is a 

consequence of the long-range Coulomb potential effects which dominate the interactions of ions 

and electrons with each other and with existing neutral particles. These interactions are reflected 

in the characteristic radiations in several ways. They can control population densities of the 

discrete atomic states, spectral shift and broadening by Stark effect, decrease of ionization 

potentials of the atomic species, cause continuum radiation emissions and emission of normally 

forbidden lines. Generally, the radiation emitted from self-luminous plasma can be divided into 

bound-bound (b-b), bound-free (b-f), and free-free (f-f) transitions. 

 
3.1 Local Thermodynamic Equilibrium (LTE). 

 Plasma description starts by trying to characterize properties of the assembly of atoms, 

molecules, ions and electrons rather than individual species. If thermodynamic equilibrium exits, 

then plasma properties can be described through the concept of temperature. Thermodynamic 

equilibrium is rarely complete, so physicists have settled for a useful approximation, local 

thermodynamic equilibrium (LTE). In LTE model it is assumed that the distribution of population 

densities of the electrons is determined exclusively through collisional processes and that they 

have sufficient rate constants so that the distribution responds instantaneously to any change in the 

plasma conditions. In such circumstances each process is accompanied by its inverse and these 

pairs of processes occur at equal rates by the principle of detailed balance. Thus, the distribution 

of population densities of the electrons energy levels is the same as it would be in a system in 

complete thermodynamic equilibrium. The population distribution is determined by the statistical 

mechanical law of equipartition among energy levels and does not require knowledge of atomic 

cross sections for its calculation. Thus, although the plasma density and temperature may vary in 

space and time, the distribution of population densities at any instant and point in space depends 

entirely on local values of density, temperature, and chemical composition of plasma. If the free 

electrons are distributed among the energy levels available for them, their velocities have a 

Maxwellian distribution 
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where ne is the electron density, m is the electron mass, kB is the Boltzmann constant, Te is the 

electron temperature and v is the electron velocity. For the bound levels the distributions of 

population densities of neutrals and ions are given by the Boltzmann (3.2) and Saha (3.3) 

equations  
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where Ni, Nj, Nz+1,k and Nz,k are the population densities of various levels designated by their 

quantum numbers j (upper), i (lower) and k (the last for the ground level) and ionic charge z and 

z+1. The term gz,i is the statistical weight of the designated level, Ej and Ei are the energy of the 

levels j and i and Ipz,k is the ionization potential of the ion of charge z in its ground level k. 

Equations (3.1)-(3.3) describe the state of the electrons in an LTE plasma. For complete LTE of 

the populations of all levels, including the ground state, a necessary condition is that electron 

collisional rates for a given transition exceed the corresponding radiative rates by about an order 

of magnitude [41]. This condition gives a criterion [42] for the critical electron density of the level 

with energy ∆E=Ej-Ei
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where α is fine-structure parameter, a0 is Bohr radius, and EH is the hydrogen ionization potential. 

In the numerical relationship of Eq. (3.4), ne
crit is given in cm-3, Te in K and DE (energy difference 

between the two neighboring states) in eV. Many plasmas of particular interest do not come close 
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to complete LTE, but can be considered to be only in partial thermodynamic equilibrium in the 

sense that the population of sufficiently highly excited levels are related to the next ion’s ground 

state population by Saha-Boltzmann relations, respective to the total population in all fine-

structure levels of the ground state configuration [41]. For any atom or ion with simple Rydberg 

level structure, various criteria were advanced for the minimum principal quantum number ncrit for 

the lowest level, often called thermal or collision limit, for which partial thermodynamic 

equilibrium remains valid to within 10%. One criterion with quite general validity is given by 

Griem [42]: 
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3.2 Line Radiation 
 
 Line radiation from plasma occurs for electron transitions between the discrete or bound 

energy levels in atoms, molecules or ions. In an optically thin plasma of length l along the line of 

sight [43], the integrated emission intensity Iji of a spectral line arising from a transition between 

bound levels j and i is given by  
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,        (3.6) 

 
 
where Nj is the population density of the upper level j, hνji is the photon energy (energy difference 

between levels j and i), and Aji is the spontaneous transition probability or Einstein A coefficient. 

The integration is taken over a depth of plasma viewed by the detector, and the intensity of 

radiation is measured in units of power per unit area per unit solid angle. Transition probabilities 

can be sometimes expressed via the oscillator strength fji. This is defined as the ratio of the number 

of classical oscillators to the number of lower state atoms required to give the same line-integrated 

absorption [44]. Its relationship to the Einstein coefficient is 
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The usefulness of fji is that it is dimensionless, describing just the relative strength of the 

transition. The detailed values of Aji , gi, and gj can be obtained from reference compilations or 

from electronic databases, i.e by NIST [45]. 

 
3.3  Continuum Radiation 
 
 The origins of continuum radiation are both bound-free and free-free transitions. Free-free 

emission or IB radiation is due to the interaction of free electrons with positively charged ions. In 

free-bound emission (recombination radiation), a free electron is captured by an ion in a bound 

level. The energy of the photon given off is the difference between original energy of the electron 

and its new energy in whatever level of whatever atom it ends up in. Since this difference can have 

any value, the result of many free-bound transitions is a continuous spectrum. Transitions between 

two free energy levels can occur in plasmas increasing the energy exchanges of charged particles. 

Classically, this takes place because a moving charge radiates when it is accelerated or retarded. 

For most cases of practical importance, these free-free transitions are classified as bremsstrahlung 

or cyclotron spectra. In bremsstrahlung, the acceleration of charged particle takes place via the 

Coulomb field of charged particles. In cyclotron radiation, the acceleration is due to the gyration 

of charged particles in a magnetic field. The total continuum radiation at any particular frequency 

I(ν) is the sum of the contributions from all such processes having components at the specified 

frequency. Thus 
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where g(i, Te, ν) is the atomic probability of a photon of frequency ν being produced in the field of 

an atom or ion (specified by i) by an electron of mean kinetic temperature Te making free-free 
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transition; α(i, j, Te, ν) is the corresponding probability where the electron makes a free-bound 

transition into a level j. As before, the integration is taken over the plasma depth s. 

 
3.4 Line Broadening; Determination of electron number density from Stark   

broadening of spectral lines 

 
The shape of the spectral lines in the LIB has been studied since the first observation of the 

laser-induced breakdown in early 1960s. It plays an important role for the spectrochemical 

analysis and quantification of the plasma parameters. The observed spectral lines are always 

broadened, partly due to the finite resolution of the spectrometers and partly to intrinsic physical 

causes. In addition, the center of the spectral lines may be shifted from its nominal central 

wavelength. The principal physical causes of spectral line broadening are the Doppler, resonance 

pressure, and Stark broadening. There are several reasons for this broadening and shift. These 

reasons may be divided into two broad categories: broadening due to local conditions and 

broadening due to extended conditions. Broadening due to local conditions is due to effects which 

hold in a small region around the emitting element, usually small enough to assure LTE. 

Broadening due to extended conditions may result from changes to the spectral distribution of the 

radiation as it traverses its path to the observer. It also may result from the combining of radiation 

from a number of regions which are far from each other. 

 3.4.1 Natural broadening  

 The uncertainty principle relates the lifetime of an excited state (due to the spontaneous 

radiative decay) with the uncertainty of its energy. This broadening effect results in an unshifted 

Lorentzian profile. The FWHM of natural broadening for a transition with a natural lifetime of τji 

is: DλN
FWHM=λ2/pcτji. The natural lifetime τji is dependent on the probability of spontaneous decay: 

τji=1/Aji. Natural broadening is usually very small compared with other causes of broadening.   

3.4.2 Doppler broadening  
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 The Doppler broadening is due to the thermal motion of the emitting atoms, molecules or 

ions. The atoms in a gas which are emitting radiation will have a distribution of velocities. Each 

photon emitted will be "red" or "blue" shifted by the Doppler effect depending on the velocity of 

the atom relative to the observer. The higher the temperature of the gas, the wider the distribution 

of velocities in the gas. Since the spectral line is a combination of all of the emitted radiation, the 

higher the temperature of the gas, the broader will be the spectral line emitted from that gas. This 

broadening effect is described by a Gaussian profile and there is no associated shift. For a 

Maxwellian velocity distribution the line shape is Gaussian, and the FWHM may be estimated as 

(in Å): 

MT /1016.7 7D
FWHM ⋅⋅×=∆ − λλ ,         (3.9) 

being λ the wavelength in Å, T the temperature of the emitters in K, and M the atomic mass in 

amu. 

3.4.3 Pressure broadening  

 The presence of nearby particles will affect the radiation emitted by an individual particle. 

There are two limiting cases by which this occurs: (i) Impact pressure broadening: The collision of 

other particles with the emitting particle interrupts the emission process. The duration of the 

collision is much shorter than the lifetime of the emission process. This effect depends on both the 

density and the temperature of the gas. The broadening effect is described by a Lorentzian profile 

and there may be an associated shift. (ii) Quasistatic pressure broadening: The presence of other 

particles shifts the energy levels in the emitting particle, thereby altering the frequency of the 

emitted radiation. The duration of the influence is much longer than the lifetime of the emission 

process. This effect depends on the density of the gas, but is rather insensitive to temperature. The 

form of the line profile is determined by the functional form of the perturbing force with respect to 

distance from the perturbing particle. There may also be a shift in the line center. Pressure 

 30

http://en.wikipedia.org/wiki/Doppler_effect
http://en.wikipedia.org/wiki/Gaussian_function
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Lorentzian_function
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Temperature


broadening may also be classified by the nature of the perturbing force as follows: (i) Linear Stark 

broadening occurs via the linear Stark effect which results from the interaction of an emitter with 

an electric field, which causes a shift in energy which is linear in the field strength (~E and ~1/r2); 

(ii) Resonance broadening occurs when the perturbing particle is of the same type as the emitting 

particle, which introduces the possibility of an energy exchange process (~E and ~1/r3); (iii) 

Quadratic Stark broadening occurs via the quadratic Stark effect which results from the 

interaction of an emitter with an electric field, which causes a shift in energy which is quadratic in 

the field strength (~E and ~1/r4); (iv) Van der Waals broadening occurs when the emitting 

particle is being perturbed by Van der Waals forces. For the quasistatic case, a Van der Waals 

profile is often useful in describing the profile. The energy shift as a function of distance is given 

in the wings by e.g. the Lennard-Jones potential (~E and ~1/r6). 

3.4.4 Stark broadening  

 Stark broadening of spectral lines in the plasma occurs when an emitting species at a 

distance r from an ion or electron is perturbed by the electric field. This interaction is described by 

the Stark effect. The linear Stark effect exists for hydrogen and for all other atoms. Stark 

broadening from collisions of charged species is the primary mechanism influencing the emission 

spectra in LIBS. Stark broadening of well-isolated lines in the plasma can be used to determine the 

electron number density ne(cm-3). In the case of a non-H-like line, an estimation of the Stark width 

(FWHM) and line shift of the Stark broadened lines is given as [41-44]:  
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where W is the electron impact parameter or half-width, A is the ion impact parameter both in Å, B 

is a coefficient equal to 1.2 or 0.75 for ionic or neutral lines, respectively, D (in Å) is the electron 
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shift parameter and ND is the number of particles in the Debye sphere ND=1.72ä109T3/2ne
-1/2. The 

electron and the ion impact parameters are functions of temperature. The first term on the right 

side of Eq. (3.10) refers to the broadening due to the electron contribution, whereas the second one 

is the ion broadening. The minus sign in Eq. (3.11) applies to the high-temperature range of those 

few lines that have a negative value of D/W at low temperatures. Since for LIB conditions Stark 

broadening is predominantly by electron impact, the ion correction factor can safely be neglected, 

and Eq. (3.10) becomes  
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The coefficients W are independent of ne and slowly varying functions of electron temperature. A 

comprehensive list of width and shift parameters W, A and D is given by Griem [42].  

 In the quasi-static approximation, the interaction between slowly moving ions and 

radiating species can be approximated by a perturbation which remains nearly constant over the 

whole time that the species is radiating. Hydrogen and hydrogen-like ions exhibits linear Stark 

effect. The FWHM (in Å) of a hydrogen or H-like ion spectral line, in the quasi-static 

approximation, is given by [41, 42] 
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3/119Stark
FWHM nZZnnN epD −−−×=∆ −− λλ     (3.13)  

where λ0 is the wavelength line centre, n2 and n1 are the principal quantum numbers of the upper 

and lower states, respectively, Zp and Ze are the nuclear charge on the perturbing ion and the 

emitting species (atom or ion) and ne is the electron number density in cm-3. Although the line 

shapes do depend on the electron contribution, the FWHM are generally insensitive. Eq. (3.13) 

represents a very good estimate of the Stark broadening in those hydrogenic lines that do not have 

a strong undisplaced Stark component as for example Lβ, Lδ, Hβ (Balmer) and Hδ transitions. On 
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the other hand, the FWHM of hydrogenic lines with strong central Stark components are 

dominated by interaction of the electrons with the emitting hydrogenic species such as Lα and Hα 

transitions. Such lines have a Lorentzian line shape and FWHM for Lα transition in the impact 

approximation is given by 
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where   is in Å, T is in K and nStark
FWHMλ∆ e is in cm-3. It is seen from Eqs. (3.13) and (3.14) that the 

ion broadening, in the quasi-static approximation, varies as ne
2/3 and is independent of the 

temperature whereas the collisional broadening varies approximately as ne and it is very much 

temperature dependent. It is to be noted the electron densities determined from Eqs. (3.13) and 

(3.14) are only crude estimations and one must compute the entire line profile to extract the total 

line width for an accurate estimation of ne. 

3.5 Determination of excitation, vibrational and rotational temperatures 
 

 
The excitation temperature Texc can be calculated according to the Boltzmann equation 

under the assumption of LTE (Section 3.1). The significance of this temperature depends on the 

degree of equilibrium within the plasma. For plasma in LTE, any point can be described by its 

local values of temperature, density, and chemical composition. By considering two lines λji and 

λnm of the same species, characterized by different values of the upper energy level (Ej∫En), the 

relative intensity ratio can be used to calculate the plasma excitation temperature 
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When selecting a line pair, it is advisable to choose two lines as close as possible in wavelength 

and as far apart as possible in excitation energy. This is to limit the effect of varying the spectral 

response of the detection system. The use of several lines instead of just one pair leads to greater 
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precision of the plasma excitation temperature estimation. In fact, though the precision of the 

intensity values can be improved by increasing the signal intensity, the transition probabilities Aji 

reported in the literature exhibit significance degree of uncertainty (5-50%). The excitation 

temperature can be calculated from the relative intensities of a series of lines from different 

excitation states of the same atomic or ionic species from the slope of the Bolztmann plot 

ln[Iji·λji/gj·Aji] versus Ej/kB  
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where Iji is the emissivity (W m-3 sr-1) of the emitted j→i spectral line, λji is the wavelength, 

gj=2Jj+1 is the statistical weight, Aji is the Einstein transition probability of spontaneous emission, 

Ej/kB is the normalized energy of the upper electronic level and C=ln(hcNj/4πQ(T)) (Q(T) is the 

partition function). The values of the λji, gj, Aji and Ei for selected atomic or ionic lines can be 

obtained from the NIST Atomic Spectral Database [45]. A set of selected spectral lines can be 

chosen based on their relative strengths, accuracies and transition probabilities.  

The emission spectra of the diatomic species reveal a relatively complex structure which is 

due to the combination of the electronic transitions from the different rotational and vibrational 

states [46-48]. The emission intensities of the molecular bands can be analyzed in order to 

calculate the molecular vibrational temperature Tvib. For a plasma in LTE, the intensity of an 

individual vibrational v’-v” band Iv’-v” is given by 
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where A is a constant, λv’-v” is the wavelength corresponding to the band head, 

2

0
"v'v )()("v'v ∫
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ΨΨ=− dRRRq is the Franck-Condon factor and  is the normalized BkchG /)'v(
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energy of the upper vibrational level. A line fit to ( )"v'v
4

"v'v"v'v /ln −−− ⋅ qI λ  as a function of the upper 

normalized electronic-vibrational energies has a slope equal to -1/Tvib.  

 On the other hand, the emission intensities of the rotational lines of a vibrational band can 

be analyzed in order to estimate the effective rotational temperature Trot. In this case it is necessary 

to consider the Hund´s coupling case for the both electronic states implied in the transition. From 

the assignment of the rotational spectrum it is possible to estimate the effective rotational 

temperature by considering the J value for the maximum of the band Trot=(2 Bv h c/kB)(Jmax+1/2)2, 

being Bv the rotational constant for v’ vibrational level and Jmax the total angular momentum at the 

maximum.  

 Another method for estimating the vibrational and rotational temperatures is based on a 

simulation program of the spectra. Software developed in our laboratory [49] calculated the 

spectra of a diatomic molecule by summing the intensity of all rovibrational levels and 

convoluting the results with the instrumental line shape of the optical system. The emission 

intensity Iv’,J’-v”,J” of a molecular line can be approximated by 
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where J",v"J'v',
~

−ν  is the wavenumber of the transition, 2J’+1 is the rotational degeneracy of the upper 

state, Nv’,J’ is the population in the initial (upper) state, eR  is the average electronic transition 

moment, qv’,v” is the Franck-Condon factor and SJ’,J” is the Hönl-London factor [50]. Spectrum 

simulations are based on comparison of experimental and calculated spectra for different 

rotational and vibrational population distributions which depend on temperature.  

  
 

3.6 Ionization degree of the plasmas: Saha equation 
 

 
In plasma there is a continuous transition from gases with neutral atoms to a state with 

ionized atoms, which is determined by an ionization equation. The transition between gas and 
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plasma is essentially a chemical equilibrium, which shifts from the gas to the plasma side with 

increasing temperature. Let us consider the first three different ionization equilibria of an atom A: 

 
A ↔ A++e+IP(A-I), 

A+ ↔ A2+ + e + IP(A-II), 

A2+ ↔ A3+ + e + IP(A-III). 

 
For each ionization equilibrium, considering the atoms and ions in their ground electronic state, 

the LTE between ionization and recombination reactions at temperature T is described by the Saha 

equation (see Eq. 3.3) 
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where ne = Ni are the electron and ion densities in the different ionization equilibria in the second 

member of ionization equilibria. From this equation, ionization degree ne·Ni/N0 can be estimated.  

 

4. Experimental details 

 LIBS is a plasma based method that uses instrumentation similar to that used by other 

spectroscopic methods (atomic emission spectroscopy, laser-induced fluorescence etc). A typical 

LIBS apparatus utilizes a pulsed laser that generates the powerful optical pulses used to form the 

plasma. Principles of laser operation in general and the operation of specific lasers are described in 

detail in numerous books. The discussion here will be limited to the fundamentals of the operation 

of the transversely excited atmospheric (TEA) carbon dioxide laser used in this work. The CO2 

laser is a near-infrared gas laser capable of very high power and with the highest efficiency of all 

gas lasers (≈10-20%) and for cw operation the highest output power. Although CO2 lasers have 

found many applications including surgical procedure, their popular image is as powerful devices 

for cutting, drilling, welding or as weapons for military applications. The linear CO2 molecule has 

three normal modes of vibration, labelled ν1 (symmetry stretch), ν2 (bending vibration) and ν3 
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(asymmetric stretch). The fundamental vibration wavenumbers are 1354, 673 and 2396 cm-1, 

respectively. The vibrational state of the molecule is described by the number of vibrational 

quanta in these modes. The bending vibrational mode is twofold degenerate and can have a 

vibrational angular momentum along the CO2 axis. The number of quanta of this vibrational 

angular momentum is stated as an upper index to the vibrational ν2 quanta. The upper laser level 

(0001) denotes the ground vibrational state for the mode ν1, the ground vibrational state for the 

mode ν2 which is doubly degenerate, and the first excited vibrational state for the mode ν3. The 

active medium is a gas discharge in a mixture of He, N2 and CO2. By electron impact in the 

discharge excited vibrational levels in the electronic ground states of N2 and CO2 are populated. 

The vibrational levels v = 1 in the N2 molecule and (ν1, ν2, ν3) = (0001) in the CO2 molecule are 

near-resonant and energy transfer from the N2 molecule to the CO2 molecule becomes very 

efficient. This populates the (0001) level in CO2 preferentially, creates inversion between the 

(0001) and the (0200) levels, and allows laser oscillations on many rotational transitions between 

these two vibrational states in the wavelength range 9.6-10.6 µm. The main laser transitions in 

CO2 occur between the excited states of the mode ν3(0001) and the symmetric stretching mode 

ν1(1000) (10.6 µm) or the bending mode ν2(0110) (9.6 µm). A single line can be selected by a 

Littrow-grating, forming one of the resonator end mirrors. Helium atoms do not take part directly 

in the excitation of CO2 molecules but do play an important role in heat-transfer from the gas 

mixture to the tube walls, as well as facilitating the depopulation of the lower vibrational levels in 

CO2, contributing in this way to the maintenance of the population inversion. The power of CO2 

lasers depends on their configuration. The laser used in these experiments was a transversely 

excited atmospheric (TEA) CO2 laser in which the gas-flow is transverse to the laser cavity’s axis. 

The pressure in the tube is close to atmospheric pressure. The CO2:N2:He mixture is exchange in a 

continuous way, enhancing the output power of the laser. The laser can achieve a power of 50 

MW. The optical materials used in lasers emitting radiation in the infrared range are obviously 

different than those used in the visible range. For example, materials such as germanium (Ge) or 
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gallium arsenide (GaAs) are completely opaque in the visible range, while being transparent in the 

infrared range. Some materials, such as zinc selenide (ZnSe), are transparent in both spectral 

ranges. Typical materials transparent in the IR range are: NaCl or CsI. Metal mirrors (copper, 

molybdenum) are used in the IR range, owing to their small absorption (and large reflectivity) as 

well as their large heat capacity which enables removal of heat from the active medium. 

 A schematic diagram of the experimental configuration used for time-resolved TEA-CO2 

pulsed laser gas breakdown diagnostics is shown in Fig. 1. The experiments were carried out with 

a transverse excitation atmospheric (TEA) CO2 laser (Lumonics model K-103) operating on an 

8:8:84 mixture of CO2:N2:He, respectively. The laser is equipped with frontal Ge multimode 

optics (35 % reflectivity) and a rear diffraction grating with 135 lines mm-1 blazed at 10.6 µm. The 

laser pulse repetition rate was usually 1 Hz. The divergence of the emitted laser beam is 3 mrad. 

The laser delivered up to 3.16 J at a wavelength of 10.591 µm, leading to an estimated power of 

49.5 MW (Eq. 1.1), intensity (power density or irradiance) of 6.31 GW cm-2 (Eq. 1.2), fluence of 

403 Jäcm-2 (Eq. 1.3), photon flux of 3.1ä1029 photonäcm-2äs-1 (Eq. 1.4), electric field of 1.54 

MVäcm-1 (Eq. 1.5) and radiation pressure of 421 kPa (Eq. 1.6) on the focal position. The focused-

spot area (7.85×10-3 cm2) of the laser beam was measured with a pyroelectric array detector (Delta 

Development Mark IV). The temporal shape of the TEA-CO2 laser pulse, monitored with a photon 

drag detector (Rofin Sinar 7415), consisted in a prominent spike of a FWHM of around 64 ns 

carrying ~90% of the laser energy, followed by a long lasting tail of lower energy and about 3 µs 

duration. The primary laser beam was angularly defined and attenuated by a diaphragm of 17.5 

mm diameter before entering to the gas cell. A beam splitter was used to redirect 10% of the laser 

pulse energy on a pyroelectric detector (Lumonics 20D) or on a photon-drag detector (Rofin Sinar 

7415) for energy and temporal shape monitoring and triggering, respectively, through a digital 

oscilloscope (Tektronix TDS 540). The laser-pulse energy was varied with the aid of several 

calibrated CaF2 attenuating plates. The shot-to-shot fluctuation of the laser energy was 

approximately 5%. In time-resolved gas breakdown, the pulsed laser light was focused by a NaCl 
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lens of 24 cm focal lens onto the surface of a 0.7 mmä0.7 mm stainless steel mesh in gas at 

atmospheric pressure. This allows us to fix the focal position for LIB at any fluence inducing 

strong gas breakdown plasma. No lines from metals were found in the spectra, meaning that the 

metal mesh was practically never ablated. The high purity gases (~99.99 %) were placed in a 

medium-vacuum cell equipped with a NaCl window for the laser beam and two quartz windows 

for optical access. The gas is initially at ambient temperature (298 K). The cell was evacuated with 

the aid of a rotary pump, to a base pressure of 4 Pa that was measured by a mechanical gauge. 

Optical emission from the plume was imaged by a collecting optical system onto the entrance slit 

of different spectrometers. The light emitted from the laser-induced plasma was optically imaged 

1:1, at right angles to the normal to the focal volume, by a quartz lens (focal length 4 cm, f-number 

= f/2.3) onto the entrance slit of the spectrometer. The distance between gas plasma axis and 

entrance slit was typically y=16 cm. Optical emission accompanying the laser-induced gas plasma 

was viewed in a XZ parallel plane to the front face of the metal mesh for different distances z 

along the plasma Y axis. Two spectrometers were used: 1/8 m Oriel spectrometer (10 and 25 µm 

slits) with two different gratings (1200 and 2400 groovesämm-1) in the spectral region 2000-11000 

Å at a resolution of  ~1.3 Å in first-order  (1200 grooves mm-1 grating), and an ISA Jobin Yvon 

Spex (Model HR320) 0.32 m equipped with a plane holographic grating (2400 grooves mm-1) in 

the spectral region 2000-7500 Å at a resolution of ~0.12 Å in first-order. Two detectors were 

attached to the exit focal plane of the spectrographs and used to detect the optical emissions from 

the laser-induced plasma: an Andor DU420-OE (open electrode) CCD camera (1024x256 matrix 

of 26x26 µm2 individual pixels) with thermoelectric cooling working at –30 ºC; A 1024ä1024 

matrix of 13ä13 µm2 individual pixels ICCD (Andor iStar DH-734), with thermoelectric cooling 

working at –20 ºC. The low noise level of the CCD allows long integration times and therefore the 

detection of very low emission intensities. The spectral window in high-resolution experiments 

was about 12 nm. The intensity response of the detection systems was calibrated with a standard 

(Osram No.6438, 6.6-A, 200-W) halogen lamp and Hg/Ar pencil lamp. Several (Cu/Ne, Fe/Ne 
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and Cr/Ar) hollow cathode lamps (HCL) were used for the spectral wavelength calibration of the 

spectrometers.  

 In time-resolved measurements, for synchronization, the CO2 laser was operated at the 

internal trigger mode and ICCD detector was operated in external and gate modes. The external 

trigger signal generated by the laser was fed through the scope and delay generator into the back 

of the ICCD detector head. The total insertion delay (45 ± 2 ns) is the total length of time taken for 

the external trigger pulse to travel through the digital delay generator and gater so that the ICCD 

will switch on. The time jitter between the laser and the fast ICCD detector gate was about ± 2 ns. 

The delay time td is the time interval between the arrival of the laser pulse on the metal mesh and 

the activation of the ICCD detector. The gate width time tw is the time interval during which the 

plasma emission is monitored by the ICCD. Both parameters were adjusted by the digital delay 

generator of the ICCD detector. The CO2 laser pulse picked up with the photon drag detector 

triggered a pulse generator (Stanford DG 535) through the scope and this pulse was used as 

external trigger in the ICCD camera. The laser pulse and the gate monitor output were displayed in 

a digital oscilloscope. In this way, by using the output of the photon drag detector, the 

oscilloscope, the delay pulse generator and the gate monitor output of the ICCD camera, the gate 

width time tw and the delay time td could be adjusted without insertion time. 

5. Results and discussion 

When a gas is irradiated by CO2 laser lines of sufficient power, a visible breakdown 

occurs. The onset of LIB in air is a sudden dramatic event involving the production of more than  

~ 1016 electron-ion pairs and the emission of radiation characteristic of the gas-plasma. Figure 2 

shows a series of images of the LIB nitrogen (up to the left), oxygen (up to the right), air (below to 

the left) and helium (below to the right) plasma at different times of the experiment. Although the 

laser-induced plasma appears spatially uniform to the naked eye, it is indeed elongated along the 

direction of the incoming carbon dioxide laser beam. For a laser power density around 4.5 
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GW×cm-2, the laser-induced plasma may be º 6 cm long and a few centimeters in diameter. A 

number of plasma lobes can be distinguished as well as diffuse, luminous cloud surrounding the 

central plasma core. The observations of the LIB geometry during the experiments indicate that 

the actual plasma region is not spherical, but elongated in the direction of the laser beam 

propagation. There is an expansion back toward the laser that essentially fills the converging cone 

of the CO2 laser radiation. The growth of the plasma in the direction opposite to the laser beam 

had lead to the model of a radiation-supported detonation wave (Section 2.6). A shock wave 

propagates from the focal region (a point at the centre of the cell) into the gas and absorption of 

energy from the laser beam drives the shock wave, causing it to spread. The structure of the LIB 

plasma is complex, and indeed there may be several distinct plasma regions produced along the 

laser beam axis. This multiple collinear plasmas in gases at pressures around the atmospheric level 

are observable by the naked eye. The CO2 laser pulse remains in the focal volume after the plasma 

formation for some significant fraction of its duration and the plasma formed can be heated to very 

high temperatures and pressures by IB absorption. Since plasmas absorb radiation much more 

strongly than ordinary mater, plasmas can block transmission of incoming laser light to a 

significant degree; a phenomenon known as plasma shielding [51]. The high temperatures and 

pressures produced by plasma absorption can lead to thermal expansion of the plasma at high 

velocities, producing an audible acoustic signature, shock waves, and cavitation effects. The 

plasma also tends to expand back along the beam path toward the laser, a phenomenon known as 

moving breakdown. The shock wave heats up the surrounding gas which is instantaneously 

transformed in strongly ionized plasma.  

 
5.1 LIBS of Nitrogen 

In this section we present our results on the large-scale plasma produced in nitrogen gas at 

room temperature and pressures ranging from 4×103 to 1.2×105 Pa by high-power TEA- CO2 LIB 

plasma [18]. The time-integrated spectrum of the generated plasma is dominated by emission of 
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strong N+ and N and very weak N2+ atomic lines and molecular features of N2
+(B2Σu

+-X2Σg
+), 

N2
+(D2Πg-A2Πu), N2(C3Πu-B3Πg) and very weak N2(B3Πg-A3Σu

+). Figure 3 displays an overview 

of the optical emission spectrum of LIDB in nitrogen (2000–9565 Å) compared with atomic lines 

of N, N+ and N2+ [45]. Strong atomic N+ lines dominate the spectrum but, atomic N lines (about 3 

times weaker) and very weak N2+ lines (about 102-103 times weaker) also are present. The 

assignments of the atomic N (mainly in the 5700–9565 Å spectral region), N+ (2000–6000 Å) and 

N2+(2000–5500 Å) individual lines are indicated by stick labels. In the upper part of figure 3 we 

indicate in a column graph, the relative intensities of atomic observed N, N+ and N2+ lines tabled 

in NIST Atomic Spectral Database [45]. There is a good agreement between line intensities 

tabulated in NIST and the measured intensities observed here for N, N+ and N2+. The spectrum of 

fig. 3 has been obtained with six successive exposures on the CCD detector using a 1/8 m Oriel 

spectrometer (1200 grooves/mm grating). In addition to identified atomic lines, molecular bands 

associated to N2
+ and N2 diatomic molecules are observed. The analysis of the molecular emission 

has already been used for a long time to get information on the structure and symmetry of excited 

states [46-48]. Studies of the electronic spectra of N2 and N2
+ in a number of discharge tubes, such 

as electrodeless microwave discharges and conventional ac and dc discharges, are well known. In 

many electrical discharges, the most prominent electronic transitions of N2 are the first positive 

B3Πg-A3Σ+
u system (between 480 and 2530 nm) and the second positive C3Πu-B3Πg system 

(between 270 and 550 nm) [52]. For the electronic states implied in the electronic transitions of 

N2(C-B and B-A) and N2
+(B-X and D-A) the vibrational quanta ∆G(v+½) in the upper and lower 

electronic states have similar magnitudes and therefore the vibrational transitions with ∆v=v’-v” 

constant (sequences) appear quite close. The known part of the C-B second positive system of 

molecular nitrogen consist of the ∆v = 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6 and -7 triple-headed band 

sequence, all degraded to the violet. A sharp cutting-off of the rotational in v’=4 vibrational level 

of the C state is observed, which Herzberg [53] attributed to a predissociation. Pannetier et al [54] 

observed the 5-5 band of the C-B system with band-head at 3259.2 Å. Also Tanaka and Jursa [55] 
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studied this band system with high intensity in the aurora afterglow observed for weak red-

degraded triplet bands originate from v’=5 (C3Πu). Perturbations of various types in the C3Πu state 

of molecular nitrogen were also observed. Moreover, the most prominent electronic transitions of 

N2
+ are the first negative B2Σu

+-X2Σg
+ system (between 280 and 590 nm) and the A2Πu-X2Σg

+ 

Meinel system (550 and 1770 nm) [52]. The A-X Meinel bands for nitrogen cation were first 

identified in the aurora borealis [56]. The analysis of these band systems of N2 and N2
+ was 

accomplished in the early work of many authors and played an important part in the development 

of our understanding of the spectra of diatomic molecules. 

 In order to assign the molecular features of the LIDB in nitrogen, its spectrum is compared 

to that of the dc electric glow discharge at low pressure (~5 Torr). Typical spectra recorded with 

the oriel spectrometer (25 µm slit and grating of 1200 grooves/mm) after CO2 laser excitation and 

in the cathode glow discharge of N2 are given in figure 4. A global analysis of the latter allows one 

to distinguish the second positive C-B system (between 270 and 530 nm) and the first positive B-

A system (between 570 and 970 nm) of N2 and very weak emissions corresponding to the first 

negative B-X system of N2
+ ions. Moreover, spectroscopic measurements performed on the dc 

electric glow in N2 spectrum showed that although numerous molecular bands appear, nitrogen 

atomic lines are not present. Besides, the second positive system of N2 and the first negative 

system of N2
+ spectra are frequently observed simultaneously in plasma containing nitrogen. In 

the glow discharge in N2 at 5977.4 Å, the 0-0 band of the c4
1Πu-a”1Σg

+ Ledbetter Rydberg series 

[57] of nitrogen is observed overlapped with the 8-4 band sequence of the first positive B-A 

system. The LIB emission spectrum of N2 (figure 4) shows six red-degraded heads in the region 

225-275 nm which were readily assigned to the ∆v=0 (v=0, 1, …6) band sequence of the D2Πg-

A2Πu Janin-d’Incan system [52] of  N2
+. In the spectral range between 2700-5300 Å, the second 

positive system of N2(C-B) and the first negative system of N2
+(B-X) spectra are observed 

simultaneously. Table 1 lists the different molecular species that have been observed in the LIB 

spectrum of nitrogen.  

 43



In order to investigate the different electronic bands of N2 and N2
+ both LIDB and high-

voltage dc electric glow discharge spectra were recorded with a resolution of ~0.12 Å by a ISA 

Jobin Yvon Spex 0.32 m spectrometer. The high-resolution of LIB spectrum allowed us to resolve 

partially the vibrational bands of the second positive C-B system of N2 and the first negative B-X 

system of N2
+. Both spectra have been obtained with forty successive exposures on the CCD 

camera in the spectral region 2000-7500 Å. In the high-resolution spectra, no new processes were 

detected but allow us to identify unequivocally the band structure of the different transitions. As 

examples, figure 5(a)-(f) shows a comparison between two spectra, the lower one obtained for the 

high-voltage dc electric discharge, and the upper one recorded in the LIB experiment. We indicate 

with italic the position of the band-head (v’-v”) of first negative system of N2
+(B-X) while in 

regular typeface the bands of the second positive system of N2(C-B). The upper panel of fig. 5(a) 

shows the LIB emission spectrum of nitrogen in the spectral region 2925-3175 Å of nitrogen. 

Assignment of the emission band heads is shown in table 1 and indicated also on the spectra. The 

two sets of three blue degraded band heads (2925-2980 Å) and (3105-3165 Å) are readily assigned 

to the ∆v=2 and ∆v=1 sequences of the second positive system of N2(C-B), respectively.  The 

series of bands between 3020-3095 Å belong to any of the bands 11-7, 4-1 and 3-0 of the first 

negative system of N2
+(B-X). The lower panel, corresponding to the dc electric glow discharge of 

nitrogen at low pressure, shows practically the same bands with different intensity distributions 

and spectral widths. In the spectrum of the lower panel of fig. 5(b) (nitrogen electric glow 

discharge) we easily identified five bands of the ∆v=0 sequence and the 1-0 band of the second 

positive system of N2(C-B). The main intensity is observed for the dominant transition N2(C, 

v’=0)→(B, v”=0) which corresponds to the most intense nitrogen laser line at 3371 Å. However, 

this simple picture changes drastically in the LIB emission spectrum of nitrogen excited by the 

CO2 laser, being now the 0-0 band very weak. A large number of additional strong bands mainly 

in the region 3260-3410 Å are detected in the LIDB spectrum and can be attributed to emissions 

from the first negative system of N2
+ (especially for ∆v=2). The B-X system of N2

+ has been 
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observed over a wide range of vibrational levels. The highest values so far observed are v’=29 for 

the excited B state and v”=23 for the X state. The main bands of this system lie in the -2≤∆v≤2 

with v’<5 sequences and all of these bands are blue degraded. However under certain 

circumstances many more bands, some red degraded, are observed, most being tail bands of these 

sequences. The observed bands with v’≤7 and also those with 8≤v’≤11 and ∆v<-1 are shaded to 

the violet. All the observed bands with v’≥12 and those with v’=10 and 11, ∆v≥0 are shaded to the 

red although some bands appear headless. These bands are so-called tail bands taking place a 

reversal in the successions of the bands in the sequence. Moreover, in the bands of the first 

negative system of N2
+ have been observed numerous rotational line displacements and intensities 

anomalies arising from perturbations in the B state. The perturbing state is A2Πu. In the 

Deslandres table listing the observed band heads, there is a pronounced gap in on arm of the 

Condon locus, and a less marked one in the other [52]. Franck-Condon factors indicate that the 

missing bands should be as intense as many of the observed. The few bands observed in the region 

of the gap are 8-6 and 9-8, which are headless and the 10-9 and 10-8 which have no definite heads. 

The missing bands coincide with the strong bands of either first negative system of N2
+(B-X) or 

the second positive system of N2(C-B), and are difficult to detect. In the spectrum of the lower 

panel of fig. 5(c) corresponding to the nitrogen electric glow discharge we easily identified several 

bands of the ∆v=-1 sequence and two weak 4-6 and 3-5 bands of the second positive system of 

N2(C-B). In this spectral region (3425-3675 Å) the most intense bands are due to the transitions 

N2(C, v’=0)→(B, v”=1) and N2(C, v’=1)→(B, v”=2), also present in the LIB emission spectrum 

of nitrogen in the upper panel of fig. 5(c). As in the previous cases, the LIB emission spectrum 

excited by the CO2 laser changes drastically regarding the emission spectrum of nitrogen electric 

glow discharge. In it a large number of additional strong bands corresponding mainly to the 

∆v=+1 sequence B-X band system of N2
+ are detected which are partially overlapped by the weak 

bands of the C-B system of N2. For low v’ the 1-0, 2-1, 3-2 … bands of the B-X system of N2
+ are 

degraded to shorter wavelengths and for high v’ values the bands are degraded to longer 
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wavelengths (tail bands). In the nitrogen electric glow discharge spectrum [lower panel of fig. 

6(d)] we identified 3-6, 4-7, 0-2, 1-3 and 2-4 bands of the second positive system of N2(C-B) and 

0-0, 1-1 and 2-2 bands of the first negative system of N2
+. In this spectral region (3675-3935 Å) 

the most intense band is the 0-2 band of N2(C-B). The LIB emission spectrum in this region hardly 

shows bands of the second positive system of N2(C-B). However, this emission spectrum exhibits 

a large number of bands corresponding mainly to the ∆v=0 sequence B-X band system of N2
+. In 

the spectra of the lower panel of figs. 5(d)-(f) (nitrogen electric glow discharge) we identified 

several bands of the second positive system of N2(C-B), indicated on the spectra, and some very 

weak bands of the first negative system of N2
+. As in the previous cases, the spectra change 

drastically in the LIDB emission of nitrogen excited by the CO2 laser. A large number of N+ and 

N2+ atomic lines and additional strong bands of the first negative system of N2
+ are now present. 

To understand the different processes involved in the analyzed emission, Rydberg-Klein-

Rees (RKR) potential energy curves for some bound electronic states of N2 and N2
+ have been 

calculated. The potential energy curves for the X1Σg
+, A3Σu

+, B3Πg, C3Πu states of N2 and X2Σg
+, 

A2Πu, B2Σu
+, C2Σu

+ and D2Πg states of N2
+ were obtained from the experimental information 

reported by Huber and Herzberg [58] and Laher and Gilmore [59]. Figure 6 shows the calculated 

RKR potentials and associated transitions for electronic states of N2 and N2
+ which can be relevant 

to interpret the results of the present work. Many perturbations are known in molecular states of 

nitrogen although a depth explanation of these features in terms of mixing of electronic states is 

not yet available. A useful graphical summary of many potential energy curves has been reported 

by Gilmore [60]. Perturbations are often accompanied by complex intensity irregularities as 

happens in the first negative system of N2
+. Whereas the vibrational and rotational constants run 

quite normal for the X2Σg
+ state of N2

+, this is not at all the case for the B2Σu
+ electronic state. 

Both the Bv and G(v) curves versus the vibrational quantum number v have unusual shapes. This 

can be interpreted as caused by a strong mutual vibrational perturbation between the B2Σu
+ and 

C2Σu
+ states of the same species of N2

+ (see fig. 6). As this perturbation is homogeneous (i.e., 
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∆Λ=0) the shifts in both levels will be nearly independent of J producing that the B2Σu
+ potential 

curve to flatten out in the middle of its energy range. The minimum of the C2Σu
+ potential energy 

curve should be moved to smaller internuclear distances. There are also observed numerous 

rotational perturbations in the B-X system of N2
+, caused by an interaction between the A2Πu and 

the B2Σu
+ states. 

The excitation temperature Texc was calculated from the relative intensities of some N+ 

ionic lines (3400–4800 Å spectral region) according to the Boltzmann equation (3.16). The 

estimated excitation temperature was Texc= 21000±1300 K. However, if the excitation temperature 

is determined using only the relative intensities of N atomic lines (7300–8800 Å spectral region) a 

value of Texc=7900±1300 K is obtained. This behaviour is observed by other authors [61] and may 

be interpreted to result from the different emissivity distributions of neutral atoms and ion lines. 

The emissivity of the ion lines is produced, on the average, near the inner region with higher 

temperature. On the contrary, the emissivity of the neutral atom lines comes, on the average, from 

the low temperature region close to the plasma front, where the neutral atom density is higher. The 

intensity measurements correspond to the integration of the local emissivity values along the line-

of-sight, integrated in turn in the perpendicular directions. As a consequence, the neutral atom 

Boltzmann plot provides a temperature value which is a certain average of the low-temperature 

values in the plasma (7900 K), whereas the temperature obtained from the ion Boltzmann plot 

(21000 K) averages the values existing in the high-temperature region. On the other hand, we have 

carried out simulations of the ∆v=+1 sequence of B-X band of N2
+ for different vibrational 

temperatures finding that a value around 20000 K reasonably reproduces the experimental 

spectrum. Also, if we consider a temperature of 7900 K the ionization degree obtained by means 

of the Saha equation is of 0.00064. Such a low ionization degree does not justify the observed 

emission spectra of N+ and N2
+. Keeping in mind these results, the temperature obtained from 

relative intensity of N+ atomic lines (21000±1300 K) was chosen as the first approximation for the 

excitation temperature.  
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5.2 LIBS of Oxygen 

In this section we present our recent results on LIBS in oxygen gas and pressures ranging 

from 4.6 to 75 kPa was studied using a high-power transverse excitation atmospheric CO2 laser 

(λ=9.621 and 10.591 µm; tFWHM=64 ns; power densities ranging from 0.87 to 6.31 GW×cm-2) 

[20]. For the present experiments the measured focused-spot area was 7.85×10-3 cm2. This value is 

higher than the calculated area (2.2×10-4 cm2) obtained from the beam waist (Eq. 1.7). This fact is 

due to the non-Gaussian profile of the CO2 laser beam. Moreover the CO2 laser beam passes 

through a circular aperture of diameter 17.5 mm. For this diaphragm the calculated divergence 

angle for the laser beams at 9.621 and 10.591 µm are 1.3 and 1.5 mrad, respectively. Thus, 

considering the total beam divergence (~4.4 mrad), the calculated diameter of the focused TEA-

CO2 laser (beam waist) is 1.06 mm, which is very similar to the measured value (~1 mm). If the 

focal region of the laser beam is assumed to be cylindrical in shape, the spot size in terms of 

length l (Eq. 1.8) of the focused TEA-CO2 laser is 6.0 mm, which is similar to the measured value 

(~7 mm). For the different pulse laser energies measured in LIB of oxygen, the calculated laser 

peak power (Eq. 1.1), intensity (Eq. 1.2), fluence (Eq. 1.3), photon flux (Eq. 1.4), electric field 

(Eq. 1.5) and pressure radiation (Eq. 1.6) are given in Table 2. 

 Figures 7(a-f) display an overview of the low-resolution LIB emission spectrum (2320-

9690 Å) in oxygen at a pressure of 53.2 kPa, excited by the 10P(20) line of the CO2 laser, and 

assignment of the atomic lines of O, O+, O2+, N and N+ [45]. Strong atomic O lines dominate the 

spectrum but, ionic O+ lines (about 8 times weaker) and weak O2+ lines (about 150 times weaker) 

also are present. Some atomic and ionic nitrogen lines were also present, as well as, the first 

negative band system 330-400 nm corresponding to the transition  in N++ Σ−Σ gu XB 22
2

+. In the 

acquisition of the spectrum of the Fig. 7(d-f) a cut-off filter was used to suppress the second order 

intense UV oxygen atomic lines. This cut-off filter produces a decrease of the intensity with 

regard to the spectra of the Fig. 7(a-c). In order to get more insight into LIB of oxygen and to 
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obtain an unambiguous assignment of the emission lines, we have scanned the corresponding 

wavelength regions with higher resolution (~0.10 Å in first-order), which was sufficient to 

distinguish clearly between nearly all observed lines. The spectra have been obtained with fifty 

successive exposures on the ICCD camera in the spectral region 1900-7500 Å. As example, Fig. 

8(a-f) shows several spectra recorded in the LIB experiment. These LIB emission spectra were 

recorded under the following experimental conditions: oxygen pressure of 48.8 kPa, excitation 

line 10P(20) at 10.591 µm and CO2 laser power density 4.28 GW×cm-2. Figs. 8(a-f) display some 

details of the large features found in Figs. 7(a-f). No new features were observed in these high-

resolution spectra. In these figures, multiplet transitions between different J levels for O+ and O2+ 

are observed. In some cases these multiplet structures are not completely resolved due to Stark 

broadening of ionic lines. The spectral features clearly show the complexity of the relaxation 

process and bring out the possibility of cascading processes.  

 The excitation temperature was calculated from the relative intensities of several O+ 

(3270–3310 Å spectral region) and O2+ (2900–3350 Å spectral region) atomic lines and the slope 

of the Boltzmann plot (Eq. 3.16). The values of the λki, gk, Aki and Ek for O+ and O2+ selected 

atomic lines were obtained from the NIST Atomic Spectral Database [45]. The excitation 

temperatures were determined under the following experimental conditions: oxygen pressure of 

48.8 kPa, excitation line 10P(20) at 10.591 µm and CO2 laser power density 4.28 GW×cm-2. The 

obtained excitation temperatures, in the case of O+ and O2+, were 23000 ± 3000 K and 31500 ± 

1600 K, respectively (Fig. 9). This behavior can be due to the different quenching rate coefficients 

between each species. Also this fact may be interpreted to result from the different emissivity 

distributions of single ionized and double ionized oxygen lines.  

When LIB is produced in oxygen under high intensity laser radiation, some molecules can 

obtain an energy that exceeds the binding energy. Also some of their electrons become so 

energetic that the atoms and molecules ionize. Taking into account our experimental spectral 

observations, at these high temperatures oxygen becomes a mixture mainly of primary O2, O, O+, 
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O2+ and electrons. The transition between a gas and plasma is essentially a chemical equilibrium 

which shifts from the gas to plasma side with increasing temperature. Let us consider the first two 

different ionization equilibria of oxygen: 

O (2s22p4 
2

3P ) ↔ O+(2s24p3 0
2/3

4S )+e+IP(O - I), 

O+(2s22p3 0
2/3

4S ) ↔ O2+(2s22p2 
0

3P )+e+IP(O - II), 

where the first two ionization potentials for oxygen are eV, and 

eV [62]. Taking into account the consideration of section 3.6, we can obtain 

the ionization degree. Fig. 10 shows the ionization degree N

618.13)IO( =−PI

121.35)IIO( =−PI

i/(N0+Ni) of O and O+, plotted as a 

function of the gas temperature T at a constant total pressure P=(N0+ne+Ni)kBT of 53.2 kPa. The 

graph shows that oxygen is already fully ionized at thermal energies well below the first 

ionization-energy of 13.618 eV (equivalent to 158000 K). If we consider a temperature of 23000 

K, the ionization degrees of O and O+ obtained by means of the Saha equation are 0.994 and 

0.022, respectively. For T=31500 K, the ionization degrees of O and O+ obtained by means of the 

Saha equation are 0.999 and 0.34, respectively. These so high values of the ionization degrees 

justify the observed emission spectra.  

 The electron number density was obtained by considering the discussion reported in 

section 3.4. The Doppler line widths for some lines of O+ for different temperatures are shown in 

Fig. 11. In our experiments, for O+ lines, the Doppler line widths are 0.07-0.12 Å at 23000 K. The 

choice of plasma emission for ne measurements is made to ensure that the O+ spectral lines are 

sensitive enough to Stark effect and do not suffer from interference by other species. The 

estimation of electron density ne
 has been carried out by measuring the broadening of the spectral 

profiles of isolated lines of O+ (2738, 3386, 3809, 4075, and 4418 Å) from the high-resolution 

spectra. The electron impact parameters for the different O+ lines were approximated to a first-

order exponential decay. The electron number densities of the laser-induced plasma were 

determined from the high-resolution emission spectra in oxygen at a pressure of 48.8 kPa, excited 

by the CO2 laser at 10.591 µm with a power density of 4.28 GW×cm-2. A Lorentz function was 
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used to fit the spectra. In order to extract the Stark broadening from the total experimentally 

measured line broadening, we have to previously deconvolute the different effects that contribute 

to the broadening of the spectral line: The instrumental, Doppler and Stark broadenings. Electron 

densities in the range (3.5-16.5)×1016 cm-3, with an estimated uncertainty of 10%, were 

determined from the Stark broadening [Eq. (3.12)] data of several singly ionized oxygen lines.  

At the evaluated temperature of 23000 ± 3000 K, Eq. (3.4) yields ne≈(0.54-2.3)×1016 cm–3. These 

electron densities are lower to deduced values from the Stark broadening (3.5-16.5)×1016 cm-3, 

approximately one order of magnitude. Based on these calculations, the validity of the LTE 

assumption is supported.  

 The interactions between the incoming laser radiation and the gas sample depend upon 

numerous variables related to the laser and the gas. These variables include laser wavelength, 

energy, spatial and temporal profile of the laser beam, and the thermal properties of the sample. 

The incident beam is partially reflected and partially absorbed by the bulk to a degree that depends 

on the nature of the gas and the temperature it reaches under laser irradiation. LIBS spectra of 

oxygen obtained by laser irradiation at the different wavelengths are compared in Fig. 12. These 

high-resolution LIB emission spectra in oxygen were obtained to a pressure of 48.8 kPa, excited 

by two TEA-CO2 laser wavelengths at 10.591 µm (IW=6.31 GW×cm-2) and 9.621 µm (IW=5.36 

GW×cm-2). The spectral range was chosen in order to detect both single and double ionized 

oxygen species. Also this spectral region has been selected to show differences in signal intensity 

and background emission in detail. The first remark that we should make is that the background 

continuum emission after the same optimization was performed on the data acquisition window is 

much stronger for spectrum produced by the 10.591 µm laser line. This is due to the higher laser 

power density (IW=6.31 GW×cm-2) and the higher absorption in the plasma caused by the IB, 

whose cross-section is proportional to λ3[1-exp(-hc/λkBT)]-1 or approximately λ2 (T is the electron 

temperature during the electron avalanche or cascade growth of ionization and λ is the laser 

excitation wavelength). The spectral lines of O+ and O2+(2983.78, 3017.63, 3023.45, 3043.02, 
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3047.13, 3059.30 Å) were clearly observed. It is clear that the ionic spectral lines for both  O+ and 

O2+ were enhanced by a factor of 4 when the LIBS is induced by the TEA-CO2 laser at 10.591 µm. 

Besides, the irradiation at this wavelength favors the formation of the doubly ionized species (∼ 

30%), as it is obtained from the ratio of the intensities of the O2+ and O+ lines. Moreover, plasma 

electron densities were determined from Stark broadening of the O2+ double ionized line at 

2983.78 Å. The measured electron densities for the LIB emission spectra in oxygen were 

(3.5≤0.2)×1016 cm-3 and (3.2≤0.2)×1016 cm-3 for excitation at 10.591 µm and 9.621 µm, 

respectively. Values of the electron impact half-width W for O2+ were taken from the reported 

values given by Sreckovic et al [63]. It is noted that the emission intensity for O+ and O2+ shows 

different picture than the electron density possibly due to the effect of the laser wavelength.  

 To see the effect laser irradiance the measurements were also carried out at different laser 

fluences. Optical emission spectra of the oxygen plasma plume at a pressure of 48.8 kPa as a 

function of the laser intensity are shown in Figs. 13(a) and 13(b). These spectra were recorded 

after the incidence of only one pulse of the TEA-CO2 laser. The data were measured at a delay of 

20 ms. An increase of atomic/ionic emission intensity and of the doubly ionized O2+ formation 

respect to O+ with increasing the laser irradiance was observed. Also the background increases 

with the laser power. At higher laser power densities (6.31-4.28 GW cm-2), the spectral lines are 

more broadened than at lower power densities as a result of the high pressure associated with the 

plasma. It is assumed that at higher laser fluence the LIB plasma is more energetic and more 

ionized. 

 The emission characteristics of the laser-induced plasma are influenced by the composition 

of the gas atmosphere. The pressure of the gas is one of the controlling parameters of the plasma 

characteristics, as well as the factors related to the laser energy absorption. Also the presence of 

air gas (vacuum conditions) during the LIB process has consequences on the expansion dynamics. 

An interesting observation was the effect of the oxygen pressure. Nanosecond TEA CO2-laser 

produced plasma emission has been characterized as a function of oxygen pressure. Experiments 
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were performed in the pressure interval from 8 to 50 kPa and at pulse energy of 3161 mJ. Fig. 14 

shows LIB emission spectra at various oxygen pressures, excited by the 10.591 µm line at a power 

density of 6.31 GW cm-2. As can be seen in Fig. 14, the intensities of different spectral lines of O+ 

and O2+ increase with decreasing pressure, reach a maximum at about 12.5 kPa, and then decrease 

for lower pressures. Characteristic emission lines from O+ and O2+ elements exhibited significant 

enhancement in signal intensity at a few kPa oxygen pressure as compared to high pressures 

below atmospheric pressure. However, the ratio of the intensities among the O2+ and O+ lines 

remains the same at all pressures. The measurements indicate enhancement due to a longer 

lifetime of the plasma expanding to a larger size at lower oxygen pressures. Further reduction in 

oxygen pressure down to ~ 12.5 kPa resulted in a decrease in signal intensity, as a result of a 

reduction of collisional excitation of the emission lines which occurs when the plasma plume 

expands into the oxygen atmosphere.   

 
5.3 LIBS of Air 

 A spectroscopic study of ambient air plasma, initially at room temperature and pressures 

ranging from 32 to 101 kPa, produced by TEA-CO2 laser (λ=9.621 and 10.591 µm; tFWHM≈64 ns; 

power densities ranging from 0.29 to 6.31 GWäcm-2) has been carried out in an attempt to clarify 

the processes involved in laser-induced breakdown (LIB) air plasma. To understand the detailed 

aspects of laser-beam interaction with air and recombination processes following the breakdown, 

OES studies of the emission spectra from the plasma offer the most convenient method. The 

strong emission observed in the plasma region is mainly due to electronic relaxation of excited N, 

O and ionic fragments N+. The medium-weak emission is due to excited species O+, N2+, O2+, C, 

C+, C2+, H, Ar and molecular band systems of N2
+(B2Σu

+-X2Σg
+), N2(C3Πu-B3Πg), N2

+(D2Πg-A2Πu) 

and OH(A2Σ+-X2Π). Figure 15(a-f) displays an overview of the low-resolution LIB emission 

spectrum in air at atmospheric pressure, excited by the 10P(20) line of the CO2 laser with an 

intensity of 2.2 GW×cm-2, and assignment of the atomic lines of N, O, C, C+, H, Ar, N+, O+, N2+, 
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O2+, C2+ tabulated in NIST Atomic Spectral Database [45] and molecular bands of N2
+(B2Σu

+-

X2Σg
+), N2

+(D2Πg- A2Πu), N2(C3Πu-B3Πg) and OH(A2Σ+-X2Π). Strong atomic N+, N and O lines 

dominate the spectrum but, atomic lines of  C, C+, H, Ar, O+, N2+, O2+, C2+ also are present. LIB 

spectrum of air was compared with the LIB spectra obtained in our laboratory for nitrogen [18] 

and oxygen [20]. The spectra have been obtained at higher resolution with fifty successive 

exposures on the ICCD camera in the spectral region 2000-7500 Å. As examples, Fig. 16(a-l) 

shows several spectra recorded in the air LIB experiment. These LIB emission spectra were 

recorded under the following experimental conditions: air pressure of ~101 kPa, excitation line 

9P(28) at 9.621 mm and laser irradiance of 5.36 GW×cm-2. Note that spectra of Figs. 15(a-f) and 

16(a-l) were excited by two different laser wavelengths. No new features were observed in these 

high-resolution spectra. In these figures, multiplet transitions between different J levels for N+ and 

O+ are observed. In some cases these multiplet structures are not completely resolved due to Stark 

broadening of atomic/ionic lines. The spectral features clearly show the complexity of the 

relaxation process. In figures 16(a-l), a rather complex structure is observed, in consequence of the 

overlapping between rovibrational lines of different molecular band systems and atomic/ionic 

lines. Figure 16(a) displays the overlapping between some bands of  the N2
+(D2Πg-A2Πu) system 

and some lines of N+, O+, C2+ and O2+. In this spectrum the predominant emitting species is the 

triplet structure of  N+ 2s22p(2P0)4d 3F0
3,2,4 Ø 2s22p(2P0)4d 3D2,1,3 around 2317 Å overlapped with 

the 0-0 band of the N2
+(D-A) system. In the spectrum of figure 16(b), the most intense emitting 

species is the line of  C 2s22p(2P0)3s 1P0
1Ø 2s22p2 1S0 at 2478.56 Å, and several ionic lines of O+ 

2s22p2(3P)4p 2D0
5/2Ø2s22p2(1D)3s 2D5/2 at 2425.56 Å, O+ 2s22p2(1D)3p 2D0

3/2Ø2s22p2(3P)3s 2P1/2 at 

2433.53 Å, and the doublet O+ 2s22p2(1D)3p 2D0
3/2,5/2Ø2s22p2(3P)3s 2P3/2 at 2444.25 Å and 

2445.54 Å, respectively. Several medium intensity ionic lines of N+ also overlapped with different 

bands of N2
+(D-A) and many weak lines of O2+ and O+ are also present. In the spectrum of figure 

16(c), the most intense emitting species is the line of N+ 2s22p(2P0)4s 1P0
1 Ø 2s22p(2P0)3p 1P1 at 

3006.83 Å. This figure displays the overlapping between the N2(C-B) v’=2-v”=0 band, OH(A-X) 
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Dv=0 sequence and many weak lines of O+ and O2+. In the spectrum of figure 16(d), N2
+(B2Σu

+-

X2Σg
+) Dv=2 sequence and many weak lines of O+ and O2+ are recorded. This spectrum shows the 

reversal of the bands from v’=11, which is due to the overlap between high vibrational quantum 

number bands with low quantum number bands. So, the first vibrational bands of N2
+(B-X) (2-0, 

3-1, 4-2 … and 10-8) are shaded to the violet and after reversal (11-9, 12-10, 13-12 …) are shaded 

to the red. In the spectrum of figure 16(e), the most intense emitting species is the line of N+ 

2s22p(2P0)3p 1S0 Ø 2s22p(2P0)3s 1P0
1 at 3437.15 Å. Many medium intensity ionic lines of O+ and 

O2+, weak molecular bands of N2(C-B) and N2
+(B-X) are also present. Surprisingly, the relative 

intensity of the 0-0 band head in the N2(C-B) system is very weak. In the spectrum of figure 16(f), 

many medium intensity rovibrational molecular bands of N2(C-B; Dv=-1 sequence) and N2
+(B-X; 

mainly Dv=1 sequence) are observed. In the spectrum of figure 16(g), the most intense emitting 

species are the lines of O+ 2s22p2(3P)3p 4S0
3/2Ø2s22p2(3P)3s 4P3/2 at 3727.32 Å, O+ 2s22p2(3P)3p 

4S0
3/2Ø2s22p2(3P)3s 4P5/2 at 3749.49 Å, N+ 2s22p(2P0)4s 3P0

2 Ø2s22p(2P0)3p 3P2 at 3838.37 Å and 

N2
+(B-X) Dv=0 sequence. Several weak intensity ionic lines of O+ and O2+ also overlapped with 

different bands of N2
+(B-X) are also present. As in the spectrum of Fig. 16(d) a reversal of the 

bands for high vibrational levels is produced. So, the first vibrational bands of N2
+(B-X) (0-0, 1-1, 

2-2, …) are shaded to the violet and after reversal are shaded to the red. In the spectrum of figure 

16(h), several strong intensity ionic lines of N+, O+ and N2+ also overlapped with different bands 

of N2
+(B-X) Dv=0 sequence. The relative intensity of the 0-0 band head at 3914.9 Å in the N2

+(B-

X) system is quite weak and partially overlapped with one O+ line. Nevertheless, the 0-0 band is 

the most intense of their band sequence. In this spectrum, many weak intensity rovibrational 

molecular bands of N2
+(B-X) can be appreciated. The strong emission observed in figures 16(i-l) 

is mainly due to the relaxation of excited ionic fragments N+ and O+. In figure 16(j) various ionic 

lines overlap with molecular bands of N2
+(B-X) transitions and produce rather complex structure, 

but this high-resolution spectra allow for a precise attribution of almost all observed transitions. 

The six lines of single ionized nitrogen between 4600-4650 Å correspond to the multiplet structure 
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of N+ 2s22p(2P0)3p 3P0
J’ Ø 2s22p(2P0)3s 3P0

J” . As it can see, the LIB of air includes mainly 

contributions of both nitrogen and oxygen. It should be noted that the nitrogen and oxygen line 

intensities maintain the proportions of the air composition. 

 On the other hand, excitation temperatures of 23400 ± 700 K and 26600 ± 1400 K were 

estimated by means of N+ and O+ ionic lines, respectively. Electron number densities of the order 

of (0.5-2.4)×1017  cm-3 and (0.6-7.5)×1017 cm-3 were deduced from the Stark broadening of several 

ionic N+ and O+ lines, respectively.  

 LIBS spectra obtained by laser irradiation at the different wavelengths are compared in 

Fig. 17. These high-resolution LIB emission spectra in air were obtained at atmospheric pressure, 

excited by two TEA-CO2 laser wavelengths at 10.591 µm (IW=6.31 GW×cm-2) and 9.621 µm 

(IW=5.36 GW×cm-2). The spectral range was chosen in order to detect the emission lines of 

different atomic, single and double ionized species (C, C+, N+, O+, O2+). Both spectra have been 

obtained after the incidence of only one laser pulse. The relative intensities for different species 

practically do not change with the laser wavelength. The atomic C line at 2478.56 Å was enhanced 

when the LIBS is induced by the CO2 laser at 10.591 µm. This fact is probably due to a self-

absorption process in such resonance line. Figure 18 shows high-resolution LIB emission spectra 

in air at atmospheric pressure, excited by the CO2 laser line at 9.621 µm (IW=5.36 GW/cm2), 

recorded with cell and without cell. We see similar intensities for O+ and different bands of N2
+(B-

X) Dv=0 sequence in both spectra. However, the intensity of N+ and N2+ lines was increased when 

the LIB is with cell. Also, there is a line in the spectra at ~3860 Å, possible due to H2, which 

intensity increases without cell. This fact is probably caused by differences in relative humidity of 

air in both situations. 

 To see the effect that the laser irradiance has on the air breakdown measurements were also 

carried out at different laser intensities. Low-resolution LIB emission spectra of the air plasma at 

atmospheric pressure, excited by the TEA-CO2 laser wavelength at 9.621 µm, as a function of the 

laser intensity is shown in Fig. 19. These spectra were recorded after the incidence of only one 
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pulse of the TEA-CO2 laser. An increase of atomic/ionic emission intensity with increasing the 

laser irradiance was observed. Also the background increases with the laser power. At higher laser 

power densities (6.31-4.00 GW cm-2), the spectral lines are more broadened than at lower power 

densities as a result of the high pressure associated with the plasma. It is assumed that at higher 

laser fluence the LIB plasma is more energetic and more ionized. In order to see the effect of the 

laser intensity on molecular band emission, high-resolution LIB emission spectra of the air plasma 

at atmospheric pressure, (excited by the TEA-CO2 laser wavelength at 9.621 µm) as a function of 

the laser intensity is shown in Fig. 20. The assignment of this spectrum can be found in Fig. 4(f). 

An increase of molecular band intensity of N2
+(B2Σu

+-X2Σg
+) and N2(C3Πu-B3Πg) with increasing 

the laser intensity was observed.  

 Nanosecond TEA CO2-laser produced plasma emission has been characterized as a 

function of air pressure. Fig. 21 shows LIB emission spectra in the pressure interval from 32 to 

101 kPa, excited by the TEA-CO2 laser (10.591 µm) at a power density of 6.31 GW cm-2. As can 

be seen in Fig. 21, the intensities of different spectral lines of C, N+, O+, O2+ and N2
+(D-A) 

molecular bands increase with increasing pressure, reach a maximum at about 79.6 kPa, and then 

decrease with higher pressures. The measurements indicate enhancement due to a longer lifetime 

of the plasma expanding to a larger size at lower air pressures (p<79.6 kPa). Further increase in air 

pressure above to ~ 79.6 kPa resulted in a decrease in signal intensity, as a result of a reduction of 

collisional excitation of the emission lines which occurs when the plasma plume expands into the 

air atmosphere.  

 The detection of the N2
+(B-X) bands is of particular interest since it provides an estimation 

of the effective vibrational and rotational temperatures. The emission intensities of the N2
+ ∆v=-1 

and ∆v=0 band sequences were analyzed in order to estimate the molecular vibrational 

temperature Tvib (see section 3.5). Two Boltzmann plots (Equation 3.17) of the band intensities 

against the vibrational energy at the laser irradiance 5.36 GWäcm-2 are given in Fig. 22(a-b) along 

with the corresponding Franck-Condon factors. The estimated effective vibrational temperatures 
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were Tvib=12100 ± 700 K and 12000 ± 900 K, respectively. On the other hand, the emission 

intensities of the 0-0 (B2Σu
+-X2Σg

+) band of N2
+ were analyzed in order to estimate the effective 

rotational temperature Trot. In 2Σ-2Σ transitions both electronic states belong to Hund´s (b) 

coupling case (DN=±1) [46-48]. Each line of the R and P branches are doublet since they separate 

in two sublevels with J=N±½ each one subscripted with i=1, 2 (1 for J=N+½ and 2 for J=N-½) 

),()1(~)( "'
0 NFNFNR iii −++=ν         (5.1) 

).()1(~)( "'
0 NFNFNP iii −−+=ν         (5.2) 

In Eqs. (5.1) and (5.2) the Q-branch forms satellite branches, whose intensities are much lower 

than the main ones, very close to the corresponding R and P branches lines (called R-form or P-

form Q branches) with wavenumbers: 
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The subscripts 21 and 12 indicate the transition which takes place from a term of the F2 series to 

one of the F1 series or vice versa: 
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In Eqs. (5.1)-(5.6) N is the total angular momentum excluding spin of nuclear rotation, 0
~ν  is the 

wavenumber of the pure vibrational transition, Bv is rotational spectroscopic constant and γ is the 

spin-rotation coupling constant. Moreover, in the case of a molecule with two identical nuclei such 

as N2
+, relative line intensities are affected by the nuclear spin (I=1). The nuclear spin governs the 

intensities through the Pauli exclusion principle; all wavefunctions are antisymmetric with respect 

to the interchange of fermions (half-integer spin particle) and symmetric with respect to the 

interchange of bosons (integer spin particle). Then the ratio of the statistical weights of the 

symmetric and antisymmetric rotational levels is I+1/I for bosons or I/I+1 for fermions. In the case 
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of N2
+ the B2Σu

+ electronic state has only odd J values and then the ratio of the statistical weights 

of the symmetric and antisymmetric rotational levels is 2/1.  

 The assignment of rotational spectrum of 0-0 B2Σu
+-X2Σg

+ band of N2
+, recorded in 

experimental conditions indicated above, is shown in figure 23(a). In Fig. 23(b) we display the 

calculated fortrat diagram for P1, P2, R1, R2, RQ12 and PQ21 branches corresponding to this band. 

The alternation of the intensities of the rotational lines is observed.  

 To estimate the effective rotational temperature, we consider the J value for the maximum 

of the 0-0 band (B-X) of N2
+ (Jmax) (Section 3.5) 

2
max

0 )
2
1(2

+= J
k

hcBT
B

rot ,         (5.7) 

being B0 the rotational constant for v’=0 and Jmax the total angular momentum at the maximum. 

This effective rotational temperature is found to be Trot=1900 ± 100 K. As in any gas, temperature 

in LIB plasma is determined by the average energies of the plasma species (e-, N2, O2, Ar, H, N, 

O, C, OH, N2
+, N+, O+, N2+, O2+, C+, C2+ etc) and their relevant degrees of freedom (translational, 

rotational, vibrational, and those related to electronic excitation). Thus, LIB plasmas, as multi-

component systems, are able to exhibit multiple temperatures. In LIB for plasma generation in the 

laboratory, energy from the laser electric field is first accumulated by the electrons and, 

subsequently, is transferred from the electrons to the heavy particles. Electrons receive energy 

from the electric field and, by collision with a heavy particle, lose only a small portion of that 

energy. That is why the electron temperature in plasma is initially higher than that of heavy 

particles. Subsequently, collisions of electrons with heavy particles (Joule heating) can equilibrate 

their temperatures, unless time or energy are not sufficient for the equilibration (such as in LIB 

and pulsed discharges). The temperature difference between electrons and heavy neutral particles 

due to Joule heating in the collisional weakly ionized plasma is conventionally proportional to the 

square of the ratio of the electric field E to the pressure p. Only in the case of small values of E/p 

do the temperatures of electrons and heavy particles approach each other. Numerous plasmas are 
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characterized by multiple different temperatures related to different plasma particles and different 

degrees of freedom. Plasmas of this kind are usually called non-thermal plasmas. Although the 

relationship between different plasma temperatures in non-thermal plasmas can be quite 

sophisticated, it can be conventionally presented in LIB strongly ionized plasmas as Te (electron 

temperature) > Ti (ions or excitation temperature) > Tvib > Trot. In LIB non-thermal plasma studied 

here, electron temperature is about 10 eV, ions temperature ~2 eV, vibrational temperature ~1 eV, 

rotational temperature ~0.2 eV, whereas the gas temperature is close to rotational temperature.  

 The strong atomic and ionic lines observed in LIB spectra of air indicate the high degree of 

excitation/ionization and the high rate of the N2, O2 dissociation processes achieved in the plasma. 

As we mentioned in section 2.2, when a high-power laser beam of intensity IW interacts with a gas, 

electrons involving the formation of laser-induced plasma can be generated through two main 

processes: MPI and EII both followed by electron cascade. The ionization rate in MPI varies as 

 where n is the number of photons needed to strip off an electron. MPI is relatively improbable 

for nitrogen and oxygen atoms or molecules in the ground state [N(2s

n
WI

22p3 4S0
3/2), O(2s22p4 3P2), 

N2( ) and O+ΣgX 1
2( )], since their high ionization potentials (14.534, 13.618, 9.567 and 

12.070 eV, respectively), means that more than 100 photons are required for these processes. 

Besides, the probability of simultaneous absorption of photons decreases with the number of 

photons n necessary to cause ionization. In general, this probability is . 

Calculations of MPI probability (Eq. 2.4) for N, O, N

−ΣgX 3

n
E

n
WMPI FW 2∝Φ∝

2 and O2 give WMPI@0 s-1 for the CO2 laser at 

λ=9.621 µm and IW=4.5 GW×cm-2. For example, for a 193 nm (ArF) at the laser intensity IW=1 

GW×cm-2 (n=2), the probability of MPI for O2 gives WMPI=1058 s-1. EII consists on the absorption 

of light photon by free or quasifree electrons. These electrons in the focal volume gain sufficient 

energy, from the laser field through IB collisions with neutrals, to ionize mainly nitrogen and 

oxygen atoms, molecules or ions by inelastic electron-particle collision resulting in two electrons 

of lower energy being available to start the process again. EII is the most important process for the 

longer wavelengths used in this work. On the other hand, we have made experimental 
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measurements of breakdown threshold laser intensities of N2, O2 and ambient air (Section 2.4). 

The threshold power density is dependent on the kind of laser, laser wavelength, pulse length, 

beam size of the focal volume, and gas pressure. Breakdown thresholds of solids and liquids are 

usually lower than for gases. Experimental threshold power densities for air is measured for the 

TEA-CO2 laser at λ=10.591 µm. The threshold power densities for air at a given pressure are 

measured in the two following manners. First the cell was evacuated with the aid of a rotary 

pump, to a base pressure of 4 Pa that was measured by a mechanical gauge and then it was filled 

with air up to the desired pressure. The TEA-CO2 laser was fired and its energy transmitted 

through the cell was increased until the breakdown was observed in 50% of laser pulses. The 

threshold was easily determined because it was always associated with the appearance of a blued 

bright flash of light in the focal region, with a cracking noise, and the abrupt absorption of the 

laser pulse transmitted through the focal region. Another way to measure the threshold was to 

induce a previous breakdown at a pressure over the desired value, later the pressure is lowered and 

the energy adjusted until the breakdown begins with some probability, usually around 50%. This 

method is similar to induce the breakdown with energy in excess and to attenuate the laser until 

the spark disappears. In these cases it could be that initial free electrons have been produced by 

previous breakdowns and they are the seed of the avalanche process. In this last method the 

obtained threshold value is normally lower. The present experiments have shown that when high 

laser energy was used, air breakdown occurred easily and it was reproducible. When the laser 

energy was reduced to its threshold power density value, air breakdown became a sporadic event. 

Such sporadic behavior might be due to the difficulty of generating the seed electrons at the 

breakdown threshold values.  

 Figure 24 shows the measured breakdown threshold intensity for air, N2 [18] and O2 [20] 

as a function of pressure. We have measured the breakdown threshold intensity in air at 

atmospheric pressure finding 4.5×109 W×cm-2 (1.3×106 V×cm-1) for an air fresh charge and 

1.1×109 W×cm-2 (6.4×105 V×cm-1) for an air non-fresh charge. As can be seen from Fig. 24, if a 
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breakdown has been previously induced in the gas (open symbol), the pressure range to induce the 

breakdown is bigger and the power density is lower than when no previous breakdown is induced 

(solid symbol). The number of free electrons is higher in conditions of previous breakdown than in 

the case of no previous breakdown, lowering the threshold for the plasma initiation. This has been 

observed by different authors. LIB threshold intensity of air at atmospheric pressure has been 

measured by Alcock et al [~4×1010 W×cm-2 (Ruby, 0.3472 µm) and ~1011 W×cm-2 (0.6943 µm)] 

[64], Haught et al (~4×1014 W×cm-2) [65], De Michelis (~4×1010 W× cm-2) [66], Ireland et al 

(~4×1010 W×cm-2) [67], Aaron et al (~4×1014 W×cm-2) [68], Phuoc and White (~2.5×1012 W×cm-

2) [69], Tomlinson et al [~2×1011 W×cm-2 (Ruby, 0.69 µm) and ~7×1010 W×cm-2 (Nd:YAG, 1.06 

µm)] [70], Chan et al [~1.5×109 W×cm-2 (CO2, 10.6 µm, Λ(diffusion length)=4.8×10-3 cm), 

~3×109 W×cm-2 (Λ=3.2×10-3 cm), and ~7×109 W×cm-2 (Λ=1.6×10-3 cm)] [30], Kawahara 

(~7×1010 W×cm-2, Nd:YAG, 1.06 µm)] [71] and Zhuzhukalo et al [~7×1010 W×cm-2 (focal length 

= 1.4 m) and ~2×1010 W×cm-2 (focal length =14 m)] [72]. Alcock et al [64] reported a decrease of 

the breakdown threshold intensity from ~9×1010 to ~4×1010 W×cm-2 at 0.3472 µm and ~2×1011 to 

~1×1011 W×cm-2 at 0.6943 µm for air pressures between ~200 Torr and ~800 Torr. Chang et al 

[30] reported for several gases (O2, N2, air, He, and Ne) that the threshold power density decreases 

as the pressure increases and that it decreases as the focal volume increases. For air they reported a 

slow decrease with a minimum of the breakdown threshold intensity from ~1.5×109 to ~1×109 

W×cm-2 at Λ=4.8×10-3 cm, ~3×109 to ~1.5×109 W×cm-2 at Λ=3.2×10-3 cm, and ~10×109 to 

~5×109 W×cm-2 at Λ=1.6×10-3 cm for air pressures between ~200 Torr and ~10000 Torr. In this 

work, they used a CO2 laser and the focal diameter range from 0.75×10-2 to 3×10-2 cm. Phuoc and 

White [69] reported a decrease of the breakdown threshold intensity from ~2×1013 to ~2×1012 

W×cm-2 at 0.532 µm and ~8×1012 to ~1×1012 W×cm-2 at 1.064 µm for air pressures between 50 

Torr and 3000 Torr. It has to be noted that we have obtained similar threshold power densities for 

air than those given by Chan [30], but lower values than reported in Refs. [64-72]. This fact can be 

related in part to the used focal length (24 cm) and beam size in the focal region (7.85×10-3 cm2) 
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that is one order of magnitude, at least, higher that the values commonly used in the literature, 

favoring the probability of existence of free electrons to seed the process and decreasing the 

threshold laser intensity due to the lack of the diffusion losses.  

 It has been established [3-10] that the threshold photon flux density or equivalently the 

threshold power density for MPI varies with p-1/n, where p is the gas pressure and n is the number 

of simultaneously absorbed photons (see section 2.4). Therefore, MPI predicts a very weak 

dependence of the threshold power density on pressure. However, as we can see from fig. 24, the 

breakdown threshold power density in air versus pressure shows a minimum around 5×104 Pa if 

previous breakdown have existed and 8×104 Pa without previous breakdown. Therefore, it can be 

seen from Fig. 24 that the pressure dependence is not in harmony with MPI which predicts a very 

weak p-1/n dependence for the threshold power density, while it is in qualitative agreement with 

electron cascade. A minimum in the variation of the threshold power density versus pressure is 

predicted by the classical theory [2-3, 23]. In our experiments, a minimum in the threshold power 

density versus pressure curve (fig. 24) is observed. Therefore, starting from our experimental 

observations and calculations, we can conclude that although, the first electrons must appear via 

MPI or natural ionization, electron impact is the main mechanism responsible for the breakdown 

in air.                                                                                                                                       

5.3.1 Temporal evolution of the LIB plasma 

 The absorption of light and heating of a gas is of primary significance for important 

practical problems (the fire ball of an explosion, the heating of artificial satellites during re-entry 

into the atmosphere, detection of environmental pollutants, ignition systems, laser machining, 

inertially confined fusion, etc). In this section, time-resolved OES analysis for the plasma 

produced by high-power tunable IR CO2 pulsed laser breakdown of air is presented [21]. In these 

series of experiments, the CO2 pulsed laser (λ=10.591 µm, 64 ns (FWHM), 47-347 J/cm2) was 

focused onto a metal mesh target under air as host gas at atmospheric pressure [21]. It was found 

that the CO2 laser is favorable for generating strong, large volume air breakdown plasma, in which 

 63



the air plasma was then produced. While the metal mesh target itself was practically never ablated, 

the air breakdown is mainly due to electronic relaxation of excited N, O, C, H, Ar and ionic 

fragments N+, O+, N2+, O2+, C+ and molecular band systems of N2
+(B2Σu

+-X2Σg
+; D2Πg-A2Πu), 

N2(C3Πu-B3Πg) and OH(A2Σ+-X2Π).  

 The difficulties arise on account of the imprecise definition of the extent of the focal region 

which, in turn lead to inadequate or inaccurate knowledge of the spatial- temporal characteristic of 

the beam intensity within the focal region for gases. On the other hand, it is well known that a 

pure gas plasma, due to the gas breakdown process, is produced when a TEA CO2 laser is focused 

onto a metal sample at a gas pressure of around 1 atm, in which case practically all the laser 

irradiance is absorbed in the gas plasma [33, 73]. It is expected that, in some medium range 

pressures between 0.01 torr and 1 atm, both gas plasma and target plasmas are produced. In such a 

case, some interaction inevitable takes place between the gas and the target laser induced plasmas. 

The plasma is a mixture of electrons, atoms, molecules and ions, and mass from both the ablated 

target and the ambient gas. The interaction between the ejected mass (plume) and the surrounding 

air slows the expansion of the plasma. If a metal mesh is used as a target, low amount (if any) of 

ablated material will be formed and the spatial origin of gas breakdown process will be accurately 

defined independently of the laser fluence. After its formation in the vicinity of the metal mesh 

surface, the air breakdown plasma propagates towards the laser source at a supersonic speed. The 

shock wave heats up the surrounding air which is instantaneously transformed in strongly ionized 

plasma.  

 Two different types of spectra were recorded: time-integrated and time-resolved. In the 

acquisition of time-integrated spectra, a good signal to noise ratio has been obtained averaging 

each spectrum over several successive laser pulses. Typically the signals from 20 laser pulses are 

averaged and integrated over the entire emission time. In time-resolved measurements, the delay td 

and width tw times were varied. It was verified that the plasma emission was reproducible over 

more than 7 ablation events by recording the same spectrum several times. The temporal history of 
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LIB air plasma is illustrated schematically in Fig. 25. The time for the beginning of the CO2 laser 

pulse is considered as the origin of the time scale (t=0). Inserts illustrate some emission spectra 

recorded at different delay and width times at two observed distances of z=2.5 and 5 mm. The 

temporal shape of the CO2 laser pulse is also shown. 

 The LIB spectra of air were measured at different delay and width times. In a first set of 

experimental measurements, the spectra have been obtained in the spectral region 2423-2573 Å, at 

a delay time ranging from 0 to 30 µs at 0.5 µs intervals and at an observed distance z from 1 to 10 

mm. The spectral range was chosen in order to detect both single and double ionized oxygen 

species, several single ionized nitrogen lines and atomic carbon. Figure 26 illustrates the time-

resolved evolution from laser-induced (106 J/cm2) air plasma monitored at 0, 0.1, 0.7, 2, 3, 4, and 

5 µs gate delays for a fixed gate width time of 0.5 µs and z=2.5 mm. One can see that after the 

laser pulse, the plasma emission consists in an intense continuum. This continuum radiation is 

emitted by the laser-induced plasma as a result of free-free and free-bound transitions. As seen in 

figure 26 during the initial stages after laser pulse (td§0.5 µs), continuum emission dominates the 

spectrum. As time evolves (0.5 µs§td§3.5 µs), N+, O+ and O2+ emissions dominate the spectrum. 

These ionic lines decrease quickly for higher delay times, being detected up to ~ 4.5 µs. The 

emission lines become progressively narrower as a consequence of the electron number density 

distribution. It points out that the electron density and excitation temperature must decrease during 

the plasma expansion. As the delay is increased (td>3.5 µs) C atomic emission line dominates the 

spectrum. This atomic line decreases for higher delay times, being detected up to ~ 30 µs. The 

maximum intensity of continuum and spectral lines is reached after a characteristic time, 

depending on the observation distance z. Figure 27 shows time-resolved emission spectra from 

LIB (106 J/cm2) in air collected at different distances (z=1 and 7.5 mm) and recorded at 2, 3, 4, 

and 5 µs gate delays for a fixed gate width time of 0.5 µs. By analyzing figures 26 and 27 it is 

possible to see that C atoms are produced both in the ablated target and in the air breakdown. 

When the spectra were recorded near the target surface (z<2.5 mm), the main contribution of C 
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atoms is due to the target surface. For z>2.5 mm, practically the spectrum is due to air breakdown. 

At far away distances from the metal mesh target surface, the plasma front arrives later than for 

close distances. Figure 28 displays several time-resolved emission spectra from LIB (106 J/cm2) in 

air monitored at 1, 2.5, 5, and 7.5 mm observed distances and after the laser pulse (td<0.5 µs). In 

this figure, one can see that at short time after the TEA CO2 laser pulse, the plasma emission 

consists in an intense continuum that decreases with distance. Figure 29 shows time-resolved 

emission spectra from laser-induced air plasma (106 J/cm2) recorded at td=3 µs with tw=0.5 µs 

monitored at 1, 2.5, 5, 7.5 and 10 mm. In these recording conditions, the most intense plasma is 

monitored at 5 mm from the mesh target surface.  

 Figure 30 displays the temporal evolution of the LIBS air plasma (160 J/cm2) in the 

spectral region 3725-3860 Å region monitored at 2.5, 3 and 4 µs gate delays for a fixed gate width 

time of 0.5 µs (z=1 cm) and time-integrated spectrum (td=0 and tw>>30 µs). The inset plot shows 

the assignment of some ionic lines of N+, O+ and O2+ and band heads of different molecular bands 

of N2
+(B2Σu

+-X2Σg
+; Dv=0 sequence) [see Fig. 17(g)]. At early times (td<1 µs) (not shown), the 

plasma emission consists in a weak continuum. When the delay increases, some ionic lines of N+, 

O+ and O2+ and band heads of the molecular bands of N2
+(B2Σu

+-X2Σg
+) enhanced steeply as a 

consequence of the expansion and heating of the air plasma. At longer times (td>3 µs), the ion 

lines significantly decrease steeply in intensity as a consequence of the expansion and cooling of 

the plasma plume and its recombination into ground state ions. At td>4 µs, N+ and O+ ionic lines 

and N2
+ rovibrational lines disappear. Figure 31 shows the temporal evolution of the LIBS air 

plasma (71 J/cm2) in the spectral region 3830-3960 Å region monitored at 2, 3 and 4 µs gate 

delays for a fixed gate width time of 0.5 µs (z=1 cm) and time-integrated spectrum (td=0 and 

tw>>30 µs). This plot also shows the assignment of some ionic lines of N+, O+ and N2+ and band 

heads of different molecular bands of N2
+(B2Σu

+-X2Σg
+; Dv=0 sequence). At early times (td<1 µs) 

(not shown), the plasma emission consists in a continuum. When the delay increases, some ionic 

lines of N+, O+ and N2+ and band heads of the molecular bands of N2
+(B2Σu

+-X2Σg
+) enhanced as a 
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consequence of the air plasma expansion. At longer times (td>3 µs), the ion lines significantly 

decrease steeply in intensity. At td>5 µs, N+, N2+ and O+ ionic lines and N2
+ rovibrational lines 

disappear. Figure 32 displays the temporal progress of the LIBS air plasma in the spectral window 

4070-4195 Å observed at 2.5, 3 and 4 µs gate delays for a fixed gate width time of 0.5 µs (z=1 cm) 

and time-integrated spectrum (td=0 and tw>>30 µs). The assignments of some ionic lines of N+, O+ 

and N2+ and band heads of different molecular bands of N2
+(B2Σu

+-X2Σg
+; Dv=-1 sequence) are 

indicated. As before, at early times (td<1 µs), the plasma emission consists in a weak continuum. 

When the delay increases, some ionic lines of N+, O+ and N2+ and band heads of the molecular 

bands of N2
+(B2Σu

+-X2Σg
+) enhanced. At longer times (td>3 µs), the ion lines significantly 

decrease steeply in intensity. At td>4 µs, N+, N2+ and O+ ionic lines and N2
+ rovibrational lines 

disappear.  

 
5.3.2 Time of flight, velocity, kinetic energy and electron density 

 Space-and-time resolved OES measurements could be used to estimate plasma expansion 

rate and kinetic energy. The temporal evolution of spectral atomic, ionic and molecular line 

intensities at a constant distance from the target can be used to construct the time-of-flight (TOF) 

profile. TOF studies of the emission provide fundamental information regarding the time taken for 

a particular species to evolve after the laser-induced plasma has been formed. Specifically, this 

technique gives an indication of the velocity of the emitted species. A coarse estimation of the 

velocity for the different species in the plume can be inferred from the time resolved spectra by 

plotting the intensities of selected emission lines versus the delay time, and then calculating the 

velocity by dividing the distance from the target by the time where the emission peaks. This 

method for determination of plasma velocity should be used with care due to the superposition of 

both expansion and forward movements of the plasma plume. We assumed a plasma model 

consisting in two plasmas [74]: primary plasma that acts as initial explosion energy source and 

emits an intense continuum emission background for a short time just above the surface of the 
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auxiliary target; secondary plasma expands with time around the primary plasma. The secondary 

plasma is formed by the excitation from the shock wave and by the emitting of atomic, ionic and 

molecular species characterized by a low background signal.  

 Figure 33(a) displays the TOF profiles for the air breakdown experiments induced by CO2 

laser pulses (106 J/cm2), of continuum radiation, O+(2433.53 Å), O+(2455.53 Å), N+(2461.27 Å), 

N+(2478.56 Å), N+(2522.23 Å) and C(2478.56 Å) lines as a function of the delay time. We notice 

the appearance of a strong maximum for continuum background for a delay of 1 µs at z=5 mm. 

When td increases, the continuum drops steeply as a consequence of the reduction of electron 

density and temperature as the plume expands. For O+ and N+ ionic species and C atomic, the 

maxima appear for a delay of 2.5, 3 and 4.5 µs, respectively. The emission intensity of O+ and N+ 

ionic lines decreases more rapidly than the emission intensity of the C lines. The time duration of 

ionic species was nearly 5 µs, while the time duration of C atomic emission was nearly 20 µs. The 

experimental TOF distributions N(t) are essentially number density distributions. They are 

converted to flux distributions dN/dt by employing a correction factor z/t, where z means the flight 

distance along the plasma expansion and t is the delay time after the laser pulse incidence. It 

should be mentioned that the estimation of velocity distributions assumes that the emitting species 

are generated on the assisting metal mesh target. The velocity distributions that are derived from 

these TOF distributions are display in figure 33(b). At the laser fluence used in this series of 

experiments (106 J/cm2) and z=5 mm, TOF distributions present different characteristics. Thus, 

the velocity distributions of ionic species O+(2445.54 Å) and N+(2522.23 Å) are comparatively 

wider (~3.7 and ~4 km/s (FWHM), respectively) than the velocity distribution of carbon neutral 

species [~1.2 km/s (FWHM)]. The velocity distributions of O+, N+ and C lines species are centred 

at about 2, 1.7 and 1.1 km/s, respectively. From TOF spectra, the translational kinetic energy can 

be deduced [KE=(1/2)m(z/t)2] by measuring the time t required to transverse the distance from the 

target to the detector z. The kinetic energy obtained for some species are plotted in figure 34. We 

have observed small atomic and ionic average kinetic energies. As we have stated above, for a 
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better understanding of the physical mechanisms underlying the plasma emission breakdown in 

air, LIB spectra were obtained by varying both the distance z (up to 10 mm) with respect to the 

auxiliary metal mesh and the laser energy. It is expected, in fact, that these two parameters would 

affect strongly the dynamic evolution of the plasma and the shock wave induced by the CO2 laser. 

Different lines originating from atomic and ionic species of both nitrogen and oxygen were 

analyzed. O+ doublet (2s22p2(1D)3p 2D0
3/2,5/2Ø2s22p2(3P)3s 2P3/2) at ~ 2445 Å and N+ triplet 

(2s22p(2P0)4d 3D0
1,2,3Ø2s22p(2P0)3p 3P0,1,2) at ~ 2522 Å were chosen as representative of ionized 

lines. The energies of the lower levels of both multiplets are high (189068.514 for O+ and 

170572.61, 170607.89 and 170666.23 cm-1 for N+) so that the self-absorption effect can be 

neglected. Figures 35 and 36 show TOF and velocity distributions of multiplet structures of 

N+(~2522 Å) and O+(~2445 Å) at different distances (1, 2.5, 5, 7.5 and 10 mm) as for a laser 

fluence of 106 J/cm2  The temporal emission features are affected by the presence of strong 

continuum at short distances (z≤3 mm) and at early delay time. But at distances greater than 3 mm, 

the continuum radiation is considerably reduced and the interference of continuum on the TOF 

distributions is negligible. The spike observed in TOF and velocity profiles is the prompt signal 

that is used as a time maker. By the shift of the TOF peaks for each distance it is possible to 

calculate approximately the mean velocities of LIB along the propagation axis Z. The measured 

peak velocities of multiplet structures of N+(~2522 Å) and O+(~2445 Å) monitored at 1, 2.5, 5, 

7.5 and 10 mm (for a laser fluence of 106 J/cm2) are 0.5, 1, 1.7, 2.1 and 3.6 km/s and 0.5, 1, 2, 2.5 

and 5 km/s, respectively. The peak velocities of N+ and O+ increase with the distance from the 

target surface. This is due to the initial acceleration of the ablated partials from zero velocity to a 

maximum velocity. Also we have studied OES of the air plasma by varying the laser energy. We 

observed that when the laser fluence is increased, the N+ and O+ TOF distributions broaden and 

move towards lower delay times. On the other hand, plasma temperature was determined from the 

emission line intensities of several N+ and O+ ionized lines observed in the laser-induced plasma 

of air for a delay time of 3 µs and a distance of z=5 mm. The obtained excitation temperatures, in 
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the case of N+ and O+, were 23400 ± 900 K and 26600 ± 1300 K, respectively. For N+ and O+ 

lines, the Doppler line widths vary between 0.08-0.17 Å at 23400 K and 0.11-0.13 Å at 26600 K, 

respectively.  

 The N+ triplet (2s22p(2P0)4d 3D0
1,2,3Ø2s22p(2P0)3p 3P0,1,2) at ~2522 Å was identified as 

candidate for electron-density measurements. By substituting the Stark line widths at different 

time delays in Eqn. (3.12) and the corresponding value of Stark broadening W (0.372 Å from 

Griem [41] at plasma temperature of 23400 K), we obtain the electron density. Figure 37 gives the 

time evolution of electron density and its first derivative with respect to time by setting the gate 

width of the intensifier at 0.5 µs. These values have been obtained by Stark broadening of the N+ 

TOF curves at z = 5 mm and for a laser fluence of 106 J/cm2. The initial electron density at 0.1 µs 

is approximately 1.3ä1016 cm-3. Afterwards, the density increases and reaches a maximum 

(1.7ä1017 cm-3) at ~0.8 µs, and then decrease as the time is further increased. At shorter delay 

times (<0.1 µs), the line to continuum ratio is small and the density measurement is sensitive to 

errors in setting the true continuum level. For times >0.1 µs, the line to continuum ratio is within 

the reasonable limits and the values of electron density shown in figure 37 should be reliable. 

After 6 µs, the electron density is about 2.7ä1016 cm-3. For a long time >6 µs, subsequent 

decreased N+ emission intensities result in poor signal-to-noise ratios, and there exits a limitation 

in the spectral resolution. The decrease of ne is mainly due to recombination between electrons and 

ions in the plasma. These processes correspond to the so-called radiative recombination and three-

body recombination processes in which a third body may be either a heavy particle or an electron. 

The electron number density ne (cm-3) in the laser induced plasma is governed by the kinetic 

balance equation 2.10. By considering the discussion reported in section 2.3, the equilibrium 

condition can be established at 0.8 µs (dynamical equilibrium) and t>2 µs (stationary equilibrium). 

For t ≤ 0.8 µs the ionization prevails while for 0.8 µs<t<2 µs the three-body recombination 

dominates. In the case of TEA-CO2 laser at a laser fluence of 106 J/cm2 and z=5 mm, the 

recombination rate constant estimated is approximately 5ä10-28 cm6 s-1 (Eq. 2.11). The 
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recombination time can be determined by the value of the rate constant of the recombination 

process as trec=1/(ne
2.krec) obtaining trecº0.4-3 µs.  

 Optical emission accompanying TEA-CO2 nanosecond LIB in air is very long lived (~20 

µs) relative to the average radiative lifetimes of the excited levels that give rise to the observed 

emission lines. All of the emission lines of N, N+, N2+, O, O+ and O2+ expected in the 2000-10000 

Å wavelength range are observed, illustrating that the excited species giving rise to the optical 

emission are produced by non-specific mechanism during the TEA CO2 LIB process. However, a 

direct excitation-de-excitation mechanism cannot explain the observed emission spectra. Electron 

impact ionization would explain the emission intensity variation with the time for N, N+, N2+, O, 

O+ and O2+ species. On the other hand, the formation of the excited molecular species would 

happen in the gas phase by collisions between atomic or ionic species present in the plume at 

times far away from the plasma ignition. The emission process at this plasma stage is divided into 

two different process associated, respectively with the shock formation and the plasma cooling. 

During the former, the atoms, molecules and ions gushing out from the laser focal region are 

adiabatically compressed against the surrounding gas. During the latter stage the temperature of 

the plasma and consequently the emission intensities of atomic lines and molecular bands decrease 

gradually.  

 
6. Conclusion 

This article reviews some fundamentals of LIBS and some experimental studies developed in our 

laboratory on N2, O2 and air gases using a high-power IR CO2 pulsed laser. In this experimental 

study we used several laser wavelengths (λ=9.621 and 10.591 µm) and laser intensity ranging 

from 0.87 to 6.31 GW cm-2. The spectra of the generated plasmas are dominated by emission of 

strong atomic, ionic species and molecular bands. For the assignment of molecular bands a 

comparison with conventional emission sources was made. Excitation, vibrational and rotational 

temperatures, ionization degree and electron number density for some species were estimated by 

using different spectroscopic methods. The characteristics of the spectral emission intensities from 
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different species have been investigated as functions of the gas pressure and laser irradiance. 

Optical breakdown threshold intensities in different gases have been measured experimentally. 

The physical processes leading to laser-induced breakdown of the gases have been analyzed. 

Plasma characteristics in LIBS of air were examined in detail on the emission lines of N+, O+ and 

C by means of time-resolved OES technique. The results show a faster decay of continuum and 

ionic spectral species than of neutral atomic and molecular ones. The velocity and kinetic energy 

distributions for different species were obtained from TOF measurements. Excitation temperature 

and electron density in the laser-induced plasma were estimated from the analysis of spectral data 

at various times from the laser pulse incidence. Temporal evolution of electron density has been 

used for the estimation of the three-body recombination rate constant. 
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TABLE AND TABLE LEGENDS 

 
Table 1.- List of the most intense observed molecular bands in the LIB in nitrogen, corresponding 

electronic transition and wavelength in Å (air) for the major band heads.   

 
Molecule Name system Observed band 

system 
Major band heads (Å) (v’, v”) 

N2
+ Janin-d’Incan D2Πg –A2Πu 2343 (0, 0); 2398 (1, 1); 2456 (2, 2); 2516 (3,3); 

2579 (4, 4); 2645 (5, 5); 2714 (6, 6) 
N2

+ First negative B2Σu
+- X2Σg

+ 2861.7 (11, 6); 3033.0 (11, 7); 3065.1 (15, 10); 
3076.4 (4, 1); 3078.2 (3, 0); 3291.6 (5, 3); 
3293.4 (4, 2); 3298.7 (3, 1); 3308.0 (2, 0); 
3319.9 (8, 6); 3349.6 (18, 13); 3381.5 (10, 8); 
3419.6 (14, 11); 3447.3 (23, 16); 3460.8 (17, 
13); 3493.4 (12, 10); 3532.3 (5, 3); 3538.3 (4, 
3); 3548.9 (3, 2); 3563.9 (2, 1); 3582.1 (1, 0); 
3588.6 (16, 13); 3612.4 (10, 9); 3806.8 (5, 5); 
3818.1 (4, 4); 3835.4 (3, 3); 3857.9 (2, 2); 
3884.3 (1, 1); 3914.4 (0, 0); 4110.9 (6, 7); 
4121.3 (5,6); 4140.5 (4, 5); 4199.1 (2, 3); 
4236.5 (1, 2); 4278.1 (0, 1); 4459.3 (7, 9); 
4466.6 (6, 8); 4490.3 (5, 7);  4515.9 (4, 6); 
4554.1 (3, 5); 4599.7 (2, 4); 4651.8 (1, 3); 
4709.2 (0, 2); 4864.4 (7, 10); 4881.7 (6, 9); 
4913.2 (5, 8); 4957.9 (4, 7); 5012.7 (3, 6); 
5076.6 (2, 5); 5148.8 (1, 4); 5228.3 (0,3); 
5485.5 (4, 8); 5564.1 (3, 7); 5653.1 (2, 6); 
5754.4 (1, 5); 5864.7 (0, 4) 

N2 Second positive C3Πu-B3Πg 2953.2 (4, 2); 2962.0 (3, 1); 2976.8 (2, 0); 3116.7 
(3, 2); 3136.0 (2, 1); 3159.3 (1, 0); 3268.1 (4, 4); 
3285.3 (3, 3); 3311.9 (2, 2); 3338.9 (1, 1); 3371.3 
(0, 0); 3500.5 (2, 3); 3536.7 (1, 2); 3576.9 (0, 1);  
3641.7 (4, 6); 3671.9 (3, 5); 3710.5 (2, 4); 3755.4 
(1, 3); 3804.9 (0, 2); 3857.9 (4, 7); 3894.6 (3, 6); 
3943.0 (2, 5); 3998.4 (1, 4); 4059.4 (0, 3); 4094.8 
(4, 8); 4141.8 (3, 7); 4200.5 (2, 6); 4269.7 (1, 5); 
4343.6 (0, 4); 4355.0 (4, 9); 4416.7 (3, 8); 4490.2 
(2, 7); 4574.3 (1, 6); 4667.3 (0, 5); 4723.5 (3, 9); 
4814.7 (2, 8); 4916.8 (1, 7); 5031.5 (0, 6); 5066.0 

(3, 10); 5179.3 (2, 9); 5309.3 (1, 8) 
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TABLE 2.- Laser parameters for the TEA CO2 LIB experiments of oxygen. 

Laser 
λ(µm) 

Energy 
EW 

(mJ) 

Power 
PW (MW) 

Intensity 
IW

(GW cm-2) 

Fluence 
ΦW

(J cm-2) 

Photon Flux, 
Fph

(ph. cm-2 s-1) 

Electric 
Field FE

(MV cm-1) 
9.621 2685 42.1 5.36 342 2.60×1029 1.50 
9.621 2256 35.4 4.50 287 2.18×1029 1.37 
9.621 1732 27.1 3.46 220 1.67×1029 1.20 
9.621 1209 19.0 2.41 154 1.17×1029 1.01 
9.621 503 7.88 1.00 64.0 4.86×1028 0.65 
10.591 3161 49.5 6.31 402 3.36×1029 1.63 
10.591 2145 33.6 4.28 273 2.28×1029 1.34 
10.591 1481 23.2 2.96 189 1.58×1029 1.11 
10.591 968 15.2 1.93 123 1.03×1029 0.90 
10.591 624 9.78 1.25 79.5 6.64×1028 0.72 
10.591 436 6.83 0.87 55.5 4.64×1028 0.60 
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Figures and figure captions 

 

 

FIG. 1. Schematic diagram of the experimental set-up used for time-resolved TEA-CO2 pulsed 

laser gas breakdown diagnostics.  
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Figure 2.  Four images of the LIB of nitrogen at atmospheric pressure (λ=9.621 µm and power 

density of 4.5 GW×cm-2), oxygen at 49.0 kPa (λ=10.591 µm and power density of 1.93     

GW×cm-2), air at atmospheric pressure (λ=9.621 µm and intensity of 5.86 GW×cm-2) and He at 

atmospheric pressure (λ=10.591 µm and power density of 6.31 GW×cm-2) at different times of the 

experiment induced by a TEA-CO2 laser pulse. Laser beam direction is from right to left. 
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Figure 3. An overview of the LIB emission spectrum of nitrogen at a pressure of 1.2×105 Pa, 

excited by the 9P(28) line at 1039.36 cm-1 of the TEA CO2 laser, compared with atomic lines of           

N (red), N+ (blue) and N2+(green). 

 

 

 

 

 

 

 

 

  

 81



2100 2200 2300 2400 2500 2600 2700 2800 2900

2000 2100 2200 2300 2400 2500 2600 2700 2800

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400

4-
1

3-
0

Air Wavelength / Å 

2-
2

N
+

N2: C
3Πu-B

3Πg;

4400 4500 4600 4700 4800 4900

3500 3600 3700 3800 3900

3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900
∆v

=2
14

-1
1

11
-6

∆v
=1

∆v
=2

4-
3

4-
2

3-
1

2-
0

3-
2

2-
1

1-
0

4-
4

3-
3

1-
1

0-
0

5-
5

6-
6

4-
42-
2

1-
1

N+
2: B

2Σ+
u-X

2Σ+
g

N
+

N
+

N
+

N
+

N
+

N
+

N
++

N
+

N
+

N
+

N
+

N
+

N
+

N
++

N
++

N
++

N+
2: D

2Πg-A
2Πu

0-
0

4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200

N+
2: B

2Σ+
u-X

2Σ+
g

v'
-v

"

1-
7

2-
8

3-
9

4-
7

4-
6

1-
2

0-
1

0-
0

N2: C
3Πu-B

3Πg

Air Wavelength / Å 

4-
8

3-
4

N
+

N
+ N

+
N

+

N
+ (6

)

N
+

N
+

N
+ (3

)

N
+ (3

)
N

+
N

+N
+

N
+

N
+

0-
52-

7
3-

8
4-

9

1-
6

3-
7 0-
41-

5
2-

6

0-
3

3-
6 2-
5

1-
4

0-
2

3-
5 2-

4
1-

3

2-
3

∆
v=

 -3∆v
= 

-2∆v
= 

-1

∆
v=

1

∆v
=0

6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600

 

N+
2: B

2Σ+
u-X

2Σ+
g

N2:0-0: c'
4
1Σ+

u-a"1Σ+
g

N2: B
3Πg-A

3Σ+
u

N N

N
+

N
+N
+

N
+

N
++

N
+ N

+

N2: C
3Πu-B

3Πg

Air Wavelength / Å 

N
+N+

2: B
2Σ+

u-X
2Σ+

g

8-
5

7-
4

5-
2

8-
6

11
-8 9-

6
10

-7 8-
5

7-
4

6-
4

4-
2

6-
3

5-
3

3-
0

5-
2

4-
1

7-
5

N2: B
3Πg-A

3Σ+
u

Air Wavelength / Å 

5-
3

6-
4

7-
5

4-
1

N2: B
3Πg-A

3Σ+
u

3-
0

N

N

N
N

N
+

N
+

9-
4

8-
310

-5
11

-6
12

-7

7-
2

5-
0

6-
1

13
-914

-1
0 5-
1

9-
5

8-
4

7-
3

4-
012

-8 11
-7

10
-6

6-
2

N N

3-
10

1-
82-

9

0-
6

4-
112-

8

1-
7

N
++

∆
v=

 -4

∆
v=

 -3

 

7800 7900 8000 8100 8200 8300 8400 8500 8600

7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800

v'
-v

"

2-
1

7-
6

6-
5

3-
1

5-
2 4-

3

2-
0 3-

2

Air Wavelength / Å 

N
+N
+

N N

N2: B3Πg-A3Σ+u

9000 9100 9200 9300 9400 9500 9600

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600

N2: B3Πg-A3Σ+u

Air Wavelength / Å 

N
4-

45-
5

2-
1

3-
2

1-
0

3-
3

N

N

 

 82



Figure 4. An overview of the low-resolution emission spectra observed in the 2000-9690 Å region. 

Upper panel: LIDB in nitrogen at a pressure of 1.2×105 Pa, excited by the 9P(28) line at 1039.36 cm-1 of 

the CO2 laser; Lower panel: dc electric glow discharge spectrum of nitrogen at low pressure. 
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Figure 5 (a)-(f). Comparison between high-voltage dc electric discharge (lower panels) and LIDB 

(upper panels) emission spectra for nitrogen in several spectral regions. 
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Figure 6. RKR potential energy curves for some bound electronic states of N2 and N2
+. 
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Fig. 7(a-f). Low-resolution LIB emission spectrum observed in the 2320-9690 Å region in oxygen 

at a pressure of 53.2 kPa, excited by the 10P(20) line of the TEA-CO2 laser at 10.591 mm and a 

power density of 0.87 GW×cm-2, and assignment of the atomic lines of O, O+, O2+, N and N+.  
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Figure 8 (a-f). High-resolution LIB emission spectrum observed in several spectral regions in 

oxygen at a pressure of 48.8 kPa, excited by the CO2 laser at 10P(20) line (10.591 µm) with a 

power density of  4.28 GW×cm-2, and assignment of some atomic lines of O+, O2+, and N+.  
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Figure 9. Linear Boltzmann plots for several O+ and O2+ transition lines used to calculate plasma 

temperature, Texc. Plots also show linear fit to the data. 
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Figure 10. Temperature dependence of the ionization degree Ni/(N0+Ni) of atomic oxygen O and 

oxygen singly ionized O+ at a constant pressure of 53.2 kPa. 
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Figure 11. Doppler line widhs for some lines of O+. 
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Figure 12. High-resolution LIB emission spectra in oxygen at a pressure of 48.8 kPa, excited by 

two TEA-CO2 laser wavelengths at 10.591 µm (EW=3161 mJ) and 9.621 µm (EW=2685 mJ). 
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Figure 13 (a-b). High-resolution LIB in oxygen (at a pressure of 48.8 kPa) emission spectra 

observed in the (a) 3957-4085 Å and (b) 4195-4310 Å regions, excited by two TEA-CO2 laser 

wavelengths at 10.591 µm as a function of the laser power density. 
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Figure 14. High-resolution LIB emission spectra at various oxygen pressures, excited by the 

TEA-CO2 laser (10.591 µm) at a power density of 6.31 GW cm-2. 
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Fig. 15 (a-f) Low-resolution LIB emission spectrum observed in the 2000-9690 Å region in 
ambient air at atmospheric pressure, excited by the TEA-CO2 laser at 10.591 mm and a power 
density of 2.2  GW×cm-2, and assignment of the atomic lines of N, O, C, C+, H, Ar, N+, O+, N2+, 
O2+, C2+ and molecular bands of N2

+(B2Σu
+-X2Σg

+) and N2(C3Πu-B3Πg).  
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Fig. 16 Low-resolution LIB emission spectra in air, nitrogen and oxygen, excited by the TEA-CO2 
laser at 10.591 mm and a power density of ~1 GW×cm-2, and assignment of the atomic lines of N, 
O, H, N+, O+ and 2-9 molecular band of  N2(C3Πu-B3Πg).  
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Fig. 16 (a-l) High-resolution LIB emission spectrum observed in several spectral regions in 

ambient air at atmospheric pressure, excited by the CO2 laser at 9.621 mm with a power density of 

5.36 GW×cm-2, and assignment of some atomic lines of N+, O+, N2+, O2+, and band heads of the 

molecular bands of N2
+(B2Σu

+-X2Σg
+), N2(C3Πu-B3Πg), N2

+(D2Πg-A2Πu) and OH(A2Σ+-X2Π). 
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Fig. 17 High-resolution LIB emission spectra in air at atmospheric pressure, excited by two TEA-

CO2 laser wavelengths at 10.591 µm (IW=6.31 GW/cm2) and 9.621 µm (IW=5.36 GW/cm2).  
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Fig. 18 High-resolution LIB emission spectra in air at atmospheric pressure, excited by the TEA-

CO2 laser line at 9.621 µm (IW=5.36 GW/cm2) recorded with cell and without cell. 

4300 4400 4500 4600 4700 4800 4900 5000

N+

N

Air Wavelength / Å

N+

O+
O+O+ O+

O+

O+
N+

N+

N+

N+

N2+ H
β

N+

 IW= 1.09 GW cm-2

 IW= 1.51 GW cm-2

 IW= 2.58 GW cm-2

 IW= 4.00 GW cm-2

 IW= 5.36 GW cm-2

 
Fig. 19 Low-resolution LIB emission spectra in air at atmospheric pressure observed in the 4300-

5080 Å region, excited by the TEA-CO2 laser wavelength at 9.621 µm, as a function of the laser 

power density. 
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Fig. 20 High-resolution LIB emission spectra in air at atmospheric pressure, excited by the TEA-
CO2 laser wavelength at 9.621 µm, as a function of the laser intensity. 
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Fig. 21 High-resolution LIB emission spectra at various air pressures, excited by the TEA-CO2 
laser (10.591 µm) at a power density of 6.31 GWäcm-2. 
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Fig. 22 Left (a) panel: Linear Boltzmann plot of the N2
+ (B-X) ∆v=-1 band sequence intensity 

versus the normalized energy of the upper vibrational level; Right (b) panel: Linear Boltzmann 
plot of the N2

+ (B-X) ∆v=0 band sequence intensity versus the normalized energy of the upper 
vibrational level; Experimental conditions: laser power density of 5.36 GW cm-2 and 
atmospheric pressure. Plots also show linear fit to the data and the corresponding Franck-Condon 
factors. 
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Fig. 23 (a) Detailed LIB spectrum of air and partial rotational assignments of the 0-0 B2Σu
+-X2Σg

+ 

band of N2
+. (b) Calculated fortrat diagram for P1, P2, R1, R2, RQ12 and PQ21 branches in the 0-0 

band (B-X) of N2
+ at Trot=1950 K. 
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Fig. 24  Experimental laser-induced breakdown thresholds excited by the TEA-CO2 laser (10.591 

µm) in air (square), nitrogen [18] (circle) and oxygen [20] (triangle) for different pressures. Solid: 

fresh charge (without previous breakdown); Open: after previous breakdown.  
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Figure 25. A schematic overview of the temporal history of LIB air plasma. Here td is the delay 

time and tw is the gate width time during which the plasma emission is monitored. Insets plots 

illustrate some spectra observed at different delay times (0, 0.5 and 3 µs) for a fixed gate width 

time of 0.5 µs and z=2.5 and 5 mm. The temporal shape of the CO2 laser pulse is also shown.  
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Figure 26. Time-resolved emission spectra from laser-induced (106 J/cm2) air plasma observed in 

the region 2423-2573 Å monitored at 0, 0.1, 0.7, 2, 3, 4, and 5 µs gate delays for a fixed gate 

width time of 0.5 µs and z=2.5 mm. 
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Figure 27. Time-resolved emission spectra from laser-induced (106 J/cm2) air plasma observed in 

the region 2423-2573 Å monitored at 2, 3, 4, and 5 µs gate delays for a fixed gate width time of 

0.5 µs and (a) z=1 mm; (b) z=7.5 mm 
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Figure 28. Time-resolved emission spectra from LIB (106 J/cm2) in air at 1, 2.5, 5, and 7.5 mm 

along the plasma expansion direction (Z-axis) and recorded at td=0 and tw=0.5 µs. 
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Figure 29. Time-resolved emission spectra from laser-induced air plasma (106 J/cm2) observed in 

the region 2423-2573 Å at td=3 µs for tw=0.5 µs monitored at 1, 2.5, 5, 7.5 and 10 mm along the 

plasma expansion direction. 
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Figure 30. Time-resolved emission spectra from laser-induced (160 J/cm2) air plasma observed in 

the region 3725-3860 Å region monitored at 2.5, 3 and 4 µs gate delays for a fixed gate width time 

of 0.5 µs (z=1 cm) and time-integrated spectrum (td=0 and tw>>30 µs). The inset plot shows the 

assignment of some ionic lines of N+, O+ and O2+ and band heads of the molecular bands of 

N2
+(B2Σu

+-X2Σg
+). 
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Figure 31. Time-resolved emission spectra from laser-induced air plasma (71 J/cm2) observed in 

the region 3830-3960 Å monitored at 2, 3 and 4 µs gate delays for a fixed gate width time of 0.5 

µs (z=1 cm) and time-integrated spectrum (td=0 and tw>>30 µs). The assignments of some ionic 

lines of N+, O+ and N2+ and band heads of the molecular bands of N2
+(B2Σu

+-X2Σg
+) are indicated. 
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Figure 32. Time-resolved emission spectra from laser-induced air plasma (71 J/cm2) observed in 

the region 4070-4195 Å monitored at 2.5, 3 and 4 µs gate delays for a fixed gate width time of 0.5 

µs (z=1 cm) and time-integrated spectrum (td=0 and tw>>30 µs). The assignments of some ionic 

lines of N+, O+ and N2+ and band heads of the molecular bands of N2
+(B2Σu

+-X2Σg
+) are indicated. 
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Figure 33. (a) Number density TOF distributions of continuum radiation, O+(2433.53; 2445.54 

Å), N+(2461.27; 2478.56; 2522.23 Å) and C(2478.56 Å) lines as a function of delay time (fixed 

gate width time of 0.5 µs) for a laser fluence of 106 J/cm2 and z=5 mm. (b) Velocity distributions 

derived from the experimental TOF profiles for the indicated species. 
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Figure 34. Kinetic energy distributions of O+(2433.53 Å), O+(2445.54 Å), N+(2461.27 Å), 

N+(2478.56 Å), N+(2522.23 Å) and C(2478.56 Å) lines derived from the TOF spectra  at z=5 mm. 
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Figure 35. Number density TOF profiles of multiplet structures of N+(~2522 Å) and O+(~2445 Å) 

at 1, 2.5, 5, 7.5 and 10 mm as a function of delay time for a laser fluence of 106 J/cm2.  
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Figure 36. Velocity profiles of multiplet structures of N+(~2522 Å) and O+(~2445 Å) at 1, 2.5, 5, 

7.5 and 10 mm as a function of delay time for a laser fluence of 106 J/cm2.  

 

 103



0 1 2 3 4 5 6

-1x1017

0

1x1017

2x1017

2440 2460 2480 2500 2520 2540 2560

N+

td=0.5 µs; tw=0.5 µs

Wavelength / Å 

2425 2450 2475 2500 2525 2550

O2+O2+ C

O+

O+

O+

Wavelength / Å 

N+

N+

N+

td=2.5 µs; tw=0.5 µs

2425 2450 2475 2500 2525 2550
Wavelength / Å 

N+

td=0.8 µs; tw=0.5 µs

Delay time / µs 

 ne[cm-3]

 dne/dt [cm-3 µs-1]

 
Figure 37. The temporal evolution of electron density ne and dne/dt for different delay times from 

plasma ignition and z=5 mm. Inset plots illustrate some spectra observed at different delay times. 
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