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Abstract. The coherence effects induced by external photons coupled to
matter waves inside a Mach-Zehnder three-grating interferometer are analyzed.
Alternatively to atom-photon entanglement scenarios, the model considered here
only relies on the atomic wave function and the momentum shift induced in it by
the photon scattering events. A functional dependence is thus found between the
observables, namely the fringe visibility and the phase shift, and the transversal
momentum transfer distribution. A good quantitative agreement is found when
comparing the results obtained from our model with the experimental data.
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1. Introduction

The remarkable refinement reached in matter wave interferometry in the last decades
[1, 2] has made possible to explore experimentally fundamental key questions about
wave particle duality and complementarity that have been studied since the very
inception of quantum mechanics [3, 4]. In this regard, Chapman et al [5] carried out
an outstanding experiment in 1995, where the influence of photon-atom scattering
events (inside an atomic Mach-Zehnder interferometer) on the coherence properties of
an atomic beam was investigated. This experiment was interpreted as a realization
with atoms of Feynman’s “which-way” gedankenexperiment [6].

The most intriguing result from Chapman’s experiment was the revival of
fringe contrast beyond the limits predicted by the complementary principle [2, 5, 7].
Furthermore, it was also observed [5] a regain of fringe contrast after post-selecting
atoms at the exit of the interferometer according to the momentum transferred in
the photon-atom scattering process. The regain of interference due to post-selection
in momentum space had been previously reported for optical [8] and neutron [9]
experiments with presence of resonant spin-flipper fields. In the case of the neutron
experiments, a spectral modulation effect was observed by means of a proper post-
selection procedure, where the spatial shift of the wave trains greatly exceeds the
coherence length of the neutron beams traversing the interferometer [1, 9].

http://arxiv.org/abs/1006.0450v2
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By the time when the paper by Chapman et al [5] was published, a controversy
on the origin of the disappearance of interference in “which-way” (actually, “which-
slit”) double-slit experiments was already in fashion: recoil vs decoherence. At a
first glance, it seems that the primacy of recoil arguments [10] has been contested in
favor of more general decoherence mechanisms, based on considering the entanglement
between the observed system and its environment to be the source of the system loss
of fringe contrast or visibility. Nevertheless, Storey et al [11] argued that, whenever
interference is destroyed, transverse momentum has to be transferred according to the
uncertainty principle.

Revivals observed beyond the limit of the complementarity principle enforced
Chapman et al [5] and Cronin et al [2] to argue that “the momentum recoil by itself
can not explain the loss of contrast (as it can in the diffraction experiments), but
the path separation at the point of scattering and the phase shift imprinted by the
entanglement in the scattering process must also be taken into account”. In addition,
Cronin et al [2] argued that “focusing on the which-way information carried away
by the scattered photons is not the only way decoherence may be understood. An
alternative, but completely equivalent picture involves the phase shift between the two
components of the atomic wave function”. These two views (which-way and dephasing)
“correspond to two different ways to describe the scattered photon (position basis
versus momentum basis). In these two cases, an observer in the environment can
determine either which path the atom took or else the phase shift of its fringe pattern.
The key point is that when the experimenter is completely ignorant of the state of
the scattered photons, whether an apparatus has been set up to measure them or not,
the which-path and phase diffusion pictures are equally valid (Stern et al., 1990, [12]).
Both predict decoherence, i.e., loss of contrast” [2].

It is important to note that the apparatus of Chapman et al [5] was set up to
detect atoms, but not to measure the state of the scattered photons. Because of
this, in the present work we study this experiment using a model [13,14] that focuses
on atomic states. It accounts for the effects caused on the atom time-dependent
wave function by the interferometer as well as the (environmental) photons scattered
from the atoms when the latter are excited in a resonance fluorescence state by a
laser beam. Due to the negligible time-scales involved in the dynamics of the atom-
photon scattering process (i.e., the absorption and then re-emission of the photon
by the atom) compared with the time-scales involved in the experiment, the photon
atom resonance scattering is described as a sudden change of the atom wave function
accompanying the momentum transfer between the photon and the atom. Hence we
assume each atom can be individually described by a pure state, and only when a
collection of atoms is considered statistically, the decoherence effect arising from the
photon-induced momentum displacements becomes apparent. More specifically, here
we use the probability distribution of transverse momentum transfer to an atom in
resonance fluorescence derived by Mandel [15, 16] from the angular distribution of
spontaneously emitted photons.

According to such a model, here we present a functional dependence between the
experimental observables, namely the fringe visibility and the phase shift, and the
statistical distribution of photon-atom transversally transferred momentum. From
this relationship, a direct connection is established between the coherence losses
and subsequent revivals undergone by the atoms, which arise as a consequence of
the statistical distribution of the sudden momentum shifts induced in the atomic
wave function by the photons (scattering-mediated momentum transfer processes).
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Figure 1. (a) Scheme of the experimental setup used by Chapman et al [5] to
conduct their experiments on atom interferometry. Essentially, it consists of a
Mach-Zehnder three-grating interferometer, where atoms are acted by external
photons between the first and second gratings (G1 and G2). (b) Scheme showing
the postselection slits behind the third grating G3; each one gives rise to a different
postselection momentum transfer distribution (see Section 3).

Furthermore, when some particular choices of momentum transfers are considered by
selecting the outgoing atoms according to some prescribed momentum distributions,
i.e., by post-selecting the atoms, a regain of the coherence is observed. As it is shown,
these results are in good agreement (both qualitatively and also quantitatively) when
compared with the experimental data reported by Chapman et al [5]. Note therefore
that this simple model thus provides a self-consistent explanation of the experiment
based on first-principle-like arguments rather than only a best fitting to some suitable
function.

This work is organized as follows. In Section 2, to be self-contained, we start by
briefly introducing the experimental setup used by Chapman et al [5] as well as an also
brief description of the two types of experiments they carried out. In Section 3, we
introduce our theoretical description of this experiment together with the analytical
tools that arise from it to later on evaluate the fringe visibility and phase shift, which
are compared with the experimental data. As it will be seen, this entails the two
features of a quantum particle within the same experiment: wave and corpuscle. In
other words, with each individual atom that enters into and passes through the three-
grating Mach-Zehnder interferometer, and then arrives at the detector, there is a wave
associated, which is described by a coherent wave function or pure state. In Section 4,
results for different functional forms of the transversal momentum transfer distribution
are analyzed and discussed. As it is shown, when these results are directly compared
with the experimental data reported in [5], a good agreement is found even without
using any best-fit method, but just introducing the experimental parameters into the
functional forms derived from our theoretical model. Finally, the main conclusions
arising from this work have been summarized in Section 5.

2. Description of the experiment

In the experimental setup utilized by Chapman et al [5] (a sketch is shown in figure 1a),
a beam of atomic sodium with a narrow velocity distribution is produced, collimated
and launched through an atomic Mach-Zehnder interferometer. The interferometer
consists of three 200 nm period nanofabricated Ronchi diffraction gratings (indicated
by the vertical dotted lines in figure 1a) separated by L = 65 cm. Each grating acts
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as a coherent beam splitter [17], with the zeroth and first order maxima being the
relevant ones.

A polarized laser beam behind the first grating, G1, is switched on with the
direction of the beam being parallel to this slit. This laser leads the atoms to a
resonant excited state, from which they decay back to the ground state via spontaneous
emission. The atomic flux collected behind the third grating, G3 (see figure 1a), was
then measured as a function of a shift ∆x3 produced in this grating along the x-axis,
with the laser both off and on. This measurement was performed considering different
values of the distance y′12 between G1 and the laser beam. Then, next, the same set
of measurements was repeated, but adding a selection slit behind G3, in front of the
detector (see figure 1b). Each selection slit was associated with a particular range of
values of the transferred transverse momentum.

The dependence of the measured values of the number of detected atoms on the
shift ∆x3, given by

N(∆x3) = N̄

[

1 + C cos

(

2π

dg
∆x3 + ϕ

)]

, (1)

revealed interference [5]. In this expression, N̄ is the average atom count rate, dg is
the period of the grating and C is the relative contrast (or fringe visibility). When
the laser was off, the contrast C was typically about 20% and the phase ϕ was zero.
When the laser was turned on, photon scattering events before and immediately after
G1 does not affect either the contrast C or the phase. However, as y′12 increases,
the contrast decreases, first linearly and then it sharply falls to zero. Afterward few
revivals were observed. This behavior can be seen in figure 2 of [5], where the relative
contrast (visibility) was represented as a function of dp/λi, with λi being the photon
wavelength and

dp =

(

2π

kdg

)

y′12. (2)

Chapman et al [5] interpreted the quantity dp as “the relative displacement of the two
arms of the interferometer at the point of scattering”. However, Božić et al [14] pointed
out that this quantity is equal to the separation between the two paths associated with
the zeroth and first order interference maxima only in the far field, behind G1. On
the contrary, in the near field, dp is equal to the distance between the prolongations
of such paths. This distinction should be taken into account when interpreting the
experimental data, since the photon-atom scattering events in this experiment take
place in the near field. In this work, this is explained in detail, taking into account
the following fact:

y′12 =
kdg
2π

dp =
dp
λi

kdg
ki

=
dp
λi

LT

2

λi
dg
, (3)

where LT = 2d2g/λ is the so-called Talbot distance [18]. In the experiment, the ratio
dp/λi ranges between 0 and 2. From the values of the other experimental parameters,
it follows that y′12 ∈ [0, 19.09] mm and the Talbot distance is LT = 6.48 mm.

The same set of measurements was repeated, but this time adding a selection slit
behind G3, in front of the detector (see figure 1b). More specifically, this was done by
arranging slits in three different positions, each selection slit being associated with a
particular range of values of the transverse momentum ∆kx transferred to the atom
(i.e., with a particular momentum transfer distribution). This was possible because
the deflection of the atom at the third grating, ∆w3, is proportional to ∆kx, the
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transverse momentum transferred to the atom. The curves shown in figure 3 of [5]
show a substantial regain of contrast over the whole range of values for dp/λi. In
particular, a 60% of the contrast lost at dp ≈ λi/2 was regained.

From these results, Chapman et al [5] concluded that the decrease of contrast
to zero in the range 0 < dp/λi < 0.5 confirms the complementarity in quantum
mechanics, which suggests that fringe contrast must disappear when it is possible
to acquire which-way information, i.e., for dp/λi > 0.5. Consequently, one should
expect that beyond this value no coherence should be possible. On the contrary,
the experiment revealed that the atomic coherence displayed revivals in the relative
contrast beyond the first zero, thus allowing the atoms to also display some wave-like
behavior beyond the limits of complementarity. Furthermore, in the second part of
the experiment, it was also observed that the coherence could be regained; actually,
no zero values were observed in the relative contrast.

In our opinion, analyzing this kind of experiments in terms of the idea of
complementarity might result confusing, though very widespread. This was already
pointed out by Englert [19] in 1996, who warned about the misunderstandings that
may arise from the use of concepts like wave-particle duality unless they are clearly
specified and disambiguated. As it is shown below, in the model here described, such
concepts, namely wave and particle, are not mutually exclusive, but they both coexist
in the experiment, giving a good account of the experimental data. In particular, the
wave aspect of the atom is kept all the way through the interferometer, the photon
only causing a deviation of its translational motion (due to the kick and subsequent
momentum transfer during the scattering event).

Having in mind these ideas and the scheme displayed in figure 1a, in the
derivations presented below, we assume the atomic beam incident onto the grating
G1 (at y = 0) can be well approximated by a monochromatic or plane wave of finite
transverse width with wavelength λ and wave vector k = (2π/λ)ŷ. If the atomic beam
cross-section is also assumed to be wide enough (in the experiment, this cross-section
is about two orders of magnitude larger than the grating period [20]), not only it will
cover a relatively large number of slits, but also an important extension along the
z-direction. This causes a symmetry along the z-direction, which allows us to simplify
the analysis by reducing it to the XY -plane (for fixed z, e.g., z = 0).

3. Theoretical approach

3.1. Atom’s wave function evolution accompanying atom’s passage through the

interferometer

Taking into account the description of the experiment made above, now we are going
to analyze it here according to our model. Thus, consider the incident atomic wave
function associated with atoms having a velocity v is given by

Ψinc(x, y, t) = e−iωteikyψinc(x), (4)

where ~ω = ~
2k2/2m, v = ~k/m and ψinc(x) describes the width of the initial wave

function along the transverse direction. In the paraxial approximation, the outgoing
wave evolving freely after the diffraction caused by G1 is approximated by

Ψ(x, y, t) = e−iωteikyψtr(x, t). (5)
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This function is a product of the plane wave along the longitudinal y-direction by the
“transverse” wave function

ψtr(x, t) =
1√
2π

∫

∞

−∞

c(kx)e
ikxx−i~k2

xt/2mdkx =
1√
2π

∫

∞

−∞

C(kx, t)e
ikxxdkx. (6)

which describes the evolution along the x-direction. The function c(kx) is the Fourier
transform of the function ψtr(x, 0) which is determined by ψinc(x) through the relation

ψtr(x, 0) = T (x)ψinc(x), (7)

where T (x) is the given transmission function of the grating G1 located at y = 0. It
is also the transmission function of grating G2. More explicitly,

c(kx) =
1√
2π

∫

∞

−∞

T (x)ψinc(x)e
−ikxxdx, (8)

C(kx, t) =
1√
2π

∫

∞

−∞

ψtr(x, t)e−ikxxdx = c(kx)e
ik2

x~t/2m, (9)

Evidently, C(kx, t) is the time-dependent transverse wave function in momentum
representation.

Taking into account the length scales involved in the experiment, the paraxial
approximation can be considered a good approximation. This implies, first, that the
particle motion parallel to the y-direction can be treated as a quasi-classical (uniform)
motion, i.e., satisfying the relation y = vt, with v = ~k/m = 2π~/λ. Second,
the wave function (7) behind the grating G1 is such that c(kx) is relevant only for
k2x ≪ k2y ≈ k2 = k2x + k2y (in other words, the spreading of the wave function is much
slower than its propagation along the y-direction [21]). Accordingly, equation (6)
can be parameterized in terms of the y-coordinate or, equivalently, the (propagation)
time t.

In the passage from G2 to G3 as well as beyond G3, a similar analysis can be
conducted (see below). However, at a time t′12 and a distance y′12 = vt′12 = (~k/m)t′12
after the grating G1 the atom absorbs and re-emits a photon. This process induces
a sudden change ∆kx in the atomic transverse momentum which is accompanied by
the sudden change of the evolution of atom’s wave function. Arsenović et al [13]
determined the evolution of atom’s wave function after photon atom scattering by
assuming that atom’s wave function in momentum representation after photon atom
scattering C∆kx

(kx, t) has to satisfy:

|C∆kx
(kx, t

′

12)|2 = |C(kx −∆kx, t
′

12)|2. (10)

The corresponding transverse wave function at time t′12, in accordance to (6) is then
given by

ψtr
∆kx

(x, t′12) =
1√
2π

∫

∞

−∞

C∆kx
(kx, t

′

12)e
ikxxdkx. (11)

It should satisfy

|ψtr
∆kx

(x, t′12)|2 = |ψtr(x, t′12)|2. (12)

As shown by Arsenović et al [13], from equations (9)-(11) it follows that condition
(12) will be fulfilled if

C∆kx
(kx, t

′

12) = C(kx −∆kx, t
′

12). (13)
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Substituting (13) into (11) and then using (9), one finds that just after the photon-
atom scattering event, the atomic wave function becomes

ψtr
∆kx

(x, t′12) =
1√
2π

e−i∆k2

x~t
′

12
/2m

∫

∞

−∞

c(kx −∆kx)e
−ik2

x~t
′

12
/2m+ikx(x+∆x0)dkx, (14)

where

∆x0 =
∆kx~t

′

12

m
=

(

∆kx
k

)

y′12. (15)

Assuming (14) keeps the same form at any t > t′12, we may write:

ψtr
∆kx

(x, t) =
1√
2π

e−i∆k2

x~t/2m

∫

∞

−∞

c(kx −∆kx)e
−ik2

x~t/2m+ikx(x+∆x0)dkx. (16)

By changing now the integration variable k′x = kx −∆kx, (16) transforms into

ψ∆kx
(x, t) = ei∆kx(x+∆x0)−i∆k2

x~t/m

∫

∞

−∞

c(k′x)e
−ik′2

x~t/2meik
′

x(x+∆x0−~t∆kx/m)dk′x.(17)

This wave function describes the evolution of (6) after the scattering event (i.e., for
t > t′12 or, equivalently, y > y′12 = (~k/m)t′12). After the scattering event the atom
wave function evolves freely until it reaches the second grating G2. It is important
to note that the wave function ψtr

0 (x, t), associated with ∆kx = 0, describes also the
evolution of the wave behind the first grating when laser is off.

It is useful to parameterize wave function (17) in terms of coordinate y using the
relation ~t/m = y/k,

ψ∆kx
(x, t = my/~k) =

1√
2π

ei∆kx(x+∆x0)−i∆k2

xy/k

×
∫

∞

−∞

c(k′x)e
−ik′2

xy/2keik
′

x(x+∆x0−∆kxy/k)dk′x. (18)

The integrals in (17) and (18) have no general analytic solution, except for large
t or y values. In such a limit, when the dimensions of the diffracting object and
the wavelength of the diffracted beam are relatively small compared with the typical
propagation distances, the far-field or Fraunhofer condition, kx′

2
/y ≪ 1 (with x′

being a measure of the dimensions of the diffracting object), holds [22] and (18) can
be approximated (see Appendix A) by

ψtr
0 (x, t = my/~k) =

√

k

2iπy
eikx

2/2yc(kx/y) (19)

when the laser is off, and

ψtr
∆kx

(x, t = my/~k) =

√

k

2iπy
eik(x+∆x0)

2/2y−i∆k2

xy/2kc[k(x+∆x0)/y −∆kx] (20)

for ∆kx ∈ [0, 2ki] and the laser on. By comparing (19) and (20) we conclude that the
overall form of the atom probability density |ψtr

∆kx
(x, t)|2 is the same as for |ψtr

0 (x, t)|2.
However, the former will display a shift or displacement along the x-direction with
respect to the latter given by

∆w2 =
∆kx
k

(y − y′12) =

(

∆kx
k

)

y −∆x0. (21)
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The evolution of the wave function between G2 and G3 follows a similar
description to the one prior to the scattering event. Thus, if the wave function

incident onto G2 is denoted as ψ
(2)
inc,∆kx

(x) ≡ ψtr
∆kx

(x, t = my−0
12 /~k), which arises

from evaluating (20) at y = y−0
12 , just before the second grating, then wave function

evolution behind the second grating (y > y12) is given by

ψ
(2)
∆kx

(x, t) =
1√
2π

∫

∞

−∞

c
(2)
∆kx

(kx)e
ikxx−i~k2

xt/2mdkx

=
1√
2π

∫

∞

−∞

C
(2)
∆kx

(kx, t)e
ikxxdkx, (22)

where the relation between the time t and y is now y − y12 = vt and the momentum
probability density reads as

c
(2)
∆kx

(kx) =
1√
2π

∫

∞

−∞

T (x)ψ
(2)
inc,∆kx

(x)e−ikxxdx. (23)

From (22) and (23) one finds by numerical integration that the probability density
incident onto G3 for a given value of ∆kx ∈ [0, 2ki] oscillates with period dg. This
oscillatory pattern (figure 3 in [13]) is of finite width and its position along x-axis
depends on ∆kx. In other words, the oscillatory pattern corresponding to ∆kx 6= 0 is
shifted, with respect to the oscillatory pattern when laser is off, by the quantity

∆w3 =
∆kx
k

(2y12 − y′12) =

(

∆kx
k

)

2y12 −∆x0, (24)

which arises after considering the shift of the wave function at G2 (according to (21))
and the influence of ∆kx on the propagation direction of the wave function emerging
from G2. This estimate of ∆w3 is consistent with the shifts determined through the

numerical evaluation of the squared modulus of ψ
(2)
∆kz

(x, t = my23/~k) [13, 14].

3.2. Atomic flux behind the interferometer

In order to compare the results obtained from the theoretical model exposed above
with the experimental data [5], we have first considered the number of atoms
transmitted through G3 that undergo a change of momentum ∆kx during the
scattering process. This number is proportional to

T̃ (y′12,∆kx,∆x3) =

∫

slits






ψ
(2)
∆kx

(x, t = my23/~k)






2

dx, (25)

where ∆x3 is a lateral shift of the third grating with respect to the alignment of G2

and the integration limits extend over the region covered by the central maximum at
G3. By numerical integration with the wave function determined as described in the
previous section, it has been found [13, 14] that (25) the transmitted flux (25) is a
simple periodic function:

T̃ (y′12,∆kx,∆x3) = a+ b cos(2π∆x3/dg +∆kxdp), (26)

where dp is defined in (2), and a and b are constants independent of y′12 and ∆kx. Far
from the grating (i.e., large values of y′12), the distance dp is equal to the separation
between the paths associated with the zeroth and first order interference maxima
of the atomic wave diffracted by G1 (see figure 1a). However, near the grating the
emergent diffraction pattern is far more complex than a series of well defined paths,
obeying a Talbot-like carpet structure [18]. This implies, as explained after (3) and
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in [13] that dp should not be interpreted as the distance between two atomic paths in
the region covered by the laser light, for in this region there are, actually, many more
paths than simply two, as it is generally assumed [2, 5].

The results reported in [5] essentially come from two types of measurements. The
first type consists of simply counting all atoms that pass through G3; in the second
type, only a certain subset of the transmitted atoms are counted or postselected, in
particular those with a certain momentum direction, which is done by positioning
an additional slit beyond G3 (see figure 1b). Therefore, the observable is not
T̃ (y′12,∆kx,∆x3) in general, but its integral over a set of transferred momenta ∆kx,

T (y′12,∆x3) =

∫ 2ki

0

P̃ (∆kx)T̃ (y
′

12,∆kx,∆x3)d(∆kx)

=

∫ 2ki

0

P̃ (∆kx) [a+ b cos(2π∆x3/dg +∆kxdp)] d(∆kx), (27)

where the weight P̃ (∆kx) denotes the transversal momentum transfer distribution

of the detected atoms. More specifically, this quantity is the product of the atom
momentum transfer distribution P0(∆kx) and the distribution function Ps(∆kx)
characterizing the way how the atoms are selected (postselected) by their momentum
beyond the interferometer. That is, we have P̃ (∆kx) = P0(∆kx)Ps(∆kx). In
particular, when the postselection process will be included, we shall refer to the
normalized P̃ function as the postselection momentum transfer distribution. Thus, if

P (∆kx) ≡ P̃ (∆kx)/Γ, with Γ ≡
∫ 2ki

0
P̃ (∆kx)d(∆kx), is the corresponding normalized

distribution, it is straightforward to verify that (27) reads as

T (y′12,∆x3) = a+ bV cos(2π∆x3/dg + ϕ), (28)

where the quantities V and ϕ represent the fringe visibility or relative contrast and the
phase-shift, respectively, and are determined through the relations

V ≡
√

I2r + I2i , tanϕ ≡ Ii
Ir
, (29)

with

Ir ≡
∫ 2ki

0 P (∆kx) cos(∆kxdp)d(∆kx),

Ii ≡
∫ 2ki

0
P (∆kx) sin(∆kxdp)d(∆kx).

(30)

From a practical point of view, in order to evaluate V and ϕ, it is useful to introduce
the complex integral

I ≡
∫ 2ki

0

P (∆kx)e
i∆kxdpd(∆kx) = Ir + iIi, (31)

so that

V =
√
I · I∗, ϕ = − i

2
ln

(

I

I∗

)

. (32)

Taking this into account together with the standard definition of fringe contrast [16],
from (28) we find

C =
Tmax − Tmin

Tmax + Tmin
=

|b|
a

V . (33)
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When the laser is off, ∆kx = 0 and hence T (y′12,∆x3) = T̃ (y′12, 0,∆x3) = a +
b cos(2π∆x3/dg) and C0 = |b|/a. The relative contrast then reads as

C
C0

= V , (34)

which is a function of the ratio dp/λi (λi is the scattering photon wavelength), as it
will be seen below.

4. Numerical results

In order to compare with the experiment, below we present some calculations, where
we have considered the same parameter values used in the experiment [5]: v =
1400 ms−1, k = mNav/~ = 5.09067×1011 m−1, λi = 589 nm (ki = 1.06675×107 m−1),
y12 = y23 = 0.65 m, dg = 2×10−7 m and δ = 1×10−7 m. To evaluate the wave
function, we have considered a total number of illuminated slits n = 24 in G1, which
is an acceptable range compared with experimental atomic beam cross-sections (i.e.,
the coherence length of the atoms arriving in the grating) [20].

Apart from the Mandel distribution [15], which accounts for the bare transversal
momentum transfer distribution, to compare with the experiment we have also
considered the three postselection momentum transfer distributions used in the
experiment, denoted by PI, PII and PIII). These distributions correspond to
the combined effect of the momentum transfer process (described by Mandel’s
distribution) and three different particular selections (postselections of atomic
momenta (each one given by a different Ps distribution), which are achieved by
arranging a slit behind G3 in three different positions (see figure 1b). The dependence
of these four momentum transfer distributions as a function of the ratio between the
transferred momentum and the incident photon wave number, ∆kx/ki, is displayed
in figure 2a. Apart from these distributions, we have also considered several other
theoretical forms for the momentum transfer distribution of the detected atoms,
which are of interest to further analyze and better understand the dependence of
coherence and visibility on the experimental distributions. In particular, a Dirac δ-
function distribution (Pδ) and three constant distributions, Pc, P1 and P2, uniform
over the intervals [0, 2ki], [0, ki] and [ki, 2ki], respectively. These four distributions are
displayed in figure 2b.

A straightforward evaluation according to the method indicated at the end of
Section 3.2, leads us to the following expressions for the visibility and phase shift
associated with these distributions:

(i) As shown by Mandel [15], for photons incident with a momentum ki, the
transversal momentum transfer distribution can be expressed as [15, 16]

P0(∆kx) =

(

3

8ki

)

[

1 +

(

1− ∆kx
ki

)2
]

. (35)

In this case, the visibility and phase shift read as

V0 =
3

2

1

kidp

[(

1− 1

k2i d
2
p

)

sin(kidp) +
1

kidp
cos(kidp)

]

, (36)

ϕ0 = kidp =
2πdp
λi

, (37)
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Figure 2. Transversal momentum transfer distributions as a function of the
ratio between the transferred momentum and the incident photon wave number,
∆kx/ki. In panel (a): bare momentum transfer distribution P0 (black solid
line) and postselection momentum transfer distributions PI (red dashed line),
PII (green dotted line) and PIII (blue dashed-dotted line), as considered in the
experiment [5] (the colors follow those of figure 1b). In panel (b): theoretical
momentum transfer distributions Pδ (with kδ = 0.7ki; vertical black solid line),
P1 (red dashed line), P2 (green dotted line) and Pc (blue dashed-dotted line). All
curves are normalized to unity within the interval 0 ≤ ∆kx/ki ≤ 2. See text for
particular details on the values of the parameter.

which are both functions of the ratio dp/λi (black solid lines in figures 3a and
3b). As it can be seen, we find a good agreement between these theoretical
expressions and the experimental data (black solid circles) without taking into
account any fitting procedure. Both the coherence losses and subsequent regains
are thus accounted for without abandoning the idea of pure state to describe the
full evolution of the atom.

(ii) The case of PI is simulated by a half-Gaussian,

PI(∆kx) = 2/Nki
√
π e−(∆kx/Nki)

2

, ∆kx ≥ 0, (38)

where N determines the width of the Gaussian (here, we have chosen N = 0.7,
so that PI(2ki) ≈ 0). In this case (see Appendix A),

VI =
|erf(2/N − iα) + erf(iα)|

erf(2/N)
e−α2/4, (39)

ϕI =
1

2i
ln

[

erf(2/N − iα) + erf(iα)

erf(2/N + iα) + erf(−iα)

]

, (40)

where α = Nkidp. As seen in figures 3c and 3d (black solid lines), there are no
recurrences in VI (they are completely damped), while ϕI approaches a constat
value of π/2 as dp/λi increases. Again, as it can be seen, we find a fair agreement
with the experiment (black solid circles).
If instead of η = 0, one would choose η = 1, i.e, the mirror image of PI with
respect to ∆kx = ki, then

V ′

I =
|erf(2/N − iα) + erf(iα)|

erf(2/N)
e−α2/4, (41)

ϕ′

I = 2kidp +
1

2i
ln

[

erf(2/N + iα) + erf(−iα)
erf(2/N − iα) + erf(iα)

]

. (42)
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Figure 3. Functional dependence of the relative contrast (panels (a) and
(c)) and the phase shift (panels (b) and (d)) on the momentum transfer
distributions displayed in figure 2a, and as a function of the ratio dp/λi. Top:

Theoretical curves (solid line) and experimental data (black solid circles) for
the bare momentum transfer distribution P0. Bottom: Theoretical curves
(lines) and experimental data (symbols) for the postselection momentum transfer
distributions: PI (black solid line/black solid circles), PII (blue dotted line/blue
squares; no experimental data were available for the corresponding relative
contrast) and PIII (red dashed line/red stars). To compare with, the theoretical
curves for the bare momentum transfer distribution P0 have also been included,
being denoted with the gray dashed line. The experimental data have been
extracted from [5]; see text for particular details on the values of the parameters.

That is, the visibility is the same in both cases, but ϕ′

I = 2kidp−ϕI is an increasing
linear function of dp/λi (after ϕI reaches its maximum, steady value).

(iii) For PII we consider a displaced Gaussian,

PII(∆kx) = 2/Nki
√
π[1 + erf (1/2N)] e−[(∆kx−3ki/2)/Nki]

2

, (43)

with its maximum at ∆kx = 3ki/2 and N = 0.7, as before, so that PII(2ki +
3ki/2) ≈ 0. With this, we find

VII =
|erf(1/2N − iα) + erf(3/2N + iα)|

erf(1/2N) + erf(3/2N)
e−α2/4, (44)

ϕII =
3kidp
2

+
1

2i
ln

[

erf (1/2N − iα) + erf (3/2N + iα)

erf (1/2N + iα) + erf (1/2N − iα)

]

, (45)

which are represented by blue dotted lines in figures 3c and 3d. In this case,
since there relative contrast is very similar to that found for PI, no experimental



Coherence loss and revivals in atomic interferometry 13

data were reported. We only have experimental results for the phase shift (blue
squares in figure 3d), where a good agreement is also found.

(iv) PIII is described by means of an increasing exponential,

PIII(∆kx) = ǫ/ki(1− e−2ǫ) eǫ(∆kx/ki−2), (46)

where ǫ = 1 is the increase rate (see blue dashed-dotted line in figure 2a). This
distribution leads to

VIII =
ǫ

1− e−2ǫ

√

1 + e−4ǫ − 2e−2ǫ cos(2kidp)
√

ǫ2 + (kidp)2
, (47)

ϕIII = (tan)−1

{

sin(2kidp − φ) − e−2ǫ sinφ

cos(2kidp − φ) − e−2ǫ cosφ

}

, (48)

where φ = (tan)−1(kidp/ǫ). As seen in figures 3c and 3d (red dashed lines), now
V presents some damped recurrences and there is a significant phase shift. The
same trend is also observed in the experimental data (red stars), which follow
very closely the behavior of the theoretically predicted curves.

There are several simple cases of particular interest, because grosso modo they
capture the essential features of the distributions used in the experiment, which are the
finite, uniform momentum transfer distribution within the interval [k1, k2] ⊂ [0, 2ki],
being zero everywhere else,

Pu(∆kx) =
1

k2 − k1
, (49)

for ∆kx ∈ [k1, k2]. For this form we find

Vu =









sinc

[

(k2 − k1)dp
2

]







, (50)

ϕu =
(k2 + k1)dp

2
. (51)

As can be noticed, the visibility is given in terms of the half distance between the
limits of the interval, (k2 − k1)/2, while the phase-shift is proportional to their half
sum, (k2+ k1)/2, which corresponds to the average momentum. This implies that the
visibility will decay and oscillate faster as both k1 and k2 approach the limits of the
interval, the phase behaving in a similar manner (i.e., increasing). On the contrary,
if k1 → k2, we will be approaching the limit described by Pδ: Vu will oscillate more
and more slowly (behaving almost constant up to very large values of dp/λi), while
its phase will approach k2dp. Now we will analyze each one of these cases separately:

(a) For Pδ(∆kx) = δ(∆kx − kδ) the visibility is constant and equal to unity along the
interval [0, 2ki] (see black solid line in figure 4a). This means that a monochromatic
event does not destroy the coherence of the atom wave function, but it only
produces a phase shift ϕδ = kδdp (see figure 3b).

(b) In the case k1 = 0 and k2 = 2ki, Pc(∆kx) = 1/2ki, which is a rough approximation
to P0. Here, we find

Vc =
| sin(kidp)|

kidp
, (52)

ϕc = kidp. (53)
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Figure 4. Functional dependence of the relative contrast (a) and the phase shift
(b) on the momentum transfer distributions displayed in figure 2b: Pδ (black solid
line), P1 (red dashed line), P2 (green dotted line; V2 = V1 and no line can be
seen) and Pc (blue dash-dotted line). To compare with, the theoretical curves
for the bare momentum transfer distribution P0 have also been included, being
denoted with the gray dashed line. See text for particular details on the values of
the parameter.

(c) If k1 = 0 and k2 = ki, we have P1(∆kx) = 1/ki, which roughly describes PI and
renders

V1 =
| sin(kidp/2)|

kidp/2
, (54)

ϕ1 =
kidp
2
. (55)

(d) And, k1 = ki and k2 = 2ki, we have P2(∆kx) = 1/ki, which can be an
approximation to either P ′

I , PII or PIII, and gives rise to

V2 =
| sin(kidp/2)|

kidp/2
, (56)

ϕ2 =
3kidp
2

. (57)

Notice that in this case and the previous one, the visibility is the same, but not
the phase shifts, which increases three times faster for P2 than for P1.

As it can be noticed, the functional forms found with our model for the visibility and
the phase shift associated with the different momentum transfer distributions are in
good agreement with those reported in [5].

As it can be noticed, Vc vanishes for dp/λi = n/2, with n being an integer, while
V1 and V2 vanish when dp/λi = n. This is related to the fact that, for these three
distributions, the integrand in (30) is a periodic function of ∆kx, with period 2π/dp.
For Pc the integration in (30) is carried out over the interval [0, 2ki], which contains
an integer number of periods when dp/λi = n/2. For P1 and P2 the integration is
performed over the intervals [0, ki] and [ki, 2ki], respectively, which contain an integer
number of periods when dp/λi = n. Nevertheless, it is worth going further and
analyzing the physical reasons why the zeros of Vc, V1 and V2 appear at these values
of dp/λi. To start with, let us remember that the phase ∆kxdp that appears in

T̃ (y′12,∆kx,∆x3) arises as a consequence of the shift ∆w3 along the x-axis at G3

displayed by the atom wave function after the change of atomic transverse momentum
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due to photon-atom scattering. This shift, which is explicitly given by (24), contains
the term ∆x0. The latter is of the order of the grating constant dg, as can be noticed
if we define ∆kx = ηki, with 0 ≤ η ≤ 2 for Pc, 0 ≤ η ≤ 1 for P1, and 1 ≤ η ≤ 2 for
P2. Thus, taking into account explicitly the value of dp, we find ∆x0 = (dp/λi)ηdg ,
which implies 0 ≤ ∆x0 ≤ (dp/λi)2dg for Pc, 0 ≤ ∆x0 ≤ (dp/λi)dg for P1, and
(dp/λi)dg ≤ ∆x0 ≤ (dp/λi) for P2. Therefore, when dp/λi = 0.5, ∆x0 lies within the
intervals [0, dg], [0, dg/2] or [dg/2, dg] depending on we have Pc, P1 or P2, respectively.
This is why in the case of a uniform momentum transfer distribution along the interval
[0, 2ki] the total number of detected atoms (27) does not depend on the lateral shift
∆x0 at G3 and the contrast is zero. However, if the transferred momentum spans the
interval [0, ki], the displacement of the wave function spans half the grating constant
and, therefore, the number of detected atoms will depend on the lateral shift at G3,
then the contrast being greater than zero. On the other hand, when dp/λi = 1, ∆x0
lies within the intervals [0, 2dg], [0, dg] and [dg, 2dg] for Pc, P1 and P2, respectively.
In the three cases the displacements thus span an integer number of grating periods.
Therefore, in any of these cases, the total number of detected atoms will not depend
on the lateral shift at G3 and the contrast will vanish (see figures 4a and 4b).

It is insightful to analyze the experimental outcomes in the light of the constant
distributions. One could therefore state that the contrast regain found in the
experiment, compared with the Mandel distribution, arises from the change of the
momentum transfer distribution of the detected atoms, which is an objective effect.
Furthermore, the loss and revival of coherence in the case of the Mandel distribution
are also objective effects, which are related to the properties of the atomic wave
function incident onto G3.

5. Conclusions

In spite of the details involved in entanglement-based models aimed at describing
complementarity in experiments like the one here analyzed, appealing to simpler
models is also of interest in order to understand the underlying physics, even if they
are not fully complete. In the case dealt with here, we have considered a description
based on the recoil of the wave function describing the diffracted beam when a photon
impinges on it within the interferometer. This model not only allows us to obtain
a nice description of the evolution of the wave function throughout the matter-wave
Mach-Zehnder interferometer, but also to explain the losses (e.g., the total loss at
dp = 0.5λi), subsequent revivals (for dp/λi > 0.5) and regains (for all values of dp
of experimental interest) undergone by the (atom) fringe contrast in a very simple
manner. In particular, here we have presented how such effects arise when the outgoing
atomic probability density is sampled by a certain momentum distribution, either
Mandel’s bare momentum transfer distribution or the corresponding postselection
ones. In other words, these three effects can be attributed to the smearing out of
the interference pattern induced by the distribution of transverse momentum that the
photon or the postselection process cause on the atomic beam.

In order to obtain some extra information, other momentum transfer distributions
of theoretical interest have also been considered. In this regard, it was shown that, if
the atoms passing through G3 could be selected in such a way that only those with
a chosen value of transferred momentum would be detected, the contrast measured
would be constant, i.e., independent of dp/λi (see figure 4a for Pδ). On the contrary,
if the statistical momentum distribution is constant along the interval [0, 2ki], the
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interference contrast will be a simple periodic function of dp/λi (see figure 4a for
Pc). These distributions allow us to understand the more complex situations that
takes place in real experiments, where the momentum transfer distribution is given
by the Mandel distribution. In this case, in the light of the results obtained from
the theoretical momentum transfer distribution (in particular for Pc, which is roughly
similar; see figure 2a and 2b), we find how the losses and regains with dp/λi are
associated with the symmetry of this function with respect to ∆kx = ki (compare the
gray curve for P0 with the blue dashed-dotted one for Pc in figure 4a).

We would like to stress that the conclusions here obtained are also in agreement
with those found from postselection experiments [23, 24] in neutron interferometry
[9, 23, 25]. In this case, interference and coherence phenomena can be completely
hidden due to general averaging effects, but they can be recovered even behind the
interferometer if a proper postselection measurement procedure is used. This indicates
that interference in phase space has to be considered [24] rather than the simple wave
function overlap criterion described by the coherence function.
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Appendix A.

The approximations (19) and (20) in the far field have been obtained trough the
following series of transformations [13, 26]. First, the wave function is expressed in
terms of the initial wave function behind the grating, which is done by substituting
(7) and (8) into (18),

ψtr
∆kx

(x, y) =
1√
2π

ei∆kx(x+∆x0)−i∆k2

xy/k

×
∫

∞

−∞

dk′x
1√
2π

∫

∞

−∞

dx′ψtr(x′, 0+)e−ik′

xx
′

e−ik′2

xy/2keik
′

x(x+∆x0−∆kxy/k),

(A.1)

keeping in mind that the linear relation t = my/~k between t and y always holds. Next,
the integration over k′x in (A.1) is carried out taking into account the integral [27]

∫

∞

−∞

e−ux2
−vxdx =

√

π

u
ev

2/4u, (A.2)

if Re(u) > 0, Re(v) > 0 or Re(u) = 0, Im(u) 6= 0 and Re(v) = 0, Im(v) 6= 0. In doing
so, we obtain the result

ψtr
∆kx

(x, y) =
1

2π
ei∆kx(x+∆x0)−i∆k2

xy/k

×
∫

∞

−∞

dx′ψ(x′, 0+)

√

k

iy

√
2π ei[k(x−x′+∆x0)−∆kxy]

2/2ky . (A.3)
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In the far field approximation, the quadratic terms, x′
2
, in the exponent under the

integral can be neglected, which yields

ψtr
∆kx

(x, y) =
1√
2π

√

k

y
e−iπ/4+i∆kx(x+∆x0)−i∆k2

xy/kei[k(x+∆x0)−∆kxy]
2/2ky

×
∫

∞

−∞

dx′ψ(x′, 0+)ei[k(x+∆x0)−∆kxy]x
′/y. (A.4)

After recognizing in the latter equation the expression from (8), we find the form (20)
of the wave function valid in the far field,

ψtr
∆kx

(x, y) =

√

k

iy
eik(x+∆x0)

2/2y−i∆k2

xy/2kc[k(x+∆x0)/y −∆kx]. (A.5)

Appendix B.

The analysis of Gaussian-shaped distributions (e.g., PI and PII) can be tackled in a
general fashion as follows. Consider the distribution is centered at kg = ηki, such that
0 ≤ η ≤ 2, i.e.,

Pg(∆kx) = γge
−[(∆kx−kg)/Nki]

2

. (B.1)

Here N is some constant determining the width of the distribution and γg is the
normalizing prefactor,

γg =
2√
πNki

[erf(φ+) + erf(φ−)]
−1
, (B.2)

with erf(z) being the error function and

φ+ =
2ki − kg
Nki

=
2− η

N
, φ− =

kg
Nki

=
η

N
. (B.3)

Taking into account (B.1), the integral (31) can be expressed as

Ig =

[

erf(u+) + erf(u−)

erf(φ+) + erf(φ−)

]

e−α2/4+iηkidp , (B.4)

where α = Nkidp. Notice in the numerator of (B.4) that the error functions are
complex, since their arguments,

u+ =
2ki − kg
Nki

− iα

2
=

2− η

N
− iα

2
,

u− =
kg
Nki

+
iα

2
=

η

N
+
iα

2
,

(B.5)

are also complex numbers. Therefore, they will satisfy the properties erf(−z) =
−erf(z) and erf(z) = erf(z̄). From (B.4), the visibility and phase shift induced by
Pg are

Vg =
|erf (u+) + erf (u−)|
erf (φ+) + erf (φ−)

e−α2/4, (B.6)

ϕg = ηkidp +
1

2i
ln

[

erf (u+) + erf (u−)

erf (ū+) + erf (ū−)

]

. (B.7)

These two expressions can be evaluated for the half-Gaussian and displaced Gaussian
distributions considered in Section 3 by simply setting η = 0 or η = 3/2, respectively.
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