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Connections between universes through tunneling space-times could make the multiverse a physical

entity able to be observed from our own single universe. In this paper we first study the thermal properties

of the static Klein-bottle holes and then consider one of the potentially observable effects from worm-

holes, ringholes, and nonorientable tunnelings when they are converted into time machines connecting

other universes with ours own, that is a randomly varying in space and time thermal radiation which, with

an unpredictable cadence, randomly manifested to a far observer as a short, occasional pulse with very

high intensity and fluence which would be made of black body phantom or ordinary radiation. We discuss

the odds for these bursts of thermal radiation to be eventually observable.
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I. INTRODUCTION

Pathological space-time tunneling solutions to Einstein
equations which can be converted into time machines have
been studied during the last 23 years or so. Among them
one should mention the seminal Morris-Thorne-Yurtsever
Lorentzian wormholes [1], the ringholes [2] and the Klein-
bottle holes [3]. These tunneling solutions were first con-
sidered to be quantum-mechanically unstable as far as all
of them were relatable to the prototypical Misner space
where the existence of a chronological horizon drives a
catastrophic creation of particles, so inducing the regular-
ized stress-energy tensor to diverge [4]. In fact, one can
simply generate these solutions by simply replacing the
planes of Misner space for, respectively, spheres and
orientable and nonorientable tori [4]. The generalization
of this result led Hawking to conjecture his so-called
chronology protection [5] according to which quantum
mechanics should preclude the existence of all pathologi-
cal solutions leading to the formation of closed timelike
curves. However, it was later shown by Li and Gott [6] that
there exists a self-consistent conformal vacuum where all
time machines become stable so violating Hawking’s con-
jecture. Also somehow contravening that conjecture was
some work [7] showing that all space-time time-machine
constructs become quantum-mechanically stable at the
Planck scale, so allowing the quantum vacuum space-
time foam to exist.

On the other hand, it is sometimes objected that because
our observations are limited to a single universe (e.g., a
Hubble volume) then the existence of other universes or of
the multiverse as a whole cannot be checked, and so their
existence cannot be considered a proper scientific hypothe-
sis. Even taking into account the fact that future observers
will see a larger particle horizon, and so have access to a
bigger volume of space, most regions of the multiverse (at
least in the eternal inflationary model) can never be ob-
served, even in principle. While this may indeed preclude

direct confirmation of the multiverse hypothesis, it does
not rule out the possibility that it may be tested indirectly.
Almost all scientists and philosophers accept the general
principle that the prediction of unobservable entities is
an acceptable scientific hypothesis if those entities stem
from a theory that has otherwise testable consequences.
Thus, neither observations of interuniversal connections [8]
or interuniverse quantum entangled states [9] nor effects in
our universe of distinct boundary conditions induced by the
presence of other universes [10] can be disregarded as
potential ways to prove or disprove the existence of the
multiverse.
It has been recently considered [10] that in order to make

the multiverse a rather physical idea, the universe we live
in ought to be multiply connected through the rest of
universes in the multiverse by means of a network mecha-
nism of connecting tunnelings whose optical properties [8]
lead to signatures left in our universe which will character-
ize every type of space-time tunnel and could be used in
order to make the multiverse an observable entity [8–10].
Moreover, full independence of the space-times belonging
to different universes require that the two mouths of every
connecting tunnel move relative to each other with an
arbitrary mutual acceleration, so converting the space-
time tunnelings into true time machines without any pre-
dictable specifications on the final destination time and
location, so producing completely arbitrary closed timelike
curves (CTCs) [8].
Another possible way to make evident the existence of

other universes could be based on the thermal properties
that all the space-time tunnels possess. It has been hitherto
shown that static wormholes [11] and ringholes [12] should
be expected to quantum-mechanically emit thermal radia-
tion, and that this radiation could perhaps be eventually
observed. In this paper, once we check that Klein-bottle
holes also quantum-mechanically emit thermal radiation,
we investigate the effects that the mutual acceleration
between the two tunnel mouths, which gives rise to the
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formation of the random CTCs, has in the thermal radiation
that all the holes emit. It will be seen that the above time
machines connecting two individual universes deliver in at
least one of such universes an arbitrary thermal radiation
characterized by a Doppler-shifted temperature which
oscillates from a very low value to a very large one in a
random way which is utterly arbitrary and unpredictable,
too. The surviving prediction is then that there will be fully
random, eventual outbursts of thermal ordinary and/or
phantom radiation coming from the furthest regions of
our universe which, if the tunnels are big enough, could
eventually become unmistakable proofs for the existence
of other universes. These outbursts could be ultimately
converted into true explosions which would be even quite
more energetic than the final explosion of primordial black
holes [13], though they might leave an ultimate nonzero-
energy remnant in the case of ringholes and Klein-bottle
holes.

We outline this paper as follows. In Sec. II we complete
the study of static tunnels by establishing the set of thermal
properties of static Klein-bottle holes, including its tem-
perature, entropy and the laws of Klein-bottle hole ther-
modynamics. The effects that converting the different
tunnels into interuniverse time machines have on their
thermal properties are evaluated in Sec. III, where it is
predicted that such effects would eventually produce ran-
dom outbursts of thermal ordinary and/or phantom radia-
tion which, if the holes are big enough, could eventually
become extremely energetic explosions which could be
potentially observable. Finally, in Sec. IV we summarize
and add some further comments.

II. THERMAL RADIATION FROM STATIC
KLEIN-BOTTLE HOLES

Klein-bottle holes could lead to the most suitable tun-
neling mechanism in order for mutually connecting a
couple of parallel or otherwise independent universes, as
those holes do not preserve any orientability of a universe
with respect to the other. In this section we shall derive
expressions for the temperatures and entropy that charac-
terize the static Klein-bottle holes. The static metric for
a Klein-bottle hole was derived in Ref. [3] and reads
(See Fig. 1)

ds2 ¼ �e2�dt2 þ �ð2�� ’1Þ
�

dr21
1� Kðb1Þ=b1 þ d�2

1

�

þ �ð’1 � 2�Þ
�

dr22
1� Kðb2Þ=b2 þ d�2

2

�
; (1)

where � and KðbiÞ are the shift and lapse functions [1],
respectively, the �ðxÞ’s are the step Heaviside function
[14], with �ðxÞ ¼ 1 for x > 0 and �ðxÞ ¼ 0 for x < 0,
d�2

i ’s for 0 � ’1 � 2� is given by

d�2
1 ¼

�
m2

1 þ
1

4
½M1ða1 � C1Þ þ N1ðb1 �D1Þ�

�
d’2

1

þ b21d’
2
2 � b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � C1ÞðA1 � a1Þ

q
sin’2d’1d’2;

(2)

in which

M1 ¼ A1 � a1 � ðB1 � b1Þ cos’2 (3)

N1 ¼ B1 � b1 � ðA1 � a1Þ cos’2 (4)

mi ¼ ai � bi cos’2; i ¼ 1; 2: (5)

Now, for 2� � ’1 � 3�

d�2
2 ¼

�
m2

2 þ
1

4
½M2ða2 � A2Þ þ N2ðb2 � B2Þ�

�
d’2

2

þ b22d’
2
2 � b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � A2ÞðC2 � a2Þ

q
sin’2d’1d’2;

(6)

where in this case

M2 ¼ C2 � a2 � ðD2 � b2Þ cos’2 (7)

N2 ¼ D2 � b2 � ðC2 � a2Þ cos’2: (8)

Finally we have

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ b21 � 2a1b1 cos’2

q
(9)

FIG. 1. Pictorial representation of a Klein-bottle hole showing
the nonorientable topology of its throat and some of the parame-
ters in terms of which metric (1) is defined.
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r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ b22 þ 2a2b2 cos’2

q
; (10)

where we have extended the range of the angular coordi-
nate ’1 to also encompass values continuously running
from 2� to 3� and Ai, Bi, Ci and Di, i ¼ 1, 2, are given
sets of adjustable parameters which are arbitrary unless for
the conditions A1 >C1, B1 >D1, A1 > B1 and C1 >C1

for the angular interval 0 � ’1 � 2�, whereas for 2� �
’1 � 3� we must have C2 >A2, D2 >B2, C2 >D2 and
A2 >B2, with D2 ¼ B!, B2 ¼ D1 and A1 � C1 ¼
A2 þ C2, with A1 � C1 > 2A2. ai and bi are the radius of
the circumference generated by the circular axis of the
Klein bottle torus and that of a Klein bottle section, re-
spectively, with ai > bi. Metric (1) is defined for 0 � t �
1, ai � bi � ri � ai þ bi and the angles (see Fig. 1) 0 �
’1, ’2 � 2�.

Thus, according to the discussion made when introduc-
ing the process of thermal emission in ringholes in Ref. [2],
since the ’2-angular horizons at ’

ic
2 and 2�� ’ic

2 , with
i ¼ 1, 2, in Klein-bottle holes are placed exactly at the
same positions, along the respective ’1-intervals, as in the
case of ringholes, for Klein-bottle holes one should expect
the existence of radiation sources at positive and negative
temperatures along the same’2-intervals as in the ringhole

case; that is, there would be a source at negative tempera-
ture radiating phantom energy for the interval 2�� ’c1

2 >
’2 >’c1

2 ¼ arccosðb1=a1Þ, and a source at positive tem-
perature for ordinary radiation in the interval �’c1

2 <
’2 <’c1

2 ¼ arccosðb1=a1Þ, both along the ’1 interval
from 0 to 2�; in addition there will be as well a source at
negative temperature radiating phantom energy for the
interval 2�� ’c2

2 >’2 >’c2
2 ¼ arccosðb2=a2Þ, and a

source at positive temperature radiating ordinary energy
for �’c2

2 <’2 <’c2
2 ¼ arccosðb2=a2Þ, both along the

’1-interval from 2� to 3� that makes nonorientable the
manifold.
An estimate of these temperatures along the two

’1-intervals of the nonorientable manifold may in turn
be obtained by estimating their surface gravities, which
can be derived by generalizing the expression for surface
gravity in the case of spherical symmetry [11] to that for
nonorientable toroidal symmetry. In the present case, this
can be simply made by just replacing the radial coordinate
r of the spherical case for the distances �OP (see Fig. 1 and

Eqs. (9) and (10)), ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i þ ð�1Þi2aibi cos’2

q
,

with i ¼ 1, 2. Using then the general procedure described
in Ref. [11], we finally have

�1/ b201
2b1r

2
1

�2�r1ð�1�p1Þ

¼ b201
2b1r

2
1

�c4b201n
2
1

8Gb31r1
�

8>>><
>>>:

8m1

a1
�
�
A1�C1

a1

�
cos2

�
’1

4

�
þmð0Þ

1

m1
þnð0Þ

1

n1
�2

4

�
m2

1þ 1
4½M1ðA1�C1ÞþN1ðB1�D1Þcos2

�
’1

4

��þ2ð1þsin’2Þ
n1b1

�
4cos

�
’1

2

�
sin’2

ðA1�C1Þm1sin
2

�
’1

2

�
9>>>=
>>>;

(11)

�2/ b202
2b2r

2
2

�2�r2ð�2�p2Þ

¼ b202
2b2r

2
2

�c4b202n
2
2

8Gb32r2
�

8>>><
>>>:

8m2

a2
�ðA2�C2

a2
Þcos2ð’1

4 Þþ
mð0Þ

2

m2
þnð0Þ

2

n2
�2

4fm2
2þ 1

4½M2ðA2�C2ÞþN2ðB2�D2Þcos2ð’1

4 Þg
þ2ð1þsin’2Þ

n2b2
� 4cosð’2

2 Þsin’2

ðA2�C2Þm2sin
2ð’1

2 Þ

9>>>=
>>>;
; (12)

with �i and pi the energy density and the radial pressure,
respectively, corresponding to the given ’1 interval, i ¼ 1,
2. Now, for the most natural situation in which the absolute
value of the radii ai is sufficiently larger than the radii bi,
since the combination �i � pi becomes negative in the
regions 2�� ’ci

2 >’2 >’ci
2 ¼ arccosðbi=aiÞ, then the

corresponding surface gravities will be definite positive
in such regions and, since the radiation temperature is
generally given by T / ��jb¼b0i , it follows that that
temperature will in fact be negative for the intervals
2�� ’ci

2 >’2 >’ci
2 ¼ arccosðbi=aiÞ. On the contrary,

the combination �2 � p2 is positive in the regions
�’c1

2 <’2<’c1
2 ¼ arccosðb1=a1Þ, and therefore the

associated surface gravities will be definite negative and
the temperatures positive.
We have in this way obtained that, similar to the case of

ringholes [12], for �i ’ �2�rið�� prÞ: (i) whereas the
temperature on the embedding surface that flares outward
is always negative, that on the flaring inward embedding
surface is always positive and its absolute value is either
larger or smaller than that for the negative temperature,
depending on the nature of the surrounding vacuum, and
(ii) in spite of that, because the involved negative-
temperature system and the positive-temperature system
can never come in contact in the present case (because the
temperature again vanishes at the two angular horizons),
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and hence the former system is not definite hotter or colder
than the latter one [15], at least at the first stages of a
large-ai Klein-bottle hole evaporation, the intensity and
energy of the radiation pulses emitted at the positive tem-
perature may once again overcompensate those generated
at a negative temperature or vice versa, so satisfying the
generalized quantum interest conjecture as well [12].

It also follows that, as the above overall thermal process
at combined positive- and negative-temperature emission
progresses, the Klein-bottle hole may be converted into
either some sort of nonorientable wormhole in the sense
that the surface embedding it would tend to only flare
outward (that precisely happening when ai becomes ex-
actly equal to bi [see also Fig. 2(a)]), or some sort of
nonorientable black hole in the sense that the embedding
surface tended to just flare inward (this taking place when
ai ¼ �bi [see also Fig. 2(b)]). These limiting geometric
Klein-bottle hole configurations either can only continue
emitting phantom radiation at a negative temperature
as far as the usual quantum interest conjecture [16] is
violated, such as what happens with spherically symmetric
wormholes, or can emit ordinary radiation at a positive
temperature such as what happens with spherically sym-
metric black holes.

It is in this sense that also the Klein-bottle holes with
these limiting geometries are equivalent either to worm-
holes or to black holes. There is still another aspect in
which wormholes or black holes and the above limiting
Klein-bottle hole configurations are again equivalent. It is
in that both types of tunneling (wormholes and limiting
Klein-bottle holes with ai ¼ bi) and both types of compact
space-time objects (black holes and limiting Klein-bottle
holes with ai ¼ �bi) all show the same optical lensing
gravitational signature on the sky when light coming to us
from a luminous object is placed behind them, along the
line of sight, i.e., a single glowing ring of the kind already
considered by Shatskiy for single wormholes [17]. Unfor-
tunately, such bright rings are not at all distinguishable
from e.g., Einstein rings generated by, e.g., galaxies, or that
is produced by stars with negative energy.

We finally consider entropy expressions for Klein-bottle
holes. Thus, according to the known principles of gravita-
tional thermodynamics [18], the one fourth of the surface
area of the nonorientable torus making the throat of the
Klein-bottle hole is expected to provide us with the
Klein-bottle hole entropy expressions, SiKH with i ¼ 1, 2
[18]. Thus, we would have

SiKH ¼ bi
4‘2P

Z 2�

0
d’1

Z 2�

0
d’2mi ¼ �2aibi

‘2P
; (13)

which are similar to that for ringholes [12].
We notice that even though neither ringholes nor Klein-

bottle holes show any event horizon, they must have a
trapping horizon which is nothing but that for spherically
symmetric wormholes [11] when generalized to toroidal

symmetry the way pointed out before. The existence of
such a trapping horizon appeared as the ultimate reason
why temperatures and entropies, and actually an entire
thermodynamics, are properties pertaining to ringholes or
Klein-bottle holes, such as it occurs in wormholes [11].
In what follows, I shall tentatively state the familiar laws

that one would expect the Klein-bottle hole thermodynam-
ics should satisfy. Basing on reconciling the laws of

FIG. 2 (color online). Limiting Klein-bottle holes in which
a2i ¼ b2i , i ¼ 1, 2. We have then three possible final situations.
(A) if both a1 ¼ b1 and a2 ¼ b2, then the process of thermal
emission of positive and negative radiation tends to that limiting
geometry where all ordinary energy contributing to the Klein-
bottle hole with ai > bi is exhausted, leaving a double geometry
which is equivalent to that of a couple of wormholes in that the
surface embedding them flares outward but not inward, and are
both therefore made out of exotic, phantomlike energy charac-
terized by a negative temperature; (B) if both a1 ¼ �b1 and a2 ¼
�b2 then the process of thermal emission tends to that limiting
geometry where now all exotic energy contributing the Klein-
bottle hole with jaij> jbij is exhausted, leaving a double geome-
try which is now equivalent to that of a pair of black holes, instead
of wormholes, in that the surface embedding the Klein-bottle hole
space-time metric (1) always flares inward, being therefore made
out of ordinary matter with positive internal energy, which is
characterized by a positive temperature; and (C) if any of the two
’1-intervals making the manifold nonorientable satisfies the
condition that a and b become the same and the other reaches a
situation where a ¼ �b, the final double limiting geometry
would be equivalent to that of a wormhole plus a black hole in
that the one part of the surface embedding them flares outward and
the rest of it flares inward, the former being therefore made of
exotic, phantomlike energy with negative temperature, and the
latter by ordinary energy with positive temperature.
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thermodynamics for ordinary matter and radiation, black
holes [19], wormholes [11], a de Sitter universe [20] and
warp drives [21] with the existence of a trapping horizon in
the Klein-bottle hole, we now seek to tentatively formulate
the four laws of Klein-bottle thermodynamics as physical
properties that we expect the Klein-bottle holes would
have. These laws would be analogous to those of the
thermodynamics for ordinary matter and radiation, black
holes, wormholes, ringholes [12], the Unruh vacuum [22]
or a de Sitter universe, and may be stated as follows. (i) The
surface gravity for the two relevant angular regions of a
stationary Klein-bottle hole would no longer be strictly
constant, in the present case meaning that �i � �ið’2Þ
(with i ¼ 1, 2) remains constant along time for every value
of the angle ’2, not that the �i are kept constant irrespec-
tive of the angle ’2. This would express a zeroth law. (ii) A
first law would then state that

dMi ¼ �i

8�
dAi

RH;

that is,

dMi

d’2

¼ 1

4
�imi;

dMi

d’1

¼ 1

4
�aibi;

where �i is the surface gravity as given by Eqs. (11) and
(12), and Mi ¼ Mi

I þMi
II. (iii) If one now assumes the

weak energy condition to hold, then the inequality

dAi
KH � 0;

would express the second law in case that the Klein-bottle
hole is placed in an empty environment. For the most
realistic situation in which the Klein-bottle hole is sur-
rounded by some ordinary material and/or radiation, as
well as gravitationally compact objects, such as black
holes, wormholes, ringholes, warp drives or the Unruh
vacuum, then this second law had to be generalized to
also encompass the entropies of all of these materials and
objects [22]. Finally, (iv) the statement that it is not pos-
sible to have a Klein-bottle hole with �i ¼ 0would amount
to the description of a third law.

On the other hand, enclosing a Klein-bottle hole in a
box, having perfectly reflecting walls, which also contains
arbitrary amounts of ordinary radiation and phantom ra-
diation [23], and then letting the whole system to quantum-
mechanically evolve in time, should always produce an
entropy increase, in agreement with the generalized second
law [24], no matter whether or not quantum gravity is a
time-symmetric theory [25]. However, in order to show
that this is really the case, one ought to use an even more
careful treatment than that employed when dealing with
systems whose components have all positive internal en-
ergy and positive temperature [26]. In fact, e.g. it is known
[27] that systems which are characterized by a negative
temperature are able to only show a finite number of modes

available, and this may finally result in an entropy reduc-
tion when positive energy is added onto the system.

III. THERMAL RADIATION FROM
INTER-UNIVERSE TIME MACHINES:

OBSERVABLE OUTBURSTS

We have now expressions for the surface gravity corre-

sponding to the different space-time tunneling �j
G, with j

referring to WH, wormholes, RH, ringholes, and KH,
Klein-bottle holes, that is [11,12]

�WH ¼ KðrÞ
2r2

� 2�rð�� prÞ; (14)

with KðrÞ the lapse function [1], � the energy density and
pr the radial pressure.

�RH ¼ b20
2bða2 þ b2 � 2ab cos’2Þ

� 2�ða2 þ b2

� 2ab cos’2Þ1=2ð�� prÞ; (15)

where the energy density and the radial pressure depend on
the angle ’2, too. Their combination in Eq. (15) reads [1]

�� pr ’ � c4n2b20
8�Gr3b3

�
2þma

nb
þ nb

ma

�
: (16)

In the interval 2�� ’c
2 >’2 >’c

2 the combination ��
pr becomes negative [11] and hence the surface gravity �
is definite positive. In case that �’c

2 <’2 <’c
2 then [1]

�� pr > 0 and therefore the generalized surface gravity �
becomes definite negative, after passing through �� pr ’
0 on the two angular horizons. Expressions for the sur-
face gravity for Klein-bottle holes are those provided by
Eqs. (11) and (12). From all of these expressions for
surface gravity we can straightforwardly derive the corre-
sponding expressions for temperature by using the usual
relation

T ¼ ��jHorizon
2�

:

We consider next the effects that mouth acceleration in
the corresponding interuniverse time machines may have
on the given expressions for surface gravity, and hence for
the radiation temperature and frequency. First of all, we
shall restrict ourselves to that study, adding later on the
consideration of the further modifications that relativistic
Doppler effect may induce on both the temperature and
frequency. In this way, we shall use the general expression
for the surface gravity in all of the solutions we are con-
sidering [11]

� ¼ 1

2
gab@a@br; (17)

where the spherical radius of wormholes r becomes, as we
pointed out before, the radius of the circumference de-
scribed from the hole symmetry axis at the given value of
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angle ’2 in the case of the toroidal solutions. Now, convert-
ing any of the static space-time metrics for the above three
tunnelings into the line elements for the corresponding time
machines would imply that the tt-component of the metric
tensor is multiplied by a factor which reads [1,2]

Q ¼ ½1þ g‘Fð‘Þ sin’2�2;
where �1< ‘<þ1, g ¼ �2dv=dt (with � ¼
ð1� v2Þ�1=2) is the acceleration of the mouth which is
moving, Fð‘Þ is a form factor that vanishes on the half of
the tunnel whose mouth does not move, ‘ � 0, and rises
monotonously from 0 to 1 as one goes leftward or rightward
from the throat to the moving mouth, and ’2 becomes �þ
�=2 in the case of wormholes. In deriving this factor we
have also used the expressions dv ¼ gdt=�2 and d� ¼
vg�dt. Now, if we want to keep a tt-metric tensor compo-
nent unity (or more generally gtt ¼ e2�, with � a shift
function), we can write the metrics in the purely conformal
form

ds2TM ¼ Q

�
�dt2 þ d‘2 þ d�2

Q

�
; (18)

in which for the sake of simplicity we have made zero the
shift function, d�2 is the metric on the unit either two-
sphere (wormholes) or two-torus (ringholes and Klein-bottle
holes), and Q can be interpreted as a well-defined non-
singular conformal factor, 0<Q � 1, because the exotic
matter entering the tunnels must satisfy the relativistic
requirement v < 1. In this way, if we take for the hole
metric ds2 ¼ ds2TM=Q, by employing the usual expression
for temperature T ¼ ��jHorizon=2�, since the radius r ap-
pears to be in all the cases independent of the mouth relative
motion, we finally obtain

TTM
j ¼

�
1� v2 þ dv

dt ‘Fð‘Þ sin’2

�
2

ð1� v2Þ2 Tj; (19)

with j denoting wormhole (WH), ringhole (RH) or
Klein-bottle hole (KH) and ’2 ¼ �þ �=2 in the case of
wormholes and TKH � Ti

KH, i ¼ 1, 2. However, Eq. (19) is
not yet the final expression for the temperature of the time
machines that correspond to the three types of tunneling we
have studied. Indeed, it should still be modified by including
a corrective factor arising from the relativistic Doppler
effect associated with a moving black body. In fact, the
Doppler shift manifests on both the radiating frequency
and temperature. The frequency will vary according to

�D ¼ �
1� v cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ;

where � is the angle between the velocity vector and the
observer-source direction measured in the reference frame
of the source, and the temperature that we finally obtain
when including the Doppler effect is given by

TTM=D
j ¼

�
1� v2 þ dv

dt ‘Fð‘Þ sin’2

�
2

ð1� v2Þ3=2ð1þ vÞ Tj; (20)

in which v > 0 indicates a receding source, and v < 0
indicates an approaching source. Thus, according to
Eq. (20), if we want all the single universe space-times
entering the multiverse to be independent of each other,
then every interuniverse tunneling network will be emitting
a flow of radiation at a rather random temperature which
would randomly oscillate between that corresponding to a
static tunnel when v ¼ 0 and a value approaching infinite as
v ! 1, with a completely unpredictable cadence.Whenever
the mouths of the tunnel accelerate to each other at ex-
tremely large speeds, very close to the speed of light, though
not reaching it, one would expect the emergence from the
furthest confines of our universe of a radiative burst made of
just phantom energy in the case of wormholes or a mixture
of ordinary and phantom energy in the cases where the
interconnecting topology is associated with a torus. The
observability from our solar system of such energetic short
pulses will depend on the geometric parameters defining the
tunnels and on the energetic balance implied by the combi-
nation �� pr. The odds for getting a proof of the existence
of other universes this way look small, although one could
expect that these pulses will induce instantaneous changes
on the isotropy of the microwave background in the uni-
verse, which perhaps might be observable (see next section).
It is worth noticing that even at the moment when the

moving mouth reaches a speed closest to that of light, one
could expect that the emitted bursts do not completely
destroy the tunneling connection but possibly left it with
a minimum-energy geometry governed by the kinds of
configurations described in Fig. 2.

IV. CONCLUSIONS AND FURTHER COMMENTS

We have first studied the thermal properties of static
nonorientable Klein-bottle holes which are characterized
by two distinct temperatures accordingly to how we go
along the trajectory of angle ’1 around a transversal section
of the nonorientable torus. Thermal emission of this non-
orientable tunnel consists of radiation made of both phantom
particles and ordinary matter, just like in the ringhole case.
Apart from the already pointed out lensing-effect sig-

natures that interconnecting wormholes, ringholes and the
Klein-bottle could leave in our own universe out from the
existence of other universes [8], we also consider in this
paper still another potentially observable phenomenon
based on this kind of interuniverse connection: the possible
emission of bursts of phantom or phantom and ordinary
thermal radiation arising from the final boundaries of
our universe. Such a phenomenon would be originated by
the utterly random accelerating behavior of the mouths of
the considered space-time tunnels and would be more
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energetic as the energy density involved at the pathological
solution becomes larger.

Somehow similar dependence of a black body radiation
temperatures on velocity was already found to occur in
another pathological solution: the two-dimensional super-
luminal warp drive [21], a space-time construct which can
also be transformed into a time machine enclosed in a
bubble filled with a thermal radiation whose characteristic
temperature rises with the apparent velocity of the ship [21].

Finally, we briefly comment on the odds that the ran-
domly emitted bursts of thermal radiation have to become
actually observable, so making the idea of the existence of
the multiverse falseable. Of course, it appears quite diffi-
cult that with the precision and reach of the instruments
now available, the connecting tunnelings be big enough as
to have the extremely large amount of exotic matter re-
quired to produce a burst that can be detected from the
Earth with our current instrumentation, with this made
even harder when one considers that the burst energy

would dissipate through the large quantity of highly ener-
getic features taking place in our universe during its way to
Earth. The possibilities of detecting these phenomena
would be considerably increased by using indirect proce-
dures, such as investigating the kind of anisotropies or
inhomogeneities in the microwave background that the
combined pulses of phantom and ordinary radiation are
expected to produce, or the effects that these pulses may
have on astronomical objects such as black holes [28] and
intrauniversal wormholes [29], decreasing or increasing
their size, respectively.
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083529 (2010).
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