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Abstract

It is usually assumed that the t parameter in the equations of dy-
namics can be identified with the indication of the pointer of a clock.
Things are not so simple, however. In fact, since the equations of
motion can be written in terms of t but also of t′ = f(t), f being
any well behaved function, any one of those infinite parametric times
t′ is as good as the Newtonian one to study classical dynamics in
Hamiltonian form. Here we show that, as a consequence of paramet-
ric invariance, the relation between the mathematical parametric time
t in the equations of dynamics and the physical dynamical time σ that
is measured with a particular clock (which is a dynamical system) re-
quires the characterization of the clock that is used in order to achieve
a complete treatment of dynamical systems. These two kinds of time,
therefore, must be carefully distinguished. Furthermore, we show that
not all the dynamical clock-times are necessarily equivalent and that
the observational fingerprint of this non-equivalence has, curiously,
the same form as that of the Pioneer anomaly, a still unexplained
phenomenon.
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1 Introduction

The main problem of dynamics is probably to understand in depth the role
and meaning of the term “time”. Two kinds of time are used in physics.
On one side, the parametric time t, just an auxiliary mathematical element
which, strictly speaking, is not observable since any other time of the form
t′ = f(t), f being any well behaved function, serves equally to describe
the motion of a dynamical system. On the other the time measured with
particular clocks, say σ, which are dynamical systems obeying the laws of
physics. The latter is a dynamical variable, for instance the angle of a pointer,
and deserves therefore to be qualified as dynamical. The consequences of the
existence of these two kinds of time, parametric and dynamical, open an
intriguing and probably promising field of research.

Here we show that the dynamical time σ(t) measured by a clock σ, can
be obtained as the solution of the equation of motion that characterizes the
clock, of the form dσ/dt = u(t), where u(t) denotes here the “march” of the
clock σ with respect to the parametric time t. While σ(t) has a real dynamical
character, t is just a mathematical parameter, which (i) has a purely auxiliary
role to write the action and obtain the equations of motion, (ii) lacks any
physical or dynamical nature, iii) is not observable and (iv) it is a symbol that
describes the evolutive character of the reality. It seems evident, moreover,
that this last point affects the deepest foundations of dynamics, so that it is
not surprising that it had aroused a variety of different thought provoking
ideas.

We adopt in this work a pragmatic position founded on the principle of
parametric invariance of classical and relativistic dynamics. Note that this
principle is the essential criterion to understand what the equations of motion
really mean. In fact, with complete independence of the interpretation of the
parameter t, this invariance guarantees that the equations of motion have the
same (Hamiltonian) form for any arbitrary election of the time f(t). To elect
the function f(t) is, evidently, to choose the gauge, which in practice means
to adopt a clock. We wish to underscore that the expressions “dynamical
time” and “time measured by a clock” are here dynamically equivalent. It
is important to insist that a clock is a dynamical system and that the time it
measures is a dynamical variable, for example the motion of a celestial body,
as a planet or a pulsar, or the oscillations of atomic systems.

The differences between parametric and dynamical times could have sig-
nificant consequences, since two dynamical clock-times, say σ1 and σ2, are
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not necessarily equivalent, so that there could be different times accelerating
with respect to one another, i. e. they have different marches. The conse-
quences of these arguments could be important; we just mention here two
cases in which they could shed some light. First is the meaning of the cosmic
time. Second, the fourth Heisenberg relation which requires that the time be
a dynamical variable.

In order to write the equations of motion of a system in terms of really
observable and dynamical quantities, what is done is to compare two motions,
one of the system and the other of a standard clock. This requires the use of
two principles. The first is the parametric invariance under transformations
t→ t′ = f(t), an important property of classical and relativistic theories, the
other is a principle of coherence, i.e., that the equations of motion of both
the system and the clock be described by the same physical theory. We will
come again to this point.

2 Parametric invariance in classical dynamics

Though the parametric time is a fundamental concept in classical dynamics,
as said before, it has a non-dynamical character because it is not a dynamical
variable. As a consequence, there is no canonical momentum conjugate to
t. Common wisdom assumes that this non-dynamical t is measured with a
clock, but this assumption must be submitted to a rigorous analysis since this
would be a prescription alien to the theory. Note that it is always possible
to synchronize two clocks at a certain initial time t0, but what cannot be
assured is that they will keep ticking at the same rate. This raises the
question whether the equations of motion of dynamics depend or not on
the march of the clocks, which implies the need to establish a parametric
invariance principle. There exists a scheme in which this problem can be
solved by means of the introduction of the idea of a dynamical time [1, 2].
In fact, the theory so constructed is parametrically invariant, with respect
to a new non-observable auxiliary parameter t, as happens also in general
relativity.

In order to do that we replace the standard action S =
∫

[p q̇−H(p, q)]dt,
by the alternative expression

S =

∫
{Π(t)σ̇0(t) + p (t)q̇(t)− u(t)[Π(t) +H(p (t), q(t))]}dt , (1)
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(overdot means derivation with respect to the auxiliary parameter t), where
σ0(t), Π(t) are conjugate dynamical variables, as we will see, that describe
the behavior of a clock, and Πu, the momentum conjugate to u(t), weakly
vanishes.

The corresponding Hamiltonian is Ĥ = u[Π +H(p, q)] + λΠu where λ is
a Lagrange multiplier. The stability of the weak condition Πu = 0 implies
the following first class constraint

Π +H(p, q) = 0, (2)

which induces the following reparametrization transformations δσ0 = α(t),
δq = α(t)q̇ and δp = α(t)ṗ with α(t) being an arbitrary function.

The transformations induced by Πu allow then to interpret u(t) as an
arbitrary function, so that the Hamiltonian becomes

HE = u[Π +H(p, q)] , (3)

Though this Hamiltonian reduces to a first class constraint, it contains a very
realistic dynamical evolution, given by the Hamiltonian equations

q̇ = u
∂H

∂p
, ṗ = −u∂H

∂q
, u = σ̇0, Π̇ = −Ḣ = 0. (4)

It follows that

dq

dσ0
=
∂H

∂p
,

dp

dσ0
= −∂H

∂q
, u =

dσ0
dt

,
dH

dσ0
= 0 , (5)

equations that are full of dynamical significance. The first two are the canon-
ical equations of motion with the dynamical time σ0, which from now on will
be called “standard dynamical time” (do not mistake this for the “standard
clock in general relativity), as the time variable in such a way that the evolu-
tion becomes a correlation between dynamical variables. The third one can be
interpreted as the equation of motion (i.e., the “march”) of σ0 with respect to
the parameter t. Notice that the total Hamiltonian Ĥ = u[Π+H(p, q)]+λΠu

is the sum of two terms, describing, respectively, the physical system and a
clock. The equation of motion of the second term, Hclock = uΠ + λΠu, is
precisely that of a clock with arbitrary match u = dσ0/dt.

Since this theory is invariant under reparametrization, we may fix, for
instance, the gauge by the condition σ0 = t (i.e., u = 1), so that we recover
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the ordinary canonical formalism with t being the Newtonian time. Notice
that the choice of gauge means in fact to choose a clock.

The observations are performed in practice with real clocks, which are
dynamical systems, each one with a dynamical variable that is a well behaved
increasing function of t and can therefore be identified with a dynamical
clock-time σ(t), which can be used to fix the reparametrization gauge. As
long as the observations make use of only the standard dynamical time σ0,
the scheme is nothing else than the Hamiltonian equations. This may not
occur, however, if a real clock σ(t) with a different march is involved. In the
latter case, the motion equations are (5), but with σ and σ0 instead of σ0
and t, respectively,

dq

dσ
=
∂H

∂p
;

dp

dσ
= −∂H

∂q
; u =

dσ

dσ0
, (6)

which describe the physics of a system in operationally realistic terms. This
means that they do not refer to any unobservable parametric time but to
σ, which is the time really observed by a real clock. The novelty is here
the presence of the third equation (6), which is the dynamic equation of the
second clock with respect to σ0. The important fact for our purposes is that
classical dynamics can be formulated as a parametrically invariant theory.
Consequently, the above mentioned prescription is now just the gauge fixing
of the parametric invariance.

3 The relativistic particle

Before going into this section let us summarize the arguments of the previous
one. Starting from a Hamiltonian theory with n degrees of freedom, we
introduced a new one, in such a way that the motion equations become
correlations between dynamical variables only (5). Nevertheless the new
theory has a first class constraint (reparametrizations) that allows us to fix
arbitrarily the value of σ0. The only way to do that is to choose a new
dynamical system, i.e., a real clock such as the Earth’s motion or any other,
with a well behaved dynamical variable σ(t) as appears in (6). So in practice
to fix the gauge of the symmetry under reparametrizations is to choose a
clock. In other words, we measure a motion using another one as a standard.
It must be underscored that, to completely formulate the equations of a
dynamical system, the chosen clock must be specified.
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It may be illustrative to verify that the kinematics of the free particle in
special relativity follows the same scheme. The parametric invariant action
S = mc

∫
ds, corresponds to the Lagrangian (overdot means derivative with

respect to an arbitrary time)

L = −mc
√
ẋ20 − ẋ21 − ẋ22 − ẋ23, (7)

where the four coordinates are dynamical variables all of them.
It is easy to see that there is a first class primary constraint of the form

p20 − p21 − p22 − p23 = m2c2, (8)

that expresses the evident parametric invariance of the action. Due to the
existence of this primary constraint not all the time derivatives of the coor-
dinates can be obtained in terms of the momenta. Choosing then ẋ0 as an
arbitrary function of t, the Hamiltonian becomes

HE = ẋ0

(
p0 +

√
p21 + p22 + p23 +m2c2

)
, (9)

which reproduces (3) with p0 playing the role of Π and the square root being
H(p, q). It must be stressed thus that x0(t) plays the same role as σ0(t)
introduced in the previous case.

Let us take now the motion of a particle in a general metric tensor gαβ,
so that ds =

√
gαβdxαdxβ. The Lagrangian is

L = −mc
√
gαβẋαẋβ. (10)

Note that, since the motion is geodesic, the components of the metric tensor
are not dynamical variables but prescribed functions of the coordinates. Fol-
lowing the same procedure as in the previous case, the primary constraint is
now gαβpαpβ = m2c2. Thus the Hamiltonian becomes

H = ẋ0[p0 − (N
√
pipi +m2c2 + piN

i)], (11)

where i = 1, 2, 3, N is the lapse, Ni the shift and the Latin indices are raised
and lowered with the three-dimensional metric. As we see, the situation is
the same as in previous cases, x0 playing the same role as the dynamical
time.
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It must be underlined that all the previous Hamiltonians are, in fact,
first class constraints. They generate, however, well defined dynamical evo-
lutions (see (5)–(6)). Notice that they contain two terms that describe i) the
dynamical system which is studied and ii) a particular clock.

The case of the particle in a gravitational field gαβ illustrates the difference
between the spatial coordinates xi and the temporal one x0 since the former
can be chosen arbitrarily while the latter needs an additional dynamical
system (a real clock) in order for it to be fixed so that probably a (3+1)-
spacetime is closer to the reality than a 4-spacetime.

4 The Einstein–Hilbert action

General relativity was constructed to be a parametrically invariant theory
from its very foundation, as happens with any other diff-invariant theory. Its
essential difference from the previous examples is that, in the former cases,
the dynamical variables are the coordinates, defined in a non-dynamical met-
ric. Conversely, in the latter, the dynamical variables are the components
of the metric tensor, while the coordinates are auxiliary objects with no dy-
namical nature. Accordingly to our previous statements, we will take from
now on a (3+1)-spacetime. In the ADM scheme [3] the Hamiltonian becomes

HE =

∫
d3x[NH(qij, π

ij) +Niχ
i(qij, π

ij)], (12)

where N and Ni are the lapse and the shift, respectively, qij the 3-metric and
πij its canonically conjugate momentum. The absence of time derivatives of
N and Ni determines the presence of primary first class constraints, which
implies in turn that N and Ni are arbitrary functions. The secondary first
class constraints H = 0 and χi = 0 fix the subspace in which the motion
takes place. If one fixes Ni = 0, the Hamiltonian becomes H =

∫
d3xNH.

From this expression one could reproduce the same process followed be-
fore in the case of ordinary analytical dynamics. To interpret the dynamics
described by a Hamiltonian such as (12) it suffices, maintaining Ni = 0,
to consider the meaning of N , defined as dτ/dt where dτ =

√
g00 dt is the

proper time distance between two shells of the foliation. Note that N is an
arbitrary dynamical variable which plays thus the same role as ẋ0 and σ̇0 in
the previous cases: all of them are derivatives with respect to the parametric
time. We emphasize, therefore, that the dynamical time coincides with the
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proper time. Nevertheless, as is suitable to general relativity, the dynamical
time is just a local time.

The be more precise, the three cases just considered in the previous sec-
tions put in evidence the need to introduce the concept of “dynamical time
variable” that we have used in this work. It can be defined as a function of
the parametric time which is physically realizable, obviously by means of a
dynamical system, i. e. a clock.

The choice of a physical clock is then a most relevant question. For
instance, the definition of a standard clock, i. e. a clock measuring proper
time, is a very complex problem that can be solved in a Weyl manifold
using light rays and free falling particles [4]. The clock must comply with
some obvious conditions. It must be a dynamical system, the solution of its
equation of motion σ(t) being a well behaved and monotonously increasing
function of the parametric time t, as for instance the number of cycles of
an harmonic oscillator or of the Earth rotation. Strictly speaking the fixing
of a gauge is a mathematical question, though physically relevant since it is
equivalent to the choice of a clock. It must be underscored that the complete
description of a dynamical system needs to specify the clock which is used.
This is a very important problem, specially for cosmological models.

It must be underscored that the previous arguments imply that the para-
metric invariance is the main characteristic of classical dynamics. I.e., this
invariance states that the equations of motion are independent of the clock
used to observe the trajectory. Otherwise said, it is a way to restrict to the
time variable the principle of general covariance of relativistic physics.

Let us see what would happen if parametric invariance is not taken into
account. For this purpose and in order to understand general relativity,
simplified models have been proposed to obtain valuable information in areas
such as quantum gravity or cosmology. The usual strategy is to kill some
degrees of freedom. There is a way, however, to achieve the same result but
going in the opposite direction, i.e., adding degrees of freedom. This is the
case of the Husain–Kuchař model [5], which lacks the Hamiltonian (scalar
constraint) in such a way that the number of degrees of freedom per space
point grows from 2 to 3. In such a theory, parametric invariance would be,
in principle, absent. The price to be paid then is that the four dimensional
metrics that can be constructed seem to be degenerate. Without discussing
this point here, it is important to state that we have shown that the Husain–
Kuchař model is a particular case of a more general theory (see [6] for details)
that includes a scalar constraint and a dynamical time variable which, in fact,
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contains non nondegenerate metrics.

5 A principle of coherence

As was pointed out at the end of Section 1, when two clocks are involved
the question of their coherence must be considered. There is no problem if
the dynamics of both the system and the clock are governed by the same
physical theory. This is because any discrepancy between two clocks must
be solvable, from the theoretical point of view, in the frame of the theory
itself. For instance, the effect of the tides on the Earth’s rotation modifies
the value of the day, an effect that can be calculated by taking into account
the gravitation involved in the Earth–Moon system.

This requirement of coherence, which guarantees that the equation of
motion of the clock (i.e., its march) is given by the same theory as that of
the dynamical system, cannot be maintained when the clock and the system
obey two different theories. This is the case when atomic clocks are used in
the study of systems governed by classical dynamics. Nevertheless since we
lack a quantum gravity theory, the equation of motion of the atomic clocks
σ2(t) cannot be determined a priori and, consequently, it is not possible to
compare it with the equation of motion σ1(t) of a classical clock. The only
way to do so relies necessarily on empirical methods. Note that if it is found
that the two marches are different, this does not necessarily imply a violation
of parametric invariance.

The previous considerations certainly clarify the role of the clocks and the
meaning of the word “time”. The two main kinds of clocks used in physics are
the astronomical and the atomic ones, which are dynamical systems based on
classical and quantum physics, respectively. The solar system taken as a clock
gives the ephemeris time while the vibrations of quantum systems measure
the atomic one. Current wisdom assumes implicitly that these two types of
clocks give the same time but, as explained before, this is not necessarily so.
Indeed there is no a priori reason to postulate that two clocks beat at the
same rate if they are based on two different theories, such as gravitation and
quantum physics which are not only different but, what’s more, all efforts to
unify them have failed up to now.

It is important to understand in depth what is really done in practice
in order to calculate, for instance, the trajectory of a spaceship. The start-
ing point is a theory which is diff-invariant (and parametrically invariant
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therefore) as general relativity is. In order to make concrete calculations
about concrete systems, what is made is to choose a metric well adapted to
the particular problem, in the case of celestial mechanics, for instance, the
post-Newtonian one which depends on a t-variable usually called “coordinate
time”. In this way, the dynamical system under study becomes a clock that
assigns a coordinate time to each point of the trajectory. Because of practi-
cal reasons this coordinate time must be compared with another one chosen
as a standard. What is done in practice is to identify this coordinate time
with the so-called “ephemeris time”. This is a coherent election since the
“ephemeris time” provides a clock associated to the motion of celestial bod-
ies, also calculated in post-Newtonian approximation, based therefore on the
same theory. This is a particularly neat example in which coordinate time
and ephemeris time are associated to the same clock. Consequently a value
of the ephemeris time determines a point in the trajectory of the spaceship
and conversely a point of the trajectory defines a value of the ephemeris time.

It must be emphasized that to assume that classical and atomic clocks tick
at the same rate is a strong hypothesis, which is however commonly accepted
probably because of its simplicity and because it has been observationally
difficult to disprove it up to now. It is, therefore, justified to explore the
possibility that they could accelerate with respect to one another, specially
since, as shown here, this is not in conflict we any physical law or principle.

6 Looking for observational evidence

Once accepted the possibility that the atomic and ephemeris (or coordinate)
clocks could be non-equivalent, we must look for some observational footprint
of this eventual new phenomenon. We denote the two times as tatom and
tephe. Is is clear that their difference is either nil or very small, otherwise an
unexpected new effect should have been detected by now. Let us admit that it
is non-nil. Because of the continuous improvement of measurement devices
during the last decades, an observational test of the relative acceleration
between these two clock-times might already be available, although we could
be unaware of this possibility. What’s more, the effect could have been
observed by now but without being properly interpreted.

A thought provoking case could be a spaceship receding from the Sun.
Since its trajectory is calculated with standard gravity theories in a post-
Newtonian metric [9], section IV A, that use ephemeris time but it is mea-
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sured with devices based on quantum physics that use atomic time, some
anomaly could be observed. In fact the theory gives the ship’s trajectory as
a certain function parametrized by astronomical time r = r(tephe) but the
observations see the same three-dimensional trajectory, although parameter-
ized by atomic time and given by a different function r′ = r′(tatom). The two
times are related as r′(tatom) = r(tephe) (they are examples of the clock-times
σ2(t) and σ1(t) mentioned in section 5). It is clear that they can be synchro-
nized at any initial time so that tastr, 0 = tatom, 0 = t0, but they will start to
desynchronize progressively afterwards as

dtatom = [1 + a(t− t0)] dtephe, with a =
d2tatom
dt2ephe

, (13)

where the small inverse time a is the relative acceleration of tatom and tephe,
and u = dtatom/dtephe = 1 + a(t− t0) the march of tatom with respect to tephe.
Note that it is not necessary, at first order, to specify which one of the two
times is t and that the instant t0, at which the two times are synchronized,
is completely arbitrary.

Defining the velocities of a spaceship with with the two times as vatom =
d`/dtatom and vephe = d`/dtephe, it follows that

vatom =
vephe
u

,
∆v

v
= −a(t− t0), (14)

with ∆v = vatom − vephe. As could have been expected, the observational
fingerprint of the relative acceleration of the two clock-times would be a
discrepancy between the expected and observed speeds of a mobile.

Evidently the value of the speed of light in empty space depends on
which clock-time is used. It is a fundamental constant only if measured with
atomic clock-time. It must be so since the periods of the atomic oscillations
are obviously constant with respect to tatom, in fact they are its basic units
(see [2, 7] where the details are explained).

The following argument is important and must be underscored. Let
a group of astronomers, using atomic clocks, start an observation at time
tatom = t0, without being conscious of the acceleration of tatom and tephe with
respect to one another. Since they think that the two times are the same
one, the ephemeris time of the beginning of the experiment will implicitly
be fixed as tephe, 0 = tatom, 0 = t0. However, if the two times are not strictly
equivalent, it will be impossible to maintain the synchronization, so that they
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Figure 1: The Pioneer anomaly: plot of the extra velocity of the spaceship
(mm/s) versus time (days) for near 3,000 days starting on t0 = 1 Jan 1987
09:00:00. It can be seen that the extra velocity vanishes at t0. Taken from
[8], Anderson et al., Phys. Rev. Lett. 81, 2858 (1998).

will begin to separate progressively afterwards. A diagram of the values of
vephe−vexpected (= 0) and vatom−vexpected versus tatom will show two diverging
lines from the initial time t0, an instant in which the anomaly vanishes, just
as those appearing in the Figure 1, taken from reference [8] (remember that
the initial time t0 is arbitrary).

Note that (13)–(14) imply that if a < 0, then vatom > vephe while if a > 0,
then vatom < vephe (assuming t > t0). In the latter case, the ship would seem
to lag behind the position predicted by gravity theories.

In fact quite a similar lag has already been observed and has even a name:
the Pioneer anomaly. Surprisingly, it remains unexplained more than thirty
years after being discovered by Anderson et al. in 1980 in spite of many efforts
to account for it [8, 9, 10]. What is important for the purpose of this work is
that the observational fingerprint of the anomaly has the same form as the
second equation (14). What Anderson et al. found is that the frequencies
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of the two-way signals to and from the Pioneer 10 spaceship included an
unexpected Doppler residual which did not correspond to any known motion
of the ship. They were able to measure the value a = (5.84±0.88)×10−18 s−1,
although using the inverse time at = a/2, and suggested that at could be “like
a non-homogeneity of time” or a “clock acceleration” [8], a term that suggests
a reparametrization of the form t → f(t), i.e. a parametric transformation.
But they did not explain acceleration with respect to what, nor did they
develop any theoretical analysis of this idea, assuming at first that 2at was
just the measure of a real Doppler effect. However it was soon understood
that this interpretation is neither compatible with the equivalence principle
nor with the cartography of the solar system. For several years it was thought
that systematics would be the most probable explanation of the anomaly
(see the conclusions of [9]) but no error was found in spite of several different
mathematical analyses of the data, including independent ones [11]-[19]. For
a relation of the recent attempts to explain the anomaly, see [15], Section
2.3; [19], Section 2; or [10], Section 6. Up to now and more than thirty years
after its discovery, the Pioneer anomaly remains without a generally accepted
solution, even though it happens in our backyard, the solar system.

Some researchers put now their reliance on the thermal model which pos-
tulates that the anomalous acceleration of the Pioneers is just the reaction to
the radiation emitted by the ships because of the heat produced by the Ra-
dioisotopes Thermoelectric Generators (RTG) inside. Note that the anomaly
is due in this model to a real force. Recently two papers by F. Francisco et
al. [20] and B. Rievers and C. Lämmerzahl [21] found numerical results that
seem to indicate that the thermal model gives an explanation of the Pioneer
anomaly.

What Figure 1 shows is a run of observations starting on t0 = 1 January
1987 09:00:00. Note that the ship was continuously monitored from three
stations, in California, Madrid and Canberra, so that it was continuously
under the observation of at least one of them.

Two important facts are essential to understand the Pioneer riddle and
must be underlined:

(i) Both before and after t0, the signal from the ship observed at Earth
showed always an anomalous blueshift, never a redshift, the observed Doppler
residual being always negative, as it corresponds to an unexpected extra
speed towards the Sun;

(ii) as is seen in Figure 1, the observed anomaly for the particular plotted
run vanishes exactly at t0, the initial instant of the run.
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We will see now that, as a consequence of these two features, the anomaly
cannot be due to any extra real force whatever its nature could be, either
gravitational or electromagnetic. We show why in the following.

Let us assume that the cause of the anomaly was a constant real force
producing a constant real acceleration. In that case and after t0, the extra
residual and the extra speed would be both negative and have an increasing
modulus (see Figure 1). The horizontal line and the sloping one in the
plot, that represent the two velocities of the Pioneer, vephe and vatom minus
vexpected (= vephe), would cut one another at a certain well determined time
which, according to Figure 1, is the initial time of the run t0 = 1 Jan 1987
09:00:00. At this time the anomaly would vanish since the two speeds would
be equal.

This has an important consequence. As noted before and for times larger
than t0, the extra velocity and the Doppler residual would be negative so
that the ship would seem to lag behind the expected position, as happens
in the Pioneer anomaly. Before the time t0, quite on the contrary, the extra
velocity and the the Doppler residual would be positive, the ship seeming
to advance ahead of the position calculated with gravitation theories (just
prolong to the left the line representing the extra velocity, what can be made
since we consider a real force). This would imply that before t0 the direction
of the extra velocity would be the contrary to the one which is observed.
Moreover, how to explain that the extra velocity ∆v = vatom− vephe vanishes
at the initial instant of the run up to one second? And if other run was
started one month later or 3.4 months before? The fact that the force is real
implies, therefore, a contradiction with the observations.

However these problems do not arise in our model. If the observers don’t
consider the non-equivalence of tatom and tephe and since they use atomic time
for their observations, they would accept, unawares and implicitly, that both
times are equal to t0. This means that they are synchronized de facto. But
since in fact they accelerate with respect to one another, the synchronization
can not be maintained, so that the two times begin to diverge, as well as
the values of the extra velocities. Furthermore, we could have an infinity of
identical plots starting at different times t′0, with the characteristic behavior
of two non-equivalent clocks which are synchronized at an instant but which
diverge progressively afterwards. This means that the plot in Figure 1 is
easily understood with our model.

Note that, if the anomaly would be due to a force that depends on
the shape and the internal characteristics of the spacecraft, different shapes
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or internal structures would imply different observed values of the anoma-
lous acceleration. On the contrary, the effect would be universal if our
model is right: the value of the inverse time a, defined as the accelera-
tion of the atomic time with respect to the astronomical time, would be
the same for all the crafts. The same can be said of their anomalous ac-
celerations aP . An example is given by the Pioneer 10 and its twin brother
the Pioneer 11 for which a has very close values, their small difference be-
ing most probably due to the rotational Doppler effect [22]. However there
are two other spaceships, Galileo and Ulysses, for which the effect was mea-
sured to give values close to the one of the Pioneers, in spite of the dif-
ferences between the shapes and internal structures. More precisely, the
value of the corresponding anomalous accelerations were measured to be
aP = (8±3)×10−10 m/s2 (Galileo) and aP = (12±3)×10−10 m/s2 (Ulysses),
to compare with aP = (8.74 ± 1.33) × 10−10 m/s2 for the Pioneers [9]. The
ships Galileo and Ulysses are not usually considered after 2002 because the
effect was more difficult to measure, their trajectories being very different
from those of the Pioneers (the best measurements are obtained when the
crafts recede away from the Sun, while Galileo and Ulysses followed bounded
orbits). Taking everything into account, it seems really difficult that these
close values of aP for Galileo and Ulysses could be explained by any model
depending on the shape and internal characteristics of the spaceship.

Moreover, it has been argued by some experts that the dust through
which the Pioneers traveled would surely stick to their surfaces, modifying
their thermal properties and blurring the radiation pattern in a way that
could not be predicted from Earth. Consequently the push of the radiation
calculated from the designed plans of the ships could be different from the
real one.

7 Conclusions

It is very important to understand that the description of a dynamical system
can not be considered complete without the explicit mention of the chosen
physical clock, which means to fix the gauge of parametric invariance. This
is specially true in cosmology problems. We emphasize that two stable, ac-
curate and good but different clocks can be non-equivalent. By this we mean
that, if they are based on different physical theories, the times they mea-
sure could accelerate with respect to one another. In this case, the relative
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march of the two clocks can only be determined by empirical methods. This
happens in the case of atomic and astronomical times, tephe and tatom, which
are based on classical gravity and quantum electromagnetism, respectively.
In order to determine theoretically their relative march we would need a
still undiscovered theory: quantum gravity. This could be stated by say-
ing that the principle of parametric invariance has room for non-equivalent
clock-times.

Although these arguments might seem rather formal, they are also of
practical importance. In particular, this work proposes an explanation of
the Pioneer anomaly that is a refinement of a previous one which is fully
compatible with the cartography of the solar system [2, 23]. It is based on
the non-equivalence of the atomic time and the astronomical time, which
happens to have the same observational fingerprint as the anomaly. The
inverse time a that characterizes the observations turns out to be the second
derivative of tatom with respect to tephe.

The main characteristic properties of this model are that: (i) the Pioneer
anomaly, described by Anderson i. e. as a clock acceleration, can be inter-
preted as a parametric transformation t→ f(t); (ii) the Pioneer anomaly is
not due to any force but to the desynchronization of the two times tatom and
tephe which mimics the effect of a force; (iii) at the initial time t0 of any run
of observations the two times are implicitly synchronized and the anomaly is
not observed; and (iv) the observed anomaly is independent of the choice of
t0; In fact, to change it amounts only to a translation of the lines in Figure
1, to the right or to the left.
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