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Summary 

Long-chain polyunsaturated fatty acids (LC-PUFA) have been identified as essential 

compounds for common octopus (Octopus vulgaris), but precise dietary requirements 

have not been determined due in part to the inherent difficulties of performing feeding 

trials on paralarvae. Our objective is to establish the essential fatty acid (EFA) 

requirements for paralarval stages of the common octopus through characterisation of 

the enzymes of endogenous LC-PUFA biosynthetic pathways. In this study we isolated 

a cDNA with high homology to fatty acyl desaturases (Fad). Functional characterisation 

in recombinant yeast showed the octopus Fad exhibited !5 desaturation activity towards 

saturated and polyunsaturated fatty acyl substrates. Thus, it efficiently converted the 

yeast’s endogenous 16:0 and 18:0 to 16:1n-11 and 18:1n-13, respectively, and 

desaturated exogenously added PUFA substrates, 20:4n-3 and 20:3n-6, to 20:5n-3 

(EPA) and 20:4n-6 (ARA), respectively. Although the !5 Fad enables common octopus 

to produce EPA and ARA, the low availability of its adequate substrates 20:4n-3 and 

20:3n-6, either in the diet or by limited endogenous synthesis from C18 PUFA, might 

indicate that EPA and ARA are indeed EFA for this species. Interestingly, the octopus 

!5 Fad can also participate in the biosynthesis of non-methylene interrupted FA, PUFA 

that are generally uncommon in vertebrates but that have been found previously in 

marine invertebrates including molluscs, and now also confirmed to be present in 

specific tissues of common octopus. 
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Introduction 

The common octopus (Octopus vulgaris, Cuvier 1797) is a prime candidate for 

diversification of marine aquaculture and extensive research efforts have been devoted 

over the last decade to investigate several aspects of octopus culture including 

husbandry (Iglesias et al., 2006), reproduction (Estefanell et al. 2010; Otero et al. 2007; 

Wodinsky 2008) and nutrition (Navarro and Villanueva 2000, 2003; Quintana 2006; 

Villanueva et al. 2009). Although considerable progress has been made and on-growing 

wild-captured octopus in floating cages is now possible (Iglesias et al. 2007), a major, 

yet unresolved, problem in octopus culture is the high mortality of paralarvae, early 

pelagic life stages, which massively die during metamorphosis to benthic life stages 

and, consequently, the octopus life cycle in captivity has not yet been closed. 

Intensive investigations have been undertaken to elucidate the causes of high 

mortalities encountered during the paralarval stages of common octopus. Among them, 

nutritional studies have emphasised the importance that some dietary components 

including proteins and amino acids (Villanueva et al. 2004), essential and non-essential 

elements (Villanueva and Bustamante 2006) and vitamins (Villanueva et al. 2009) have 

for early life-cycle stages of common octopus. Furthermore, the lipid requirements of 

octopus paralarval stages were investigated by Navarro and Villanueva (2000, 2003), 

who concluded that increased polar lipids and cholesterol are required in the diet. 

Comparing the fatty acid (FA) profiles of enriched Artemia with those of crab zoeae, a 

natural prey used with relative success in paralarval cultures of common octopus 

(Villanueva 1994, 1995), it was suggested that octopus paralarvae have a high 

requirement for specific polyunsaturated fatty acids (PUFA), and that suboptimal 

dietary n-3 PUFA levels, stemming from the use of Artemia, might partly explain the 

low performance during early culture stages (Navarro and Villanueva 2003). These 
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results, along with the well-known importance of PUFA during early life-cycle stages of 

organisms (Innis et al. 1999; Lauritzen et al. 2001; Monroig et al. 2009; Watts et al. 

2003), has focussed interest in determining essential fatty acid (EFA) requirements 

during early life stages of common octopus. 

The specific FA that can satisfy the EFA requirements in a particular species 

depends upon the ability for endogenous biosynthesis of PUFA through bioconversion 

of dietary FA, which in turn is dependent on the complement of enzymes responsible 

for such conversions (Bell and Tocher 2009). In vertebrates, the so-called elongases of 

very long-chain fatty acids (Elovl) and fatty acyl desaturases (Fad) have been identified 

as key enzymes involved in the conversion of the C18 EFA, linoleic (LOA, 18:2n-6) and 

"-linolenic (ALA, 18:3n-3) acids, to the physiologically active long-chain PUFA (LC-

PUFA) arachidonic (20:4n-6, ARA), eicosapentaenoic (20:5n-3, EPA) and 

docosahexaenoic (22:6n-3, DHA) acids. Elovl account for the condensation of malonyl-

CoA with activated fatty acyl chain resulting in a net 2C elongation of the preexisting 

FA (Jakobsson et al. 2006). Fad enzymes introduce unsaturation (a double bond) in fatty 

acyl chains at C6 (!6 Fad) or C5 (!5 Fad) from the carboxyl group. Recently, a Fad 

isolated from the teleost Siganus canaliculatus has been found to have !4-desaturation 

activity, so far appearing a unique case of such activity among vertebrates (Li et al. 

2010). In vertebrates the LC-PUFA biosynthetic pathway has been extensively 

investigated and a number of genes encoding either Elovl or Fad proteins have been 

characterised, particularly from fish, which are the primary source of n-3 LC-PUFA in 

the human diet. Among non-vertebrates, the eukaryotic protist Thraustochytrium sp. 

(Qiu et al. 2001) and the invertebrate (nematode) Caenorhabditis elegans (Beaudoin et 

al. 2000; Watts and Browse 2002) represent some of the few examples where Fad- and 
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Elovl- genes have been studied. However, as far as we are aware, neither desaturases 

nor elongases have been previously isolated and characterised from molluscs. 

Our overarching objective is to determine EFA requirements for paralarval 

stages of the common octopus, so balanced diets can be formulated to improve survival 

and development in captivity. Due to the difficulties in conducting feeding trials with 

octopus paralarvae, alluded to above, the aim of the present study was to investigate 

EFA requirements by characterising Fad and Elovl enzymes responsible for the LC-

PUFA biosynthetic pathway in this species. Here we report on the molecular cloning 

and functional characterisation of a cDNA encoding a putative Fad from the common 

octopus. The distribution of Fad mRNA along with fatty acid profiles were determined 

in tissues of adult octopus in order to identify the sites of important metabolic activity.  

 

Materials and methods 

Tissue samples 

Two (male and female) common octopus adult individuals (!1.5 kg) captured 

through artisanal fisheries along the Mediterranean East Coast in Spain, were 

transferred alive to the facilities of the Instituto de Acuicultura Torre de la Sal, cold 

anesthetised, and sacrificed by direct brain puncture. Tissues including nerve, 

nephridium, hepatopancreas, brain, digestive gland, gill, muscle, heart and gonad were 

sampled and immediately frozen at -80 ºC until further analysis. 

Desaturase cDNA cloning 

Total RNA was extracted from octopus tissues using TRIzol® reagent (Gibco 

BRL, Grand Island, NY, USA). First strand cDNA was synthesised using a Verso™ 

cDNA kit (ABgene, Rockford, IL, USA) primed with random hexamers. In order to 

obtain the first fragment of Fad cDNA, the amino acid (aa) sequences of Mus musculus 
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FADS1 (gb|BAB69894.1|), Danio rerio !6!5 bifunctional Fad (gb|AAG25710.1) and 

desaturases from the invertebrates Schistosoma japonicum (emb|CAX72705.1|) and 

Saccoglossus kowalevskii (gb|XP_002736866.1|) were aligned using BioEdit v5.0.6 

(Tom Hall, Department of Microbiology, North Carolina State University, USA). 

Conserved regions were used for in silico searches of mollusc expressed sequence tags 

(EST) using NCBI tblastn tool (http://www.ncbi.nlm.nih.gov/). Three EST from the 

Pacific oyster Crassostrea gigas (GenBank accession numbers CU998119.1, 

AM856065.1 and AM855620.1) were identified displaying high homology with Fad 

encoding genes. C. gigas EST alignment allowed the design of degenerate primers 

UNID5F (5’-CAYTAYGCWGGWCARGAYGC-3’) and UNID5R (5’- 

ATYTGRAARTTVAGRTGWCC-3’) that were used for polymerase chain reaction 

(PCR) using GoTaq® Colorless Master Mix (Promega, Southampton, UK) using brain 

cDNA as template. The PCR consisted of an initial denaturing step at 95 ºC for 2 min, 

followed by 35 cycles of denaturation at 95 ºC for 30 s, annealing at 51 ºC for 30 s, 

extension at 72 ºC for 1 min 10 s, followed by a final extension at 72 ºC for 5 min. The 

PCR fragment was sequenced at the DNA Sequencing Service of the IBMCP-UPV 

(Valencia, Spain) and specific primers designed for 5' and 3' rapid amplification of 

cDNA ends (RACE) PCR (FirstChoice" RLM-RACE kit, Ambion, Applied Biosystems, 

Warrington, UK) to produce full-length cDNA. Details of all primers used for RACE 

PCR are given in Table 1. 

For 3’RACE PCR, a positive fragment was obtained by two-round PCR. The 

first round PCR was performed using the gene-specific sense primer OVD5F1 and the 

adapter-specific 3’RACE OUTER primer, with an initial denaturing step at 95 ºC for 2 

min, followed by 32 cycles of denaturation at 95 ºC for 30 s, annealing at 55 ºC for 30 s, 

extension at 72 ºC for 1 min 45 s, followed by a final extension at 72 ºC for 5 min 
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(GoTaq® Colorless Master Mix, Promega). First round PCR products were used as 

template for nested PCR with primers OVD5F2 and 3’RACE INNER in a 32-cycle 

reaction under the same thermal conditions as above. For 5’RACE PCR, a similar two-

round approach was followed with first round PCR performed with primers 5’RACE 

OUTER and OVD5R1, with an initial denaturating step at 95 ºC for 1 min, followed by 

32 cycles of denaturation at 95 ºC for 30 s, annealing at 55 ºC for 30 s, extension at 72 

ºC for 2 min, followed by a final extension at 72 ºC for 5 min (GoTaq® Colorless 

Master Mix, Promega). First round PCR product was then used as template for nested 

PCR with primers 5’RACE INNER and OVD5R2, with thermal conditions as above 

during 35 cyles. RACE PCR products were cloned into pGEM-T Easy Vector and 

sequenced as above. 

Tissue distribution of desaturase mRNA transcripts 

Expression of the octopus putative Fad was determined in adult tissues by RT-

PCR. Total RNA from nerve, nephridium, hepatopancreas, brain, digestive gland, gill, 

muscle, heart, and female and male gonads was extracted as described above, and 1 #g 

of total RNA was reverse transcribed into cDNA (M-MLV reverse transcriptase, 

Promega). In order to determine Fad expression, the tissue cDNAs were used as 

templates in PCR consisting of a denaturating step at 95 ºC for 1 min, followed by 35 

cycles of denaturation at 95 ºC for 30 s, annealing at 60 ºC for 30 s, extension at 72 ºC 

for 30 s, followed by a final extension at 72 ºC for 5 min (GoTaq® Green Master Mix, 

Promega). Additionally, the expression of the housekeeping !-actin was determined to 

check the cDNA integrity. Primers used for RT-PCR are shown in Table 1. 

Sequence and phylogenetic analyses 

An alignment of the deduced aa sequence of the newly cloned O. vulgaris Fad 

cDNA with other desaturases including mammalian !5 (FADS1) and !6 (FADS2), the 
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bifunctional !6/!5 from zebrafish, and the nematode C. elegans !5 (FAT-4) was 

performed using ClustalW (BioEdit). The aa sequence identity between Fad-like 

proteins was compared by the EMBOSS Needle Pairwise Sequence Alignment tool 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Phylogenetic analysis of the aa 

sequences of Fad from common octopus and other organisms including molluscs was 

performed by constructing a tree using the Neighbour Joining method (Saitou and Nei 

1987), with confidence in the resulting tree branch topology measured by bootstrapping 

through 10000 iterations. Additionally, the phylogenetic tree included some stearoyl 

CoA desaturase (Scd) sequences, another type of membrane-bond desaturase likely to 

be present in molluscs.  

Functional characterisation of octopus desaturase by heterologous expression in 

Saccharomyces cerevisiae 

PCR fragments corresponding to the open reading frame (ORF) of the putative 

desaturase were amplified from octopus brain cDNA using the high fidelity Pfu Turbo 

DNA polymerase (Stratagene, Agilent Technologies, Cheshire, UK). A two-round PCR 

approach was used with the first round performed with specific primers OVD5U5F and 

OVD5U3R (Table 1). PCR conditions consisted of an initial denaturing step at 95 ºC for 

2 min, followed by 32 cycles of denaturation at 95ºC for 30 s, annealing at 57 ºC for 30 

s, extension at 72 ºC for 1 min 45 s, followed by a final extension at 72 ºC for 5 min. 

First round PCR products were used as template for the nested PCR with thermal 

conditions described above, and with primers containing restriction sites (underlined in 

Table 1) OVD5VF (HindIII) and OVD5VR (XhoI). The DNA fragments were then 

digested with the corresponding restriction endonucleases (New England BioLabs, 

Herts, UK) and ligated into a similarly restricted pYES2 yeast expression vector 

(Invitrogen, Paisley, UK). The purified plasmids (GenElute™ Plasmid Miniprep Kit, 
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Sigma) containing the octopus desaturase ORF were then used to transform 

Saccharomyces cerevisiae competent cells (S.c. EasyComp Transformation Kit, 

Invitrogen). Transformation and selection of yeast with recombinant pYES2-OVFad 

plasmids, and yeast culture were performed as described in detail previously (Agaba et 

al. 2004). 

In order to test the ability of octopus Fad to introduce double bonds into 

saturated or monounsaturated FA, yeast transformed with pYES2 vector containing the 

octopus desaturase as an insert (pYES2- OVFad) and no insert (control) were grown in 

S. cerevisiae minimal medium-uracil with no exogenously added FA substrates. 

Additionally, the ability of O. vulgaris Fad to desaturate PUFA substrates was tested by 

growing pYES2-OVFad transgenic yeast in medium supplemented with one of the 

following substrates: 18:3n-3, 18:2n-6, 20:3n-3, 20:2n-6, 20:4n-3, 20:3n-6, 22:5n-3 and 

22:4n-6. The FA were added to the yeast cultures at final concentrations of 0.5 (C18), 

0.75 (C20) and 1.0 (C22) mM as uptake efficiency decreases with increasing chain 

length (Zheng et al. 2009). Yeast transformed with empty pYES2 were also grown in 

presence of PUFA substrates as control treatments. After 2-days culture at 30 oC, yeast 

were harvested, washed, and lipid extracted by homogenisation in chloroform/methanol 

(2:1, v/v) containing 0.01% butylated hydroxy toluene (BHT) as antioxidant. 

Docosapentaenoic and docosatetraenoic acids (> 98 – 99 % pure) were purchased from 

Cayman Chemical Co. (Ann Arbor, USA) and the remaining FA substrates (> 99 % 

pure) and chemicals used to prepare the S. cerevisiae minimal medium-uracil were from 

Sigma Chemical Co. Ltd. (Dorset, UK). 

Fatty acid analysis by GC-MS 

FA from the transgenic yeast were analysed by preparing methyl esters (FAME) 

as previously described (Hastings et al. 2001). Briefly, FAME were identified and 
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quantified using a gas chromatograph (GC8000) coupled to an MD800 mass 

spectrometer (ThermoFisher Scientific, Hemel Hempstead, UK). Desaturation 

efficiency from potential substrates including the yeast endogenous saturated FA (16:0 

and 18:0) and the exogenously added PUFA substrates (18:3n-3, 18:2n-6, 20:3n-3, 

20:2n-6, 20:4n-3, 20:3n-6, 22:5n-3 and 22:4n-6) were calculated by the proportion of 

substrate FA converted to elongated FA product as [product area/(product area + 

substrate area)] x 100. When further confirmation of double bond positions was 

required, picolinyl esters were prepared from FAME according to the methodology 

described by Destaillats and Angers (2002) and modified according to Li et al. (2010). 

FAME were also prepared from total lipid extracted from octopus tissues, and analysed 

according to Viciano et al. (2011). 

 

Results 

Octopus desaturase sequence and phylogenetics 

A 1603-bp (excluding polyA tail) full-length cDNA sequence was obtained by 

5’ and 3’ RACE PCR and deposited in the GenBank database under the accession 

number JN120258. It contains an ORF of 1338 bp encoding a putative protein of 445 

aa, a 5’ untranslated region (UTR) of 44 bp and a 3’UTR of 221 bp excluding polyA 

tail. O. vulgaris putative desaturase possesses three histidine boxes HXXXH, HXXHH 

and QXXHH common among Fad, the putative cytochrome b5-like domain, and the 

heme-binding motif, HPGG (Fig. 1).  

The deduced aa sequence from the octopus desaturase cDNA predicts a protein 

that is 49.5-53.3 % identical to several mammalian FADS1 (!5) and FADS2 (!6) 

proteins including human, mouse and rat, and 48.9-51.5 % identical to teleost 

desaturases with various desaturation activities including !4, !5, !6 and bifunctional 
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!6/!5. When compared with non-vertebrate desaturases, octopus desaturase showed 

relatively low identity with Thraustochytrium sp. !5-like desaturases (26.0 %), 

Caenorhabditis elegans !5- (22.8 %) and !6-like desaturases (26.4 %), and relatively 

high identities with Saccoglossus kowalevskii (50.1 %) and Schistosoma japonicum 

(49.0 %) predicted desaturases. Compared to mollusc desaturases, the octopus Fad is 

61.9 % identical to the partial (~368 aa) desaturase sequence from the bivalve 

Crassostrea gigas, and 52.2 % identical to the gastropod Lottia gigantea Fad-like. 

Identities between the octopus Fad and several Scd desaturases including that of L. 

gigantea were below 17 %. 

Functional characterisation 

The octopus putative Fad was functionally characterised by determining the FA 

profiles of transgenic yeast S. cerevisiae expressing the Fad coding region and grown in 

the presence of potential FA substrates. In order to test the ability of octopus Fad to 

introduce double bonds into saturated or monounsaturated FA, the FA profiles of yeast 

transformed with pYES2- OVFad or empty pYES2 (control) and grown in absence of 

exogenously added substrate were compared (Fig. 3A and B). The results confirm that 

octopus Fad is involved in the biosynthesis of monounsaturated FAs. Thus, FA profiles 

of control yeast transformed with empty vector basically consisted of the main 

endogenous FA of S. cerevisiae, namely 16:0, 16:1 isomers (16:1n-9 and 16:1n-7), 18:0, 

18:1n-9 and 18:1n-7 (Fig. 3A). Importantly, pYES2-OVFad transformed yeast were 

found to have two additional peaks identified as 16:1n-11 and 18:1n-13, thus indicating 

a !5-desaturation from 16:0 and 18:0, respectively (Fig. 3B). Conversion rates for 16:0 

and 18:0 were 20 % and 54 %, respectively (Table 2). No activity towards yeast 

endogenous monounsaturated FA 18:1n-9 and 18:1n-7 was detected in transgenic yeast 

containing the octopus Fad (Table 2). 
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In order to assess the role of octopus Fad in PUFA biosynthesis, transgenic yeast 

transformed with the desaturase ORF were incubated with !6- (18:3n-3 and 18:2n-6), 

!5- (20:4n-3 and 20:3n-6), !4- (22:5n-3 and 22:4n-6) and !8-desaturation (20:3n-3 and 

20:2n-6) substrates. The FA composition of the yeast transformed with pYES2 vector 

containing no insert (control) was characterised by having the main endogenous yeast 

FA and whichever exogenously added FA substrate, this result being consistent with S. 

cerevisiae possessing no PUFA desaturation activity (Agaba et al. 2004). The transgenic 

yeast expressing the octopus Fad were able to convert up to 39 % of both 20:4n-3 and 

20:3n-6 into 20:5n-3 (!5,8,11,14,1720:5) and 20:4n-6 (!5,8,11,1420:4), respectively (Table 2; 

Fig. 3C and D). The octopus Fad also exhibited the ability to efficiently convert 20:3n-3 

(!11,14,1720:3) and 20:2n-6 (!11,1420:2) to their corresponding !5-desaturated NMI FA, 

namely !5,11,14,1720:4 and !5,11,1420:3, respectively (Table 2; Fig. 3E and F). These results 

also confirmed that the octopus Fad did not possess #8 desaturation activity. The ability 

of the octopus Fad to produce NMI FA was further confirmed by the results obtained 

with 18:3n-3 (!9,12,1518:3) and 18:2n-6 (!9,1218:2). Thus, small amounts of desaturated 

products were detected (Table 2), but these were confirmed as being NMI #5 

desaturated products, !5,9,12,1518:4 and !5,9,1218:3, respectively, rather than #6 products. 

No desaturated products of 22:5n-3 and 22:4n-6 were detected indicating the octopus 

Fad possessed no !4-desaturation activity. 

Tissue distribution of octopus desaturase mRNA transcripts 

Tissue expression of common octopus desaturase was studied by RT-PCR on 

cDNA samples obtained from a range of tissues (Fig. 4). Transcripts of the target gene 

were detected in all tissues analysed, with gonads, brain, digestive gland and gill 

showing high expression signals. Low expression signals were detected in nerve, 
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nephridium, heart, muscle and hepatopancreas, the latter regarded as a major site for 

lipid metabolism in molluscs (Fig. 4). 

Fatty acid composition of octopus tissues 

In order to identify sites of potentially important biosynthesis, FA profiles were 

determined in a series of octopus tissues where expression of the !5 desaturase was 

studied (Table 3). Potential !5-desaturated FA were detected in all tissues analysed. 

Among monoenes, the presence of 18:1n-13 (or !518:1) was confirmed in all tissues 

analysed, with female and male gonad showing the highest percentages (1.9 and 1.2 %, 

respectively). Among polyunsaturates, EPA (20:5n-3 or !5,8,11,14,17 20:5) and ARA 

(20:4n-6 or !5,8,11,14 20:4) showed relatively high contents in all tissues analysed. Thus, 

EPA was most abundant in heart (19.9 %), gill (16.8 %) and nerve (15.8 %), whereas it 

only accounted for 0.2 % of total fatty acids in digestive gland. In contrast, ARA was 

most abundant in brain (15.2 %) and male gonad (15.2 %), followed by gill (12.9 %) 

and female gonad (12.9 %). The !5-desaturated FA, EPA and ARA, can be 

subsequently converted by Elovl or other desaturases to FA such as 22:5n-3, 22:6n-3 

(DHA) and 22:5n-6, also identified in octopus tissues. Particularly abundant in all 

tissues was DHA, with eye (27.6 %) and heart (26.4 %) showing the highest 

concentrations (Table 3). Small amounts of 20:2, 20:3 and 22:2 NMI were found in 

nephridium, male gonad, eye and digestive gland (Table 3). Whereas the small amount 

of the solutes meant it was not possible to unequivocally confirm the double bond 

structure for 20:2 and 22:2 NMI, the 20:3 NMI was confirmed as !5,11,14 20:3. 

Dimethylacetals (DMA) of 16 and 18 carbons were also detected as previously 

described (Rosa et al. 2004). 
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Discussion 

In vertebrates the PUFA biosynthesis pathways have been extensively 

investigated, partly because of the critical roles that these compounds play in normal 

growth and development during early life-cycle stages (Innis et al. 1999; Lauritzen et al. 

2001; Monroig et al. 2009). This has led to increased understanding of the biochemical 

and molecular mechanisms involved in the LC-PUFA pathways operating in fish, 

particularly farmed species, which has allowed the formulation of balanced aquafeeds 

tailored to the abilities of different fish species for endogenous biosynthesis. Such a 

strategy can be extended to new aquaculture candidates, especially those such as 

common octopus in which more empirical approaches through dietary trials are 

intrinsically difficult to undertake due to the abovementioned paralarval mortalities.  

    The endogenous FA biosynthetic ability of molluscs has been investigated in the past 

for both terrestrial (van der Horst 1973, 1974; Weinert et al. 1993; Zhu et al. 1994) and 

marine species (Chu and Greaves 1991; de Moreno et al. 1976; Waldock and Holland 

1984; Zhukova 1986, 1991, 2007), and it is now known that it varies among species. 

Whereas the specific genes/enzymes responsible for individual reactions have not been 

characterised in any mollusc species, biochemistry and analytical approaches have 

allowed the identification of some critical activities (Barnathan 2009; Zhukova 2007). 

More specifically, three key enzymes appear to mediate the production and metabolism 

of essential fatty acids in molluscs, those being the elongase and two distinct 

desaturases: the !9- and !5-desaturases (Barnathan 2009; Kornprobst and Barnathan 

2010; Zhukova 2007). The !9-desaturase, encoded by the so-called stearoyl CoA 

desaturase (Scd), is an enzymatic activity universally present in living organisms 

(Castro et al. 2011) including molluscs (David et al. 2005), which introduces the first 

double bond into saturated FAs such as 16:0 and 18:0 producing 16:1n-7 (!916:1) and 
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18:1n-9 (!918:1), respectively. Contrarily, the !5-desaturation is the catalytic activity of 

a Fad, membrane-bond desaturases of a different gene/protein family than that of Scd 

(Guillou et al. 2010), which act predominantly on PUFA substrates introducing a double 

bond in the !x carbon counting from the carboxylic group of the fatty acyl chain. For 

that reason, Fad enzymes have been also termed ‘front-end’ desaturases (Napier et al. 

1999). Below we present evidence that the newly cloned desaturase from the common 

octopus is a Fad-like desaturase with !5 specificity, and represents the first molecular 

proof of the existence of such an enzymatic activity in any mollusc species. 

The newly cloned octopus desaturase possesses all typical features of Fad, 

denoting that these enzymes have conserved functional domains during evolution 

(Sperling et al. 2003). Phylogenetic analysis further supported that the octopus 

desaturase was indeed more closely related to Fad-like than to Scd-like desaturases. 

Previously, phylogenetic analysis of desaturases from 56 eukaryotic genomes had 

identified four functionally distinct subfamilies with the ability to introduce double 

bonds into saturated chains being characteristic of so-called “First Desaturases” (such as 

#9 or SCD) whereas “Front-End Desaturases” (such as Fads) required pre-existing 

double bonds for activity (Hashimoto et al., 2008). Therefore, it was interesting that 

functional characterisation revealed that, despite being phylogenetically a Fad-like or 

front-end desaturase, the octopus desaturase, in addition to desaturation of PUFA 

substrates, was also able to introduce the first double bond into saturated acyl chains. 

The common octopus Fad was clearly demonstrated to be a !5-desaturase, with 

the ability to introduce new double bonds into both saturated FA and PUFA. 

Endogenous FA in yeast including 16:0 and 18:0 were !5-desaturated to 16:1n-11 

(!516:1) and 18:1n-13 (!518:1), respectively, by transgenic yeast expressing the octopus 

Fad. Consistent with the catalytic ability of octopus Fad observed in vitro, the FA 
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profiles of the gastropods Littorina littorea and Lunatia triseriata indicated the 

existence of a !5-desaturase accounting for the production of the monoenes 18:1n-13 

and 20:1n-15 (!5 20:1) (Joseph 1982). Although 20:0 was not assayed in the yeast 

expression system, the high conversion efficiency shown on 18:0 (54 %) may suggest 

that the octopus Fad could have the ability to desaturate 20:0 and produce 20:1n-15. 

However, 20:1n-15 was not identified in the tissue lipids of O. vulgaris in the present 

study. In vertebrates, the ability to introduce the first double bond into a saturated FA 

appears limited to Scd-like desaturases and no Fad-like desaturase has been show to 

possess this activity in teleosts (Hastings et al. 2001; Li et al. 2010; Monroig et al. 2010; 

Zheng et al. 2004, 2005, 2009). An exception to this pattern is the human FADS2 (!6 

Fad), which is reported to have the ability to desaturate 16:0 to sapienic acid (16:1n-10 

or !616:1) in specific tissues such as sebaceous glands (Ge et al. 2003). Thus, the 

octopus Fad might have retained (conserved) the ability to desaturate saturated FA from 

Scd, the likely ancestor of Fad-like genes (López Alonso et al. 2003).  

In addition to the ability to act on saturated FA, the octopus Fad effectively 

desaturated PUFA substrates in position !5. Thus, the results demonstrate that the 

common octopus !5 Fad can participate in the biosynthesis of ARA and EPA from 

20:3n-6 and 20:4n-3, respectively. Although this result suggests that neither ARA nor 

EPA can be regarded strictly as EFA for octopus as they can be biosynthesised 

endogenously, it is only possible (with this #5 activity) from other LC-PUFA 

precursors. Therefore, it does not alter the fact that common octopus probably require 

dietary sources of LC-PUFA, albeit as yet not clearly defined. Data available in the 

literature are apparently controversial and, whereas ARA has been considered as non-

essential for the common octopus (Milou et al. 2006), essentiality of EPA has often 

been suggested (Navarro and Villanueva 2000; Iglesias et al. 2007). The reason why 
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two analogous LC-PUFA (ARA and EPA) might have different essentiality status for 

this species is unclear. However, there is evidence indicating that preformed ARA and 

EPA are indeed required in the diet of the common octopus as their endogenous 

biosynthesis might be limited by the availability of immediate biosynthetic precursors 

20:3n-6 and 20:4n-3. First, the contents of 20:3n-6 and 20:4n-3 in natural and 

experimental diets for octopus are extremely low (Navarro and Villanueva 2000; Seixas 

et al. 2008, 2010), and consequently the endogenous production of ARA and EPA via 

!5-desaturation cannot occur at physiologically significant rates. Second, the 

endogenous production of 20:3n-6 and 20:4n-3 via biosynthesis from C18 PUFA (18:2n-

6 and 18:3n-3) might also be restricted by the absence of critical enzymatic activities. 

As molluscs appear to possess elongases that act on PUFA substrates (Barnathan 2009; 

Kornprobst and Barnathan 2010), we speculate that the endogenous production of 

20:3n-6 and 20:4n-3 is limited due to the lack of desaturases with either !6 activity 

operating on 18:2n-6 and 18:3n-3 prior to elongation or, alternatively, !8 activity acting 

on 20:2n-6 and 20:3n-3 after elongation (Monroig et al. 2011). While the octopus Fad 

did not show !6 or !8 activities, a second Fad could possibly be present. However, this 

may be unlikely, as further Fad encoding genes do not appear to be present in other 

molluscs such as the gastropod Lottia gigantea, whose genome seems to contain a 

single Fad-like gene (http://genome.jgi-psf.org/Lotgi1/Lotgi1.home.html). Moreover, 

the absence of further Fad enzymes would likely explain why DHA is regarded as an 

EFA for the common octopus (Navarro and Villanueva 2000), as either !4-desaturation 

of 22:5n-3, or !6-desaturation of 24:5n-3, are necessary for its biosynthesis, at least in 

vertebrates (Li et al. 2010). While future investigations are necessary to elucidate the 

presence or absence of other desaturation activities critical for the endogenous 

biosynthesis of ARA, EPA and DHA, the abundance in all tissues of these LC-PUFA, 
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especially ARA that is unlikely to be purely of dietary origin, reveals their important 

physiological functions for common octopus. Furthermore, the highest levels of ARA 

generally corresponded to the tissues that showed the highest expression of #5 Fad 

transcript supporting a potential role for this enzyme in the endogenous production of 

ARA. 

Thus, endogenous production of ARA may be one reason supporting the 

retention of !5 desaturase activity in a carnivorous species such as octopus, where 

preformed EPA and DHA are likely to be readily available in the natural diet. In 

addition, however, the octopus !5 Fad might participate in the biosynthesis of non-

methylene interrupted (NMI) FA, a group of compounds with unusual unsaturation 

features occurring in molluscs as well as other marine invertebrates (Barnathan 2009; 

Kornprobst and Barnathan 2010). Typical mollusc NMI FA include !7,1322:2 and 

!7,1522:2. Briefly, their synthesis has been hypothesised to derive from the initial 

desaturation of 16:0 and 18:0 catalysed by a Scd-like desaturase to produce 16:1n-7 and 

18:1n-9, respectively (Barnathan 2009). Subsequent elongase- and !5 desaturase-

mediated reactions account for the synthesis of C20 NMI including !5,1120:2 and 

!5,1320:2, with further elongation to produce !7,1322:2 and !7,1522:2, respectively. 

Although we cannot conclude that the octopus Fad is involved in the production of 20:2 

NMI as potential FA substrates (20:1n-9 and 20:1n-7) were not assayed, our results 

clearly demonstrate that the octopus Fad participates in the biosynthesis of NMI FA 

such as !5,11,14,1720:4 and !5,11,1420:3, compounds found in bivalves (Kawashima and 

Ohnishi 2004; Pirini et al. 2007) and gastropods (Kawashima 2005). In addition, NMI 

FA were detected in tissues of adult octopus, including !5,11,1420:3, 20:2 and 22:2, 

although the precise double bond positions in the latter two could not be unequivocally 

established. The biological functions of NMI FA are not fully understood, but it has 
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been suggested that they play structural and protective roles in cell membranes 

(Barnathan 2009). 

In summary, our results demonstrate that the common octopus expresses a Fad-

like gene that encodes an enzyme with !5 desaturation activity towards saturated FA 

and PUFA substrates. The Fad could participate in the endogenous production of EPA 

and, especially, ARA from other LC-PUFA substrates. In addition the octopus !5 Fad 

participates in the biosynthesis of NMI FA, compounds previously found in a series of 

marine invertebrates, and now also confirmed to exist in specific tissues of common 

octopus. 
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Tables 

Table 1. Sequences of the primer pairs used and accession numbers of the sequences 

used as references for primer design in the cloning of the octopus fatty acyl desaturase 

(Fad) ORF and for RT-PCR analysis of gene expression in octopus tissues. Restriction 

sites for HindIII and XhoI are underlined in OVD5VF and OVD5VR sequences, 

respectively. 

Table 1. Sequences of the primer pairs used and accession numbers of the sequences used as references for primer design in the cloning of the 

octopus fatty acyl desaturase (Fad) ORF and for RT-PCR analysis of gene expression in octopus tissues. Restriction sites for HindIII and XhoI 

are underlined in OVD5VF and OVD5VR sequences, respectively. 

Aim Transcript Primer Primer sequence Accession Noa. 
     

RACE PCR Fad OVD5F1 5’-CCATGCGACCTGTGATATT-3’ JN120258 
  OVD5F2 5’-ATGATTGGTTTACCGGACATC-3’  
  OVD5R1 5’-ATCTCCGTCACTGGGAATTC-3’  
  OVD5R2 5’-GTGGAAAGCACGAAATGCTT-3’  
     

ORF cloning Fad OVD5U5F 5’-CCTGTTTGTTGGTGGATAAGC-3’ JN120258 
  OVD5U3R 5’-ATACACATACACACACACACGC-3’  
  OVD5VF 5’-CCCAAGCTTAAAATGGGAAGAGGCGGAGA-3’  
  OVD5VR 5’-CCGCTCGAGCTATAACATATGATGTGCTTGATA-3’  
     

RT-PCR Fad OVD5F3 5’-AGCCACATGCATTACCAACA-3’ JN120258 
  OVD5R3 5’-CAATATCACAGGTCGCATGG-3’  
 ß-actin OVACTF 5’-CTTGACTCCGGAGATGGTGT-3’ AB053937 
  OVACTR 5’-CGCATTTCATGATGGAGTTG-3’  
     

a GenBank (http://www.ncbi.nlm.nih.gov/) 
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Table 2. Substrate conversions of yeast Saccharomyces cerevisiae transformed with 

pYES2 containing the open reading frame (ORF) of the Octopus vulgairs desaturase. 

Transgenic yeast were grown in presence of endogenous saturated (16:0 and 18:0) and 

monounsaturated (16:1n-7, 18:1n-9 and 18:1n-7) fatty acid (FA) substrates, and the 

exogenously added polyunsaturated FA substrates 18:3n-3, 18:2n-6, 20:3n-3, 20:2n-6, 

20:4n-3, 20:3n-6, 22:5n-3 and 22:4n-6. Results are expressed as a percentage of total 

FA substrate converted to desaturated product. FA are designated using the ‘n-‘ 

nomenclature, except for non-methylene interrupted FA where the ‘!’ nomenclature 

was used. 
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Octopus vulgairs desaturase. Transgenic yeast were grown in presence of endogenous saturated (16:0 and 18:0) and monounsaturated (16:1n-7, 

18:1n-9 and 18:1n-7) fatty acid (FA) substrates, and the exogenously added polyunsaturated FA substrates 18:3n-3, 18:2n-6, 20:3n-3, 20:2n-6, 

20:4n-3, 20:3n-6, 22:5n-3 and 22:4n-6. Results are expressed as a percentage of total FA substrate converted to desaturated product. FA are 

designated using the ‘n-‘ nomenclature, except for non-methylene interrupted FA where the ‘!’ nomenclature was used. 

 
     
 FA substrates Product Conversion rate (%)  

     
     

 Saturates    
 16:0 16:1n-11 20  
 18:0 18:1n-13 54  
 Monounsaturates    
 18:1n-7 !5,11 18:2 0  
 18:1n-9 !5,9 18:2 0  
 Polyunsaturates    
 18:3n-3 !5,9,12,15 18:4 1  
 18:2n-6 !5,9,12 18:3 1  
 20:3n-3 !5,11,14,17 20:4 33  
 20:2n-6 !5,11,14 20:3 19  
 20:4n-3 20:5n-3 39  
 20:3n-6 20:4n-6 39  
 22:5n-3 22:6n-3 0  
 22:4n-6 22:5n-6 0  
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Table 3. Fatty acids and dimethyl acetal (DMA) composition (% of totals) of tissues 

collected from Octopus vulgaris adult individuals. 

 Brain Nephridium Muscle 
Male 
gonad 

Female 
gonad Skin Nerve Eye Hepatopancreas Heart Gill 

Digestive 
gland 

14:0 0.9 0.8 1.3 0.7 3.0 1.2 1.0 0.6 3.3 0.6 0.6 2.0 
15:0 0.1 nd nd nd nd 0.1 nd nd 0.2 nd nd 0.2 
16C DMA 0.5 0.2 0.3 0.1 0.2 0.4 0.5 0.2 0.5 0.2 0.6 0.5 
16:0 16.1 14.0 20.1 13.4 17.9 19.0 19.2 18.0 14.9 13.8 13.3 12.4 
16:1n7 0.4 0.6 1.0 0.9 1.7 0.6 0.6 0.5 4.4 0.7 0.4 3.3 
16:2 0.2 0.2 0.4 0.3 0.3 0.3 0.4 0.2 0.4 0.2 0.3 0.4 
17:0 1.6 2.4 1.9 1.4 1.7 1.9 1.6 1.0 1.3 1.8 1.3 1.4 
16:3 0.2 nd nd 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 
18C DMA 4.9 1.9 2.8 1.9 2.7 4.7 4.5 2.1 3.7 3.4 6.8 5.1 
18:0 11.9 12.8 11.1 7.4 9.7 14.0 10.2 6.4 10.6 12.9 10.0 12.1 
18:1n-13 0.3 0.6 0.2 1.2 1.9 0.2 0.4 1.2 0.1 0.1 0.3 0.2 
18:1n-9 2.0 2.1 3.4 4.3 2.8 2.1 2.7 1.2 3.1 1.5 1.4 3.7 
18:1n-7 1.1 1.9 2.0 1.6 1.4 1.4 1.8 1.4 2.6 1.3 1.1 3.2 
18:3n-3 0.3 nd nd nd nd nd nd 0.1 0.5 0.1 nd 0.6 
18:4n-3 0.1 nd nd nd nd nd nd nd 0.8 nd nd 0.6 
20:0 1.3 0.2 0.3 1.6 2.1 0.4 0.2 0.4 0.4 0.2 0.3 0.9 
20:1n-9 2.3 9.4 3.2 10.5 7.1 2.6 2.5 2.1 0.9 2.4 2.8 2.3 
20:1n-7 0.4 0.3 0.3 0.5 0.5 0.3 0.2 0.2 0.5 0.2 0.3 0.4 
NMI 20:2 nd 1.9 nd nd nd nd nd nd nd nd nd nd 
20:2n-6 0.2 nd nd nd nd nd nd nd nd nd nd 0.2 
NMI 20:3 nd 0.8 nd nd nd nd nd nd nd nd nd nd 
20:3n-6 0.6 0.4 0.4 0.4 0.4 0.3 0.3 0.9 0.5 0.7 0.2 0.7 
20:4n-6 15.2 11.7 7.9 15.2 12.9 12.5 8.1 4.8 10.4 5.5 12.9 11.4 
20:3n-3 nd nd nd nd nd nd 0.1 14.1 0.1 0.1 nd 0.2 
20:4n-3 nd 0.1 0.2 nd nd nd 0.2 0.1 0.4 0.1 nd 14.7 
20:5n-3 11.8 9.9 14.9 7.6 8.0 11.4 15.8 12.1 14.7 19.9 16.8 0.2 
22:0 0.2 nd 0.2 nd 0.2 0.3 0.2 0.1 0.4 nd 0.2 nd 
22:1n-9 1.6 1.8 1.3 2.4 1.3 1.1 1.1 0.5 0.4 0.9 1.9 1.2 
NMI 22:2 nd nd nd 1.7 nd nd nd 0.4 nd nd nd 0.6 
22:4n-6 0.7 1.3 0.8 5.9 1.9 1.2 0.8 0.3 0.5 0.8 1.2 1.1 
22:5n-6  0.9 1.0 1.0 0.8 1.0 1.0 1.0 0.3 0.8 1.0 1.0 0.8 
22:5n-3 0.9 1.2 1.8 1.7 1.6 1.4 1.6 1.0 1.2 2.1 1.7 1.5 
22:6n-3 18.7 19.9 20.7 15.0 14.0 17.4 21.4 27.6 16.4 26.4 21.3 14.0 
             
Total 95.4 97.4 97.4 96.5 94.4 96.0 96.5 98.1 94.2 97.0 97.0 96.1 
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Figures 

 

Fig. 1. Alignment of the deduced amino acid (aa) sequence of the newly cloned !5 fatty 

acyl desaturases from Octopus vulgaris. The aa sequence of the octopus Fad was 

aligned with the Mus musculus FADS1 (gb|NP_666206.1|), the !6/!5 bifunctional 

desaturase from Danio rerio (gb| AAG25710.1|), the fatty acyl desaturase 1 from 

Schistosoma japonicum (emb|CAX72705.1|), the predicted fatty acid desaturase 2-like 

from Saccoglossus kowalevskii (gb|XP_002736866.1|) and the partial Crassostrea gigas 

putative desaturase. Deduced aa sequences were aligned using ClustalW (Bioedit). 

Identical residues are shaded black and similar residues are shaded grey. 

Identity/similarity shading was based on the BLOSUM62 matrix, and the cut-off for 

shading was 70%. The cytochrome b5-like domain is dot-underlined and the three 

histidine boxes (HXXXH, HXXHH and QXXHH) are highlighted with grey squares. 

The asterisks on the top mark the heme-binding motif, HPGG. Conserved regions where 

the degenerate primers UNID5F and UNID5R (see Materials and Methods section) are 

also indicated. 
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Fig. 2. Phylogenetic tree comparing the deduced amino acid (aa) sequence of the newly 

cloned Octopus vulgaris fatty acyl desaturase (Fad) with other !5- and !6-like Fad 

from several organisms. Additionally, the aa sequences of several stearoyl coA 

desaturase (Scd) were included in the analysis. The tree was constructed using the 

Neighbour Joining method (Saitou and Nei 1987) with MEGA4. The horizontal branch 

length is proportional to aa substitution rate per site. The numbers represent the 

frequencies (%) with which the tree topology presented was replicated after 10000 

iterations. 

*Sequences derived from searches in GenBank (C. gigas) or L. gigantea Genome 

Project website (http://genome.jgi-psf.org/Lotgi1/Lotgi1.home.html). 
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Fig. 3. Functional characterisation of the newly cloned Octopus vulgaris fatty acyl 

desaturase (Fad) in yeast (Saccharomyces cerevisiae). The fatty acid (FA) profiles were 

determined from control yeast transformed with pYES2 containing no insert (A). 

Additionally, yeast transformed with pYES2 containing the ORF of the putative Fad 

cDNA as an insert were grown with no substrate (B) or in the presence of one of the 

exogenously added substrates 20:4n-3 (C), 20:3n-6 (D), 20:3n-3 (E) or 20:2n-6 (F). 

Peaks 1-5 in all panels are the main endogenous FA of S. cerevisiae, namely 16:0 (1), 

16:1 isomers (2), 18:0 (3), 18:1n-9 (4) and 18:1n-7 (5). Additionally peaks derived from 

exogenously added substrates (“*”) or desaturation products are indicated accordingly 

in panels B-F. Vertical axis, FID response; horizontal axis, retention time. 
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Fig. 4. RT-PCR analyses showing the tissue distribution of octopus fatty acyl desaturase 

(Fad) mRNA transcripts. Expression of the housekeeping gene %-actin is also shown. 


