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The freshwater pond turtle, Emys orbicularis, has recently suffered from population declines

throughout its range, mainly due to habitat destruction. The mating strategies of this spe-

cies were studied using genetic data from successive clutches within and between years. To

test for the occurrence and frequency of multiple paternity and sperm storage, genetic

paternity at six microsatellite markers was assessed in 114 embryos and hatchlings from

single and subsequent clutches of 11 females (including clutches from the same or consec-

utive years). Multiple paternity was rare and only found in two out of 20 clutches from 11

females. All annual successive clutches and 58% of the clutches in the next year, were fer-

tilized with sperm from the same male. The use of stored sperm is thus a frequent strategy

in E. orbicularis. However, hatching rate, hatchling mass, and hatchling length decreased in

clutches fertilized by stored sperm, suggesting sperm depletion or deterioration through

time. The occurrence of stored sperm despite an associated reduced reproductive output

indicated that mating and/or the fertilization process is costly to females. The low inci-

dence of multiple paternity may simply be the residual consequence of the capacity to

store viable sperm. These results provide important and innovative insights for the conser-

vation of E. orbicularis. In threatened populations, management strategies may aim to

enhance effective copulations in order to increase the reproductive output of females.
1. Introduction

Multiple paternity and sperm storage strategies have been

investigated in many reptile taxa to understand mating strat-

egies and to test hypotheses regarding mating behaviour and

reproductive systems (Olsson and Shine, 1997; Gist et al.,

2001; Pearse and Avise, 2001; Crim et al., 2002; Hoekert et al.,

2002; Pearse et al., 2002; Tenessen and Zamudio, 2003; Lee

and Hays, 2004). In turtles, the capacity of females to utilize

stored sperm was first deduced from the asynchrony of copu-

lation and egg maturation (Devine, 1984), from experiments in
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oques).
captivity in which females were isolated from males (Goin

et al., 1978; Palmer et al., 1998), and from observations of stor-

age organs (Gist and Jones, 1989; Gist and Congdon, 1998).

However, such observations do not identify offspring from dif-

ferentmales, so that the quantitative and qualitative contribu-

tions of stored sperm to successive clutches could not be

evaluated. Identification of paternal alleles in successive

clutches has confirmed both multiple paternity and sperm

storage over both short and long periods in turtles (Pearse

and Avise, 2001; Pearse et al., 2001; Crim et al., 2002; Moore

and Ball, 2002; Roques et al., 2004). For species that laymultiple
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clutches per season, the time for effectivematings is the inter-

val between oviposition and the subsequent ovulation (Gist

and Congdon, 1998). Given the short length of this interval,

sperm storagewas considered to be a strategy that enabled fe-

males to fertilize consecutive clutches in a single reproductive

season, without the necessity of additional matings (Fitzsim-

mons, 1998; Kichler et al., 1999; Roques et al., 2004).

On the other hand, the frequency and the benefits of long

term sperm storage (across years) are not well known in tur-

tles (Palmer et al., 1998; Pearse et al., 2001). It remains unclear

why fertilization of successive clutches with the sperm from

the same single or multiple matings could be advantageous.

Pearse et al. (2001) found that 23% of painted turtles (Chryse-

mys picta) used sperm that had been stored as long as three

years to fertilize the whole or part of their clutches, despite

re-mating each breeding season. They suggested that females

probably re-mate for reasons other than the acquisition of ga-

metes for fertilization, such as to increase genetic diversity of

offspring. The effect of stored sperm on fertility and/or hatch-

ing success of across-year clutches is contradictory, with no

significant change in some species (Pearse et al., 2001, 2002),

but a decrease in others, suggesting sperm depletion (Gist

and Jones, 1989). In other reptiles, sperm storage may involve

male sperm competition, or also, females may be able to con-

trol paternity of their offspring by a selective use of sperm

(Olsson et al., 1997). Moreover, through sperm storage, female

turtles may receive the possible benefits of multiple paternity

over a long term period. A recent assessment of hatchling

success in multiple sired clutches, however, failed to find

any correlation betweenmultiple paternity and clutch fitness,

suggesting that main benefits of multiple paternity are prob-

ably indirect, such as the increase of genetic variation among

offspring (Pearse et al., 2001; Lee and Hays, 2004). Finally,

stored sperm may simply serve as a ‘‘reserve’’ in case of low

availability of males.

The range of the freshwater pond turtle, Emys orbicularis

extends from north Africa to eastern Europe and central Asia,

as far as the Aral sea (Iverson, 1992; Fritz, 2001). This species

is threatened throughout its range and has suffered popula-

tion declines, mainly due to habitat disturbance (degradation

and fragmentation). In southern areas, the species has a long

annual reproductive period and females may be courted by

more than one male within a season (Rovero et al., 1999).

Courtship has been observed as early as autumn, but the

main mating period occurs in spring, from March to June.

Copulations always occur underwater (Rovero et al., 1999).

In our study area, females lay 1–2 clutches within a year

(clutch size: 3–10) about 30 days apart, between May and July

(this study).

Genetic data from successive clutches within and between

years can provide important insights into the reproductive

behaviour and mating strategies of freshwater turtles. In this

study, we use six microsatellite markers to test for the occur-

rence and frequency of multiple paternity and sperm storage

in successive clutches of the European pond turtle, E. orbicula-

ris, over two breeding seasons in south-western Spain. Hatch-

ing success of different clutches fertilized by the same male

was compared, in order to determine if the quality of stored

sperm decreases through subsequent reproductive seasons

(i.e. sperm depletion or degradation).
2. Materials and methods

2.1. Sampling

During June and July of 2002 and 2003, turtles were trapped

in two ponds (‘‘Laguna Dulce’’, Pond 1, 60000 m2 and ‘‘Los

Hermanillos’’, Pond 2, 2900 m2) inside Doñana National Park

(SW Spain). Ponds were separated by about 3 km. We cap-

tured 34 males and 35 females in Pond 1 and 11 males and

12 females in Pond 2. Turtles were individually marked by

notching the shell. We selected 11 gravid females in 2002

that were induced to lay their eggs by injection of 0.1–

0.3 ml of oxytocin (Ewert and Legler, 1978). Eggs were

transferred to the laboratory, where they were weighed, mea-

sured, and incubated in moistened vermiculite at constant

temperature (27 �C) until hatching. The females were re-

leased into their respective pond immediately after oviposi-

tion. We frequently recaptured individuals over the course

of this study, and obtained multiple clutches from six fe-

males and single clutches from the remaining five (Table 1).

Blood samples from the 11 gravid females and of 24 addi-

tional males and females were obtained to genotype mothers

and candidate fathers, and to calculate allelic frequencies in

the adult population.

2.2. Microsatellite analysis

Blood samples obtained from adults and the tip of the tail

from live hatchlings (a few days old) were preserved in 100%

ethanol. Genomic DNA was extracted using lithium chloride

method (Gemmell and Akiyama, 1996). For unhatched eggs,

DNA was extracted from embryonic tissue, using phenol–

chloroform (Sambrook et al., 1989). Genotypes were deter-

mined at six microsatellite loci, CmuD51, CmuD62, CmuD93,

CmuD114, CmuD88, CmuD87, specifically designed for the

bog turtle, Glyptemys muhlenbergii (King and Julian, 2004). PCRs

were performed in 20 ll reaction volume (2 mM MgCl2, 0.2 lM

of each primer, 1· Taq Buffer, 0.5 units of Taq polymerase,

0.25 mM of each dNTP and 20–50 ng of DNA template). The

second primer of each pair was end labelled with one of the

three fluorescent labels: yellow (HEX) for CmuD62, CmuD93,

green (TET) for CmuD114, CmuD87 and blue (FAM) for

CmuD88, CmuD51. PCR cycling conditions for CmuD114 and

CmuD88 were as follows: a denaturing step of 2 min at

94 �C, 35 cycles of 30 s at 92 �C, 30 s at 58 �C, 30 s at 72 �C
and a final step of 5 min at 72 �C. For the remaining loci, cy-

cling steps were: a denaturing step of 2 min at 94 �C, 10 cycles

of 30 s at 92 �C, 30 s at 60 �C with a 1 �C decrease at each cycle,

30 s at 72 �C, 24 cycles of 30 s at 92 �C, 30 s at 50 �C, 30 s at

72 �C and a final step of 5 min at 72 �C. PCR products were

analysed on an automatic ABI prism sequencer (ABI 310).

For each sample, 1–4 ll of PCR product was diluted in 90 ll

of water. Two microlitres of dilution was mixed with 12 ll of

formamide plus 0.5 ll of internal size standard (red colour –

TAMRA 350 bps) and denatured 3 min at 95 �C. Data collection

and analysis, as well as automated scoring of the alleles for

each sample, were performed using GeneScan 3.1.2 Analysis

software (Perkin–Elmer). Tabulation of data for each locus

was conducted with the ABI PRISM Genotyper 2.5 software

(Perkin–Elmer).



Table 1 – Emys orbicularis – clutch data for each female (sampling year, clutch name and size, number of offspring genotyped), inferred paternal alleles from six
microsatellite loci, occurence of multiple paternity (MP) in two ponds (1 and 2) in south-western Spain

Female Clutch data Inferred paternal alleles Males

Year Name Size Gtp MP CmuD51 CmuD62 CmuD93 CmuD114 CmuD88 CmuD87

Pond 1

1689 2003 I 6 5 267, 271 188 227, 231 120, 132 145 and/or149 233 or 229, 245 D1

879 2002 F 6 6 267, 271 188 and/or 192 227, 231 128, 132 145, 149 233 or 229, 245 D1

AJ 7 7 267 (or 287), 271 188, 192 227, 231 128, 132 145, 149 233 or 229, 245 D1

2003 E 6 6 255, 283 188, 200 239, 255 124, 128 141, 159 229, 233 D2

999 2002 Ai 5 5 255, 283 188, 200 255 124, 128 141, 159 233, 249 D2

2003 M 6 4 255 (or 271), 283 172 and/or 188 239, 255 124, 128 141, 159 233, 249 D2

1175 2002 Z 7 3 271, 275 184 and/or 188 227, 235 132 175 229, 233 or 237 D3

AL 8 7 271, 275 184 and/or 188 227, 235 112, 132 149, 175 233 and/or 237 D3

2003 L 7 3 271, 275 184 and/or 188 227, 235 112, 132 149, 175 233 and/or 237 D3

1519 2002 AK 5 5 263, 267 180, 192 239, 251 128 and/or 132 149, 171 233, 245 D4

2003 N 7 6 263, 267 180, 192 239, 251 128 and/or 132 149, (163 or)171 233, 245 D4

1159 2002 H 8 8 263, 283 196, 184 or 188 243, 251 132 145, 155 233, 241 D5

1241 2002 AM 8 7 255, 279, 283 188 227, 239 120, 124 159 237 D6

Pond 2

1305 2003 C 10 6 255, 275 184, 192 227, 231 120, 136 163, 171 233, 241 H1

1599 2002 A 10 8 255, 275 184, 192 227, 231 120, 136 163, 171 241 H1

AG 3 3 255, 275 184, 192 227, 231 120, 136 163, 171 241 H1

2003 H 6 6 271, 275 180, 184, 192 235 132, 144 137, 171 225, 245 H2

1564 2002 C 7 4 271, 275 184, 192 235 132, 144 137, 171 (or 167) 225, 245 H2

2003 B 9 9 X 271, 243, 283 184, 188 235 (or 255), 231, 251 132 137, 145, 179 225, 245, 241 H2 + H3

1556 2002 AH 6 6 X 271, 259, 287 184,192, 188 235, 227,231 132, 128 137, 171, 155 225, 245, 237 H2 + H4

And/or = hatchling has the same alleles as the mother.
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2.3. Statistical analysis

Allelic frequencies, heterozygosities (both observed and ex-

pected) were calculated using the program GENETIX for 35

individuals (n = 26 from Pond 1 and n = 9 from Pond 2). Locus

conformance to Hardy–Weinberg equilibrium and heterozy-

gote deficiency was assessed with exact tests implemented

in GENEPOP 3.1 (Raymond and Rousset, 1995) using specified

Markov chain parameters of 5000 dememorization steps fol-

lowed by 500 batches of 2000 iterations per batch. Significance

levels for multiple comparisons of loci across samples were

adjusted using a sequential Bonferroni correction (Rice,

1989). Tests for linkage disequilibrium were also performed

at all pairs of loci using GENEPOP. Null allele frequencies were

estimated with both CERVUS 2.0 (Marshall et al., 1998) and

Microchecker (Van Oosterhout et al., 2004).

In addition, we tested whether hatching success (number

of hatched eggs/number of incubated eggs) differed in subse-

quent clutches of a particular female, when sired by the same

or different males. The difference between hatching rate in

the first clutch and hatching rate in the second clutch was

used as the dependent variable in ANOVA. The average values

of hatchling mass (g) and carapace length (mm) per clutch

were compared among the first and second clutches of the

individual females through ANOVA. Normality of these vari-

ables and homogeneity of variances of the groups were previ-

ously confirmed after Kolmogorov–Smirnov test and Levene

test, respectively.
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Fig. 1 – Allelic frequencies at six microsatellite loci determined 

and Pond 2 (dark grey, n = 28) of the Doñana National Park.
2.4. Paternity assessment

Paternal alleles were deduced from the comparison of both

maternal and offspring genotypes. We assumed that clutches

with more than two paternal alleles were fathered by more

than one male. A third paternal allele appearing in only one

offspring at one locus was classified as the result of allelic

mutation. To assess the suitability of our loci for parentage

analysis, expected heterozygosity and average exclusion prob-

abilities were calculated using the ‘‘allele frequency’’ module

in the program CERVUS 2.0 (Marshall et al., 1998). The parent-

age analysis module available in CERVUS 2.0 was also used to

calculate an assignment success of candidate parents to the

offspring. For each offspring tested, parentage is assigned to

themost-likely candidate parentwith two pre-determined lev-

els of confidence, referred to as relaxed (80%) and strict (95%).

For example, any most likely candidate parent with a D score

exceeding the critical D score for 95% confidence (estimated

by simulation) is awarded parentage with 95% confidence.

3. Results

3.1. Genetic background

Relatively high genetic variability was observed among the

individuals at all loci (mean number of alleles = 9), with amax-

imum number at CmuD51, where 11 alleles were observed

(Fig. 1). Expected heterozygosities varied between 0.760 and
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Fig. 2 – Hatching rate, average values of hatchling carapace

length and hatchling mass in first and second clutches of a

same female.
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0.882 with a mean of 0.812. Probability tests indicated that the

total adult population was in Hardy–Weinberg equilibrium at

all loci after sequential Bonferroni corrections (p > 0.01), with

no evidence of heterozygote deficiency in any of the samples

(p = 0.73 in Pond 1 and p = 0.93 in Pond 2). Non-amplifying al-

leles could generally lead to mistaken conclusions and this

is particularly important in parentage analyses (Pemberton

et al., 1995). Null allele frequencies were null or very low in

all loci, with highest values calculated with CERVUS in

CmuD51 (2.8%) and CmuD114 (2.9%). Only one linkage disequi-

librium, out of the 15 pair comparisons, was found between

CmuD51 and CmuD87, but these loci are probably not physi-

cally linked, because linkage disequilibrium may occur by

chance only or in genetically heterogeneous populations.

The combined paternity exclusion probability with one lo-

cus and one known parent varied between 0.539 and 0.743,

and was 0.997 when all loci were used. Parentage assignation

success was of 100%, at both 80% and 95% confidence levels

and at all loci combined. We also found two offspring lacking

maternal alleles at locus CmuD51 (AL5, AH3). These results

may be due to a mutation of one of the maternal alleles, as

these offspring were from the same nest. A similar mutation

at the same locus was previously described in Testudo graeca

(Roques et al., 2004).

3.2. Paternity analysis and internesting strategy

Multiple paternity was found in only two out of the 20

clutches or in two of the 11 females (Table 1), from which off-

spring displayed three paternal alleles at more than four loci

(clutch B, 1564 and clutch AH, 1556; see Table 1). Therefore, a

single male usually fathered all of the hatchlings in a clutch.

Analyses of paternal alleles in successive clutches within a

year indicated that both seasonal clutches were fertilized by

the same male sperm (females 879, 1175 and 1599) (Table 1).

Similarly, paternal alleles of clutches in 2002 and 2003 indi-

cated that the second year clutches of four females were fer-

tilized by the first year male (females 999, 1175, 1519 and 1564)

(Table 1), and a different male sired the second year clutch of

three females (females 879, 1564 and 1599). From the inferred

paternal alleles, we found that one of the two clutches with

multiple paternity (female 1564) involved stored sperm from

the male of the previous year (H2) plus sperm from another

mating (H3). In this case, the allelic contribution of the stored

sperm (H2) was much less (16.6%) than the one from the latest

mating. Also, clutches H (female 1599) and AH (female 1556)

were partly (whenmultiple paternity occurred) or entirely fer-

tilized by male H2.

3.3. Hatching success, hatchling quality and paternal
contribution

Comparing hatching rate in successive clutches of a particu-

lar female, we observed significant differences between sub-

sequent clutches sired by the same or another father

(F1,7 = 10.3, p = 0.01). Hatching rate was lower in the second

clutch if sired by the same male than if sired by another male

(Fig. 2). Hatchling mass (F1,8 = 16.5, p = 0.004) and carapace

length (F1,8 = 6.31, p = 0.036) were significantly lower in second

clutches when sired by the same male (Fig. 2).
4. Discussion

4.1. Sperm storage

In this study, the same paternal alleles occurred in 100% and

58% of successive clutches of individual females, respectively

within and between years, suggesting that E. orbicularis fre-

quently stores sperm and uses it to fertilise subsequent



clutches, both within and across breeding seasons. The alter-

native is that females show fidelity to specific males but this

is unlikely because pair-bonds are not known to occur in tur-

tles (Galbraith, 1993; Pearse and Avise, 2001). Moreover, in a

study of mating behaviour of an Italian population, most

males mounted more than one female and most females

were mounted by different males (Rovero et al., 1999). There-

fore, the use of stored sperm is a common strategy for the

study population at least.

One benefit of sperm storage for females is to ensure fertil-

ization of eggs in spite of asynchronous male and female

reproductive cycles (Pearse and Avise, 2001). The main mating

period of E. orbicularis is in spring and the number of clutches

that females may lay per season is constrained by the length

of the nesting season. Therefore, starting egg maturation

early would enable a female to lay a higher number of

clutches within a season. Sperm storage within the same

breeding season is common in most turtle species and has

generally been viewed as a mechanism that increases the

number of clutches per year (Pearse et al., 2001; Roques

et al., 2004). Alternatively, the percent of reproductive E. orbic-

ularis females was very small in years of drought (Keller,

1997). If low mating success was low following a particularly

bad year, then the use of stored sperm would ensure the fer-

tilization of eggs.

Use of stored sperm, however, reduces fitness of E. orbicu-

laris. Hatching rate, hatchling mass, and carapace length are

reduced if successive clutches are sired by the same male.

Stored sperm may be insufficient in number or may deterio-

rate over time. This result is congruent with the decline in fer-

tility observed in the diamond terrapin, Malaclemys terrapin,

following isolation of females from males for a year (Goin

et al., 1978). Some recent studies, however, have observed that

clutches fertilized in different years by stored sperm did not

decrease in fertility (Palmer et al., 1998; Pearse et al., 2001).

For example, in painted turtles, females used stored sperm

for up to three years without significant differences in hatch-

ing success among subsequent clutches (Pearse et al., 2001).

Therefore, as this strategy reduces reproductive success in

E. orbicularis, it is not clear if any compensating benefits are

obtained from storing sperm. Long sperm storage has been

described in other turtle species up to three years in the

painted turtles Chrysemys picta (Pearse et al., 2001) and up to

six months in the soft-shelled turtle, Lissemys punctata punc-

tata (Sarkar et al., 2003). One explanation for the occurrence

of sperm storage is an unequal sex ratio and/or the non-avail-

ability of potential mates. For E. orbicularis however, opportu-

nities for mating are not likely to be limited, given the

comparable number of males and females at our study sites.

On the other hand, many observations indicate that energetic

costs may be high during mating. Frequent mounting with

different males, long mating duration (up to three days) and

consistent hierarchies and aggression among males suggests

mating may be costly for both sexes (Rollinat, 1934; Rovero

et al., 1999). The occurrence of sperm storage in our popula-

tion may therefore indicate mating and/or fertilization pro-

cess is costly, either because of low mating success

(mounting does not necessarily translate in effective copula-

tion), or because energetic costs during copulation may be

high. Thus, when females do not succeed in acquiring new
sperm by mating, they may simply use ‘‘old stored sperm’’,

despite reduction in reproductive output.

4.2. Multiple paternity

Our genetic data indicated that multiple paternity is rare in E.

orbicularis and that 90% of clutches have alleles of only one

male. In general, the incidence of multiple paternity is highly

variable and not related to clutch size (Pearse and Avise,

2001). Species such as marine turtles generally exhibit high

frequencies of multiple paternity (Lepidochelys kempii, Kichler

et al., 1999; Caretta caretta, Moore and Ball, 2002), although

in Chelonia mydas populations with both low (9%; Fitzsim-

mons, 1998) and high frequencies (Ireland et al., 2003; Lee

and Hays, 2004) were found. Several direct benefits of multiple

paternity have been proposed including the transfer of nutri-

ents in the seminal fluids, the ability to fertilize large

clutches, and to provide insurance of male fertility (Pearse

and Avise, 2001), but such hypotheses have rarely been tested

empirically. Among the few existing studies, most failed to

demonstrate direct benefits of multiple paternity and did

not find any relationship between multiple sired clutches

and hatchling characteristics (Pearse et al., 2001, 2002; Lee

and Hays, 2004). Therefore, apart from the indirect benefit

of increasing genetic variation among offspring, reproductive

advantages of multiple paternity in turtles still remain un-

clear and may be subtle. In our study, multiple paternity

was detected twice (Table 1) and was not correlated with

either higher clutch size or higher hatching success. The

low incidence of multiple paternity found in our E. orbicularis

population may be a residual consequence of the capacity of

storing viable sperm for subsequent clutches. The low fre-

quency of multiple paternity in our study underscores the

point that mating systems that seem evident from observa-

tional data (e.g. multiple mounting observed in an Italian pop-

ulation by Rovero et al., 1999) may not correspond to what

actually happens (e.g. mainly single paternity).

Sperm storage has also been viewed as an additional

mechanism of mate choice if females can detect variation

in sperm quality (Pearse and Avise, 2001). Although our sam-

ple size is relatively low, we cannot rule out the possibility of

differences in sperm quality or quantity of different males.

Both multiple sired clutches in this study involved the same

male (H2), who also sired the majority (57%) of the clutches

genotyped in pond 2 (Table 1). As both cases of multiple pater-

nity detected were associated with the same male, we think

that H2 was a ‘‘best quality’’ male. He could have had high

sperm viability or simply higher sperm production, which al-

lowed females to store his sperm longer than the sperm of

other males. Sperm competition via sperm storage may thus

occur in this species, and females may use one or occasion-

ally more than one male sperm, when a new mate of ‘‘high

quality’’ is found to fertilize subsequent clutches.

4.3. Implications for conservation

E. orbicularis is a declining species throughout its European

range, mainly as a consequence of habitat disturbance and

climate change. It is included in IUCN Red List of Threatened

Species in the category ‘‘lower risk/near threatened and



declared ‘‘strictly protected’’ by Bern Convention. Gravid fe-

males as well as nest or neonate survival are the life history

stages most critical to successful recruitment (and therefore

to favour population stability) in freshwater turtle popula-

tions (Spinks et al., 2003). Our results suggest that factors

associated with mating strategies may also play an important

role in the maintenance of populations. Frequent sperm stor-

age and single paternity in our E. orbicularis population have

possible negative implications for its future conservation.

First, because males are probably not a limiting factor, the fre-

quent use of sperm storage may indicate mating process

within ponds is costly and/or not often successfully per-

formed, and that using stored sperm from previous mating

is an alternative way of fertilizing eggs in successive clutches.

Second, the association between sperm storage and sperm

depletion or deterioration implies that the mating success of

this population relies on a ‘‘risky’’ mating strategy, given that

females have reduced reproductive output by using ‘‘old’’

male sperm. Therefore, an equal sex-ratio might not be suffi-

cient to optimise the reproductive output. In very threatened

populations, management strategies should aim to enhance

effective copulations in order to increase the reproductive

output of females. Methods could include increasing the sex

ratio towards males, or even avoiding male competition with

the isolation of mating pairs to favour effective copulation.

Mating systems have important implications for effective

population size, level of inbreeding, and genetic diversity

within and among populations. Multiple paternity is rare in

E. orbicularis in south-western Spain, while it was more fre-

quent in other turtles (Pearse and Avise, 2001; Ireland et al.,

2003; Lee and Hays, 2004; Roques et al., 2004). This means that

this population may also lack the advantages associated with

multiple paternity, such as an increased effective population

size and higher genetic variability (Sugg and Chesser, 1994).

In general, studies combining genetic, and observational,

demographic and behavioural data may open new perspec-

tives on the mating systems of freshwater turtles. Such

studies could also provide important insights into the conser-

vation of E. orbicularis and may be particularly relevant for the

recovery of the species in geographic areas (e.g. Central Eur-

ope, Italy and southern France) where populations are small

and declining.
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