696 - The Journal of Neuroscience, January 16, 2008 - 28(3):696 710

Behavioral/Systems/Cognitive

Intrinsic Mechanisms for Adaptive Gain Rescaling in
Barrel Cortex

Marta Diaz-Quesada and Miguel Maravall
Instituto de Neurociencias de Alicante, Universidad Miguel Herndndez de Elche-Consejo Superior de Investigaciones Cientificas, Campus de San Juan,
03550 Sant Joan d’Alacant, Spain

Barrel cortex neuronal responses adapt to changes in the statistics of complex whisker stimuli. This form of adaptation involves an
adjustment in the input- output tuning functions of the neurons, such that their gain rescales depending on the range of the current
stimulus distribution. Similar phenomena have been observed in other sensory systems, suggesting that adaptive adjustment of re-
sponses to ongoing stimulus statistics is an important principle of sensory function. In other systems, adaptation and gain rescaling can
depend on intrinsic properties; however, in barrel cortex, whether intrinsic mechanisms can contribute to adaptation to stimulus
statistics is unknown. To examine this, we performed whole-cell patch-clamp recordings of pyramidal cells in acute slices while injecting
stochastic current stimuli. We induced changes in statistical context by switching across stimulus distributions. The firing rates of
neurons adapted in response to changes in stimulus statistics. Adaptation depended on the form of the changes in stimulus distribution:
in vivo-like adaptation occurred only for rectified stimuli that maintained neurons in a persistent state of net depolarization. Under these
conditions, neurons rescaled the gain of their input- output functions according to the scale of the stimulus distribution, as observed in
vivo. This stimulus-specific adaptation was caused by intrinsic properties and correlated strongly with the amplitude of calcium-
dependent slow afterhyperpolarizations. Our results suggest that widely expressed intrinsic mechanisms participate in barrel cortex

adaptation but that their recruitment is highly stimulus specific.
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Introduction

Adaptation, the accommodation of neuronal responses to ongo-
ing stimulation, occurs across species and sensory modalities.
Often, adaptation reflects adjustments of neuronal stimulus-re-
sponse relationships to the stimulus statistics characteristic of the
current sensory environment: such adjustments can result in an
optimization of information transmission (Shapley et al., 1972;
Shapley and Victor, 1978, 1979; Smirnakis et al., 1997; Wain-
wright, 1999; Brenner et al., 2000; Fairhall et al., 2001; Dean et al.,
2005; Sharpee et al., 2006). Adaptation can occur to changes in
different stimulus statistical properties, including mean, vari-
ance, and correlations (Smirnakis et al., 1997; Muller et al., 1999;
Kvale and Schreiner, 2004; Dean et al., 2005; Hosoya et al., 2005;
Bonin et al., 2006; Nagel and Doupe, 2006; Sharpee et al., 2006)
(for review, see Wark et al., 2007).
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In the barrel cortex, it is established that responses to repeti-
tive stimulation accommodate, a phenomenon hypothesized to
play a role in tactile representations (Simons, 1978; Ahissar et al.,
2000, 2001; Castro-Alamancos and Oldford, 2002; Chung et al.,
2002; Garabedian et al., 2003; Khatri et al., 2004; Webber and
Stanley, 2004, 2006). As in other systems, adaptation is stimulus
specific (Derdikman et al., 2006; Katz et al., 2006). Adaptation to
stimulus statistics is also present in barrel cortex (Garcia-Lazaro
et al., 2007; Maravall et al., 2007). Neurons adjust their coding
properties by rescaling their input—output functions in propor-
tion to the stimulus distribution, a rescaling that maintains the
information that spikes convey about stimulus features (Maravall
et al., 2007).

Intrinsic properties can contribute strongly to adaptation. For
example, in primary visual cortex, slow contrast adaptation relies
on a sodium-dependent slow afterhyperpolarization (sAHP)
(Carandini and Ferster, 1997; Sanchez-Vives et al., 2000a,b); in
salamander retina, calcium-dependent mechanisms and sodium
current inactivation underlie changes in gain during contrast ad-
aptation in different cell types (Kim and Rieke, 2001, 2003; Rieke,
2001). Different mechanisms, underlying contrast adaptation in
different cell types, can have similar effects (Baccus and Meister,
2002; Demb, 2002). Moreover, modeling studies have shown that
certain forms of adaptation can be generic, appearing even in
simplified models that capture very general features of response
generation. Gain modulation in these models arises from inter-
actions between spike generation nonlinearities and the scale of
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the stimulus distribution (Rudd and Brown, 1997; Agueray Arcas
and Fairhall, 2003; Paninski et al., 2003; Borst et al., 2005; Yu et
al., 2005; Gaudry and Reinagel, 2007). These findings underscore
that, for any instance of adaptation, it is important to understand
whether it is generic or dependent on particular neuronal prop-
erties and whether it is common across stimulus conditions or
stimulus specific (Wark et al., 2007).

In barrel cortex, adaptation to repetitive stimulation is attrib-
utable primarily to synaptic mechanisms (Castro-Alamancos and
Oldford, 2002; Chung et al., 2002; Katz et al., 2006). Whether
intrinsic mechanisms could contribute to adaptation to changes
in stimulus statistics has been unknown. Using slice recordings,
here we show that intrinsic mechanisms suffice to produce in
vivo-like, stimulus-specific adaptation.

Materials and Methods

All procedures complied with Society for Neuroscience, European Com-
munity, and Spanish policies for the care and use of animals in research.

Slice preparation

We prepared acute cortical slices from Wistar rats at age 12-20 d post-
natal. Slice preparation followed standard procedures. Slices (300 wm
thick) were cut on an Integraslice 7550MM microtome (Campden In-
struments, Loughborough, UK) with the brain submerged in a chilled
(2-5°C) cutting solution bubbled with carbogen (95% 0,-5% CO,) and
glued to a custom-made block to standardize cutting angle. The solution
contained the following (in mm): 110 choline chloride, 25 NaHCO;, 25
D-glucose, 11.6 Na-ascorbate, 7 MgSO,, 3.1 Na-pyruvate, 2.5 KCl, 1.25
NaH,PO4, and 0.5 CaCl,. After cutting, slices were transferred to a sub-
merged holding chamber containing artificial CSF (ACSF), incubated at
35°C for ~30 min, and then kept at room temperature until used. The
composition of the normal ACSF was the following (in mwm): 127 NaCl,
25 NaHCO;, 25 p-glucose, 2.5 KCl, 2 CaCl,, 1 MgCl,, and 1.25
NaH,PO,, pH 7.3 (303 mOsm). All chemicals were from Sigma-Aldrich
(Madrid, Spain) unless otherwise noted. Drugs, including the synaptic
blockers (RS)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid
(RS-CPP) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (both
from Tocris Bioscience, Bristol, UK), the calcium influx blocker CdCL,,
and the serotonergic (5-HT,) agonist a-methyl-serotonin maleate salt
(ame5HT), were added to the bath perfusion as needed.

Stimulation and data acquisition
Whole-cell somatic patch-clamp recordings were performed according
to standard procedures. Using infrared differential interference contrast
optics to visualize neurons and barrels, we restricted our search to pyra-
midal neurons contained within barrel columns. Cells were selected ac-
cording to morphology and layer position. Recordings were performed
at room temperature or at 34 = 1°C, as detailed in Results. Patch elec-
trodes were pulled from borosilicate glass [1.5 mm external diameter,
0.86 mm internal diameter (World Precision Instruments, Stevenage,
UK); 3—6 MQ] and filled with potassium-based internal solution. Solu-
tion contained the following (in mm): either 130 K-methylsulfonate or
K-methylsulfate, 10 Na-phosphocreatine, 10 HEPES, 4 MgCl,, 4 Na,-
ATP, 3 Na-ascorbate, and 0.4 Na,-GTP; or 120 K-gluconate, 15 Na-
phosphocreatine, 10 HEPES, 5 NaCl, 2 MgCl,, 4 Mg,-ATP, 3 Na-
ascorbate, 1.1 EGTA, 0.4 Na,-GTP, and 0.1 CaCl,; adjusted to pH 7.33
(287-303 mOsm, slightly hypo-osmotic compared with the external
ACSF). Recordings were not corrected for liquid junction potential.
Neurons were monitored for access resistance (<20 M()) as well as for
changes in input and access resistances, in spike height (<5%), and in
resting membrane potential. Recordings were discarded if they did not
remain stable according to these criteria over a minimum of 1-2 h, the
time necessary to collect enough spikes. During break-in, each neuron
was tested with a series of pulses to check whether it responded with the
“regular spiking” phenotype characteristic of many excitatory cortical
neurons (McCormick et al., 1985); those that did not were excluded from
the analyzed dataset.

Data were acquired with an Axon Multiclamp 700-B amplifier (Mo-
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lecular Devices, Union City, CA), filtered at 10 kHz, and sampled at 20
kHz with an analog-to-digital board (PCI 6040-E; National Instruments,
Austin, TX) controlled with software custom-written in Matlab (Math-
Works, Natick, MA) (code written by T. Pologruto, B. L. Sabatini, K.
Svoboda, T. G. Oertner, and M. Maravall).

Stimulus design

Current stimuli were generated in Matlab and injected via the recording
electrode. Stimulus values changed over two different timescales. First,
stochastic stimulus waveforms were generated as white noise sampled
from a Gaussian distribution and filtered by convolution with a Gaussian
waveform with SD of 2 ms. Individual current values therefore fluctuated
rapidly, over a timescale of a few milliseconds. Second, stimuli had a
variance and/or mean that switched cyclically over a timescale of seconds
(full cycle duration was 5 s, i.e., each high or low variance “epoch” lasted
2.5s) (see Fig. 1A) (for details of the different switching protocols, see
Results). Each switch was smoothed over 10 ms. Therefore, the statistical
distribution from which stimulus values were drawn, which represented
the context within which stimuli arrived, changed every few seconds.
Acquisition was broken into 32 s trials, and stimuli were 30 s long; the
extra recording time at the end of each trial allowed measurement of
poststimulus changes in membrane potential.

Stimuli received by barrel cortex neurons during sensory experience in
vivo consist of extended sequences of excitatory and inhibitory synaptic
events arriving at irregular, rapidly fluctuating intervals. Our choice of
white noise stimulus protocols was motivated by several advantages.
First, white noise protocols provide a useful way to create extended,
continuous stimuli with rapid variations and parametric changes in
mean and variance, allowing for a standardized experimental design for
comparative study across neurons. Second, white noise stimuli present a
large, unbiased sample of input values, permitting spike-triggered anal-
ysis; cortical responses to electrical white noise stimulation are well char-
acterized (Mainen and Sejnowski, 1995; Nowak et al., 1997; Tang et al.,
1997). Third, cortical neurons in vitro produce responses to white noise
currents that share properties of in vivo activity, and Gaussian white noise
provides a basic model for the distribution of total current inputs at the
soma under conditions of intense synaptic bombardment (Mainen and
Sejnowski, 1995; Destexhe et al., 2001; Rauch et al., 2003). Finally, mod-
eling work has shown that, under many circumstances, conductance-
driven stimuli produce similar responses to white noise current stimuli:
in models that capture key properties of experimentally recorded neu-
rons, the response properties of model neurons driven by conductance
stimuli map onto the response properties of equivalent neurons driven
by current stimuli (Rauch et al., 2003; Jolivet and Gerstner, 2004; La
Camera et al., 2004; Richardson, 2004; Jolivet et al., 2006).

To compare SAHP current magnitude across neurons using a stan-
dardized protocol, we delivered pulse trains consisting of 10 square cur-
rent pulses (I ms duration) at 100 Hz. Pulse amplitude was set suffi-
ciently high to generate action potentials reliably.

Analysis

All analyses were performed in Matlab. Spikes were extracted from raw
membrane potential traces by thresholding. Each spike time was defined
as the time of maximum acceleration of the membrane potential wave-
form, before the spike peak.

Firing rates. Firing rates were determined by counting spikes over suc-
cessive time windows (for rate plots, window size was 50 ms) and divid-
ing the tally by the duration of the windows. We also calculated rates by
taking the inverse of the mean interstimulus interval computed over
three or four spikes in each relevant time window; this approach made no
qualitative difference to the results, so it is not reported in the final data.
Adaptation was assessed by measuring relative changes in firing rate
during high- or low-variance epochs. To do so, for low-variance epochs,
we computed an “adaptation ratio,” defined as the ratio of the rate mea-
sured at steady state (time window from 2.3 to 2.5 s after switching the
stimulus distribution) divided by the rate measured immediately after
switching (time window from 0 to 100 ms after switching). With this
definition, stronger adaptation corresponded to larger ratios (>1). A
similar ratio measure was computed for high-variance periods. Because
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ratios computed for high- and low-variance epochs gave equivalent re-
sults, for simplicity we present only the low-variance values.

An adaptation time course was estimated for the rate curve of each
neuron (see Fig. 2 B) by focusing on the low-variance part of the curve
and finding the first time bin at which the firing rate had recovered from
its minimum to within a factor of 1/e times the distance to its steady-state
value. For rate curves well fit by a single exponential, this number is
equivalent to the decay time constant of the fit, whereas for rate curves
with a more complicated structure, it also provides a well defined crite-
rion allowing comparison across experiments.

Stimulus—response relationships: linear—nonlinear representation. We
evaluated the neuronal transformation of current into spikes, or neuro-
nal stimulus-response relationship, separately for high- and low-
variance epochs. This allowed us to determine which, if any, elements of
the neuronal transformation changed depending on stimulus statistics.
To constrain analyses to periods when responses had reached their
adapted steady state, we discarded data collected <1 s after each variance
switch.

Stimulus-response relationships were characterized with a linear—
nonlinear (LN) representation (Brenner et al., 2000; Chichilnisky, 2001)
(for review, see Bialek and De Ruyter Van Steveninck, 2005; Schwartz et
al., 2006). Because neurons are sensitive to particular stimulus properties
or features, a reasonable way to characterize the function of a neuron is to
identify the (hopefully reduced) set of properties relevant to its response
and then determine the sensitivity of the response to the presence of those
properties in a stimulus. In the LN description, a neuron is represented as
a device that, first, linearly filters the stimulus according to the feature
selectivity of the neuron, and, second, generates spikes with probability
given by a static nonlinear tuning curve, or input—output function, act-
ing on the filtered stimulus. Provided that the information-bearing ele-
ments of the response of the neuron are well described by its time-varying
instantaneous firing rate, this description can provide a very good picture
of the stimulus—response relationship of the neuron. We applied the
technique as described previously (Maravall et al., 2007).

Feature selectivity: extraction of linear filters. For each neuron and stim-
ulus condition, we first identified the particular stimulus properties that
influenced the response, i.e., the particular features to which the neuron
was selective. To do this, we first compared the distribution of stimuli
associated with spikes with a random sample of stimuli uncorrelated with
spikes, to identify what was different about the stimuli that evoked re-
sponses (de Boer and Kuyper, 1968; Bryant and Segundo, 1976; de Ruyter
van Steveninck and Bialek, 1988). The spike-triggered distribution was
stored as a set of stimulus segments, each of which began 80 ms before a
spike and had 1 ms resolution. The random distribution comprised seg-
ments beginning at random times. Given the sets of spike-triggered and
random stimuli, we sought a description of the stimulus properties to
which the neuron was selective. The simplest such description is given by
averaging the spike-evoking stimulus distribution and comparing this
spike-triggered average (STA) with the average of the randomly drawn
stimuli. If spike-evoking stimuli differ on average from the original dis-
tribution, the STA can represent the most relevant stimulus feature; how-
ever, the STA may not provide a good description of feature selectivity
(Chichilnisky, 2001; Paninski, 2003). For example, this can happen if a
neuron has symmetric stimulus sensitivity, with equal responses to pos-
itive and negative values: spikes are then equally likely to be evoked by
stimuli of opposite sign, and the spike-triggered average will cancel out
(Maravall et al., 2007). Neurons may also be sensitive to more than one
stimulus feature (Touryan et al., 2002; Aguera y Arcas et al., 2003; Rust et
al.,, 2005; Slee et al., 2005). Therefore, in addition to extracting the STA
[determining whether the spike-triggered and original (prior) stimulus
distributions differ on average], it is useful to compute how the distribu-
tions differ in shape. This can be done by spike-triggered covariance
(STC) analysis, which entails computing the covariance matrix of the
spike-triggered distribution and subtracting from it the covariance ma-
trix of the prior distribution (Brenner et al., 2000). The directions in
stimulus space along which the distributions are significantly different in
shape are those directions along with the variances of the distributions
are most different. To find these directions, one first computes the eig-
envalues and eigenvectors of the covariance difference matrix, obtained
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by the subtraction of covariance matrices mentioned above. Then, one
identifies the eigenvalues whose absolute magnitude is larger than can be
expected from chance. The eigenvectors corresponding to those eigen-
values define the relevant directions in stimulus space and therefore the
relevant set of stimulus features, or linear filters, to which the neuron is
selective. A detailed description of STC applied to the vibrissa system is
given by Maravall et al. (2007).

In summary, we performed STA and STC analysis for each neuron and
stimulus condition. We determined both the STA and one to two filters
resulting from STC analysis. This set of filters included the stimulus
features that most significantly affected the response of the neuron.

Sensitivity: computation of nonlinear tuning curves. After extracting the
linear filters as described above, each filter was applied to the input cur-
rent stimulus over the entire sequence of time points. The resulting se-
quence of filtered stimulus values represented the stimulus “as seen
through” the relevant filter. The value at each time point measured how
similar the latest stimulus segment was to the filter. With this sequence as
input and the recorded spike history of the neuron as output, we could
now map the relationship between filtered stimulus value and spiking
probability, or, in other words, the nonlinear tuning curve
P(spike | stim = k). This single-feature curve quantifies the sensitivity of
the neuron to the filtered stimulus independently of all other features. It
is also possible to estimate an overall tuning relationship predicting the
joint sensitivity of the neuron to all relevant stimulus features; however,
this places significant demands on data sampling, and, for simplicity and
statistical power, we worked only with separate curves corresponding to
each individual feature. To estimate each curve, we applied Bayes’ rule
and related the probability of spiking conditioned on the stimulus value,
P(spike | stim = k), to the probability of observing the stimulus value
conditioned on the occurrence of a spike, P(stim = k | spike). According
to Bayes’ theorem, this relationship can be written as P(spike | stim =
k)/P(spike) = P(stim = k | spike)/P(stim = k). Given this equation, the
tuning curve can be computed by taking the ratio of histograms of the
spike-triggered stimulus distribution P(stim = k | spike) and the prior
stimulus distribution P(stim = k) (de Ruyter van Steveninck and Bialek,
1988; Brenner et al., 2000). We performed tuning curve estimates as
described by Maravall et al. (2007). The analysis was repeated over 30
bootstrap samples of the filtered stimuli to produce the error bars shown
in the tuning curve plots (error bars are the SD across bootstrap samples).

Presentation of results and correspondence across high- and low-variance
epochs. STA or STC analyses were applied according to the following
criteria (for an explanation of symmetric and rectified stimuli, see Re-
sults). For responses to symmetric stimuli, both STA and STC analyses
were performed. For responses to rectified stimuli, STA analysis was
conducted using the rectified stimulus waveform, whereas STC analysis
was conducted using the original (nonrectified) stimulus waveform. This
scheme for analyzing rectified stimuli was needed because of the follow-
ing: (1) STC could not be usefully performed on rectified stimulus wave-
forms, because those waveforms were not Gaussian distributed, which
could lead to artifacts (Brenner et al., 2000; Aguera y Arcas et al., 2003;
Paninski, 2003; Bialek and De Ruyter Van Steveninck, 2005; Schwartz et
al., 2006); and (2) STA analysis did not produce useful results on non-
rectified stimulus waveforms because responses occurred to both posi-
tive and negative stimulus values, canceling out the STA.

The end result of our analysis was a set of two to three linear filters with
their corresponding tuning curves for each neuron and condition. Com-
parisons across conditions (high vs low variance) were done as follows.
High- and low-variance STA waveforms and their tuning curves were
directly compared with each other. STC filters were first inspected visu-
ally to verify how they corresponded across conditions [the STC proce-
dure implies that the first and second filters might be flipped across
conditions (Aguera y Arcas et al., 2003; Bialek and De Ruyter Van
Steveninck, 2005)]. For presentation of results, we surveyed the dataset to
verify which feature usually contributed most significantly to the re-
sponse of a neuron. Assessed by checking the sharpness and dynamic
range of tuning curves, the most significant feature was usually one of the
STC filters. For presentation, we therefore used tuning curves corre-
sponding to the best STC filter; however, our results on rescaling held
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across all tuning curves, whether computed for the STA or for the STC
filters.

Gain rescaling factors. Neuronal filters and nonlinear tuning curves are
unique up to an arbitrary scale factor, because a change in filter ampli-
tude is reflected as a scaling change in the input to the tuning curve (i.e.,
in the x-axis of the curve) (Brenner et al., 2000; Chichilnisky, 2001; Kim
and Rieke, 2001). We chose to normalize all neuronal filters to unit
norm, so that any change in the overall scale of the input—output rela-
tionship appeared as a change in the scale of the x-axis of the tuning
curve.

To assess the amount of gain rescaling in tuning curves with respect to
a change in stimulus SD, we fit seventh- or ninth-degree polynomials
separately to the high- and low-variance tuning curves of each neuron.
We then rescaled the x-axis of one fitted tuning curve by a factor f, solving
for the value of f that gave maximum overlap with the other curve. The
resulting f value was normalized such that an amount of 100% corre-
sponded to the ratio of high and low SDs. In other words, a factor of
100% means that the curves had full rescaling, compensating for the
change in stimulus statistics. Conversely, a value of 0% indicates that
there was no rescaling. We also report the error value achieved by the best
overlap, computed as the sum of squared differences between the nor-
malized y-values of the curves for optimal f. Hence, perfect full gain
rescaling would give a factor equal to 100% with an error equal to zero,
precise rescaling could correspond to a factor close to 100% but with
larger error, and a complete lack of rescaling would give a factor equal to
0% with a large error value.

Afterhyperpolarizations. Afterhyperpolarization magnitude was as-
sessed by measuring membrane potential values with respect to baseline,
at various time points after the end of pulse train stimuli (described
above, Stimulus design). To arrive at a robust, standardized measure-
ment of slow AHP amplitude across experiments, we chose the time
point 400 ms after the end of the pulse train (Maravall et al., 2004). AHPs
measured shortly after the end of a stimulus (e.g., <100 ms after stimu-
lus, or at the overall AHP peak) may include contributions from faster
currents such as medium-duration AHPs, unrelated to the slower cur-
rent of interest. We thus expected that measurements at a later time point
such as 400 ms, when the sAHP is the principal contributor to the overall
AHP, would provide a more specific estimate of sSAHP magnitude. Also,
AHP amplitudes at 400 ms after stimulus proved less noisy across trials
than the integrated area of the AHP. Standardized pulse train protocols
provide a convenient way to generate AHPs that can be compared across
neurons; to verify that SAHPs generated by standardized pulse trains
were a good measure of those generated by white noise stimuli, we also
measured voltage deflections 400 ms after the end of white noise
stimulation.

Spike threshold estimation. Sodium current availability at different mo-
ments during the variance switching cycle was determined by measuring
spike thresholds. We computed these by estimating the distribution of
local membrane potential maxima (Kim and Rieke, 2003). This distribu-
tion falls off sharply at the spike threshold and has a small secondary
“bump” at the peak spike membrane potential, because membrane po-
tential values greater (more depolarized) than the spike threshold will
not be local maxima unless they correspond to the spike peak. A good
estimate of the spike threshold is therefore the membrane potential value
at which the distribution falls off, which we extracted by taking the 99th
percentile value of the distribution, a choice that gave robust results
across neurons and conditions. The calculation was done separately for
high- and low-variance periods. To check our results, we repeated the
calculation using a different method: we estimated the threshold of each
spike as the value of the membrane potential at the point of maximum
acceleration of the action potential waveform and then averaged over all
spikes. Again, this was done separately for high- and low-variance peri-
ods. The two methods gave fully consistent results; for figure presenta-
tion, we used data from the local maxima distribution method.

Effects of whole-cell access. Variations in whole-cell access can affect
readings of action potential threshold and of voltage responses. For ex-
ample, for rectified stimuli, the mean current injected during high-
variance periods was greater than the mean current during low-variance
periods. Hence, observed differences in high- and low-variance thresh-
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olds could be contaminated by the electrode depolarization, resulting in
a greater apparent difference in threshold for recordings with poorer
access. We verified that this was not the case by checking that there was
no correlation between access resistance and threshold difference (n =
34; p = 0.52; Pearson’s r2 =0.013). Similarly, there was no correlation
between access resistance and measured sSAHP magnitude (n = 34; p =
0.18; Pearson’s r* = 0.055).

Statistical data presentation. Statistical tests used are identified below
together with their corresponding results; use of parametric tests always
depended on whether distributions were not found to depart signifi-
cantly from normality, as judged by the Lilliefors test. Significance crite-
ria were set at p = 0.05. Unless otherwise specified, results are quoted as
mean * SEM.

Results

Reproducing features of in vivo adaptation to stimulus
statistics in slices

To determine whether adaptation to complex stimuli and gain
rescaling of input—output functions can arise from the intrinsic
properties of barrel cortex neurons, we performed experiments
in acute slices, exploiting some of the advantages of the prepara-
tion, such as ease of drug delivery. We measured adaptation in
pyramidal neurons with whole-cell current-clamp recordings
while injecting stochastic current waveform stimuli through the
recording electrode. Each stimulus consisted of continuous, fil-
tered white noise, generated by sampling from a Gaussian distri-
bution of current values (for a full description, see Materials and
Methods). To assess how responses to a stimulus depended on
stimulation history and on the context within which the stimulus
was presented, we used an experimental design in which stimulus
variations occurred over two timescales (Smirnakis et al., 1997).
The faster timescale involved variations in the instantaneous cur-
rent value, which fluctuated with a correlation time ~2 ms, as
determined by the width of the low-pass filter applied to the white
noise stimuli. The slower timescale corresponded to changes in
the overall distribution of current values: the variance of the dis-
tribution switched back and forth between a higher and a lower
value at intervals of 2.5 s (i.e., the total duration of the variance-
switching cycle was 5 s). An example stimulus waveform switch-
ing across high and low variances is shown in Figure 1 A.

Barrel cortex neurons in the intact animal are strongly respon-
sive to changes in the statistics of sensory stimuli (Maravall et al.,
2007). During the course of our variance switching cycle, we
expected neurons to be generally strongly excited immediately
after switches from low to high variance and to reduce their re-
sponse after switches from high to low variance. Adaptation
would be defined by a decrease or accommodation in firing rate
during the course of high-variance periods and an increase or
recovery in rate during low-variance periods.

We first recorded responses while applying stimuli with a
mean of 0 pA, with no additional direct current (DC) holding
current (Fig. 1A). Because the stimuli were sampled from a
Gaussian distribution, they were symmetrically distributed about
their mean, with positive and negative current values being
equally probable. We thus refer to these stimuli as “symmetric.”
Stimulus SDs were chosen so that neurons would fire at rates
comparable with previous recordings of in vivo responses to
white noise whisker stimulation (~1-5 Hz; at least 1 Hz on aver-
age during low variance) (Maravall et al., 2007). According to this
rule, SD during high-variance periods was set to between 100 and
300 pA depending on the neuron; across the population included
in Figure 1, the mean SD was 175 pA. For these recordings and for
most of the recordings in the study, SD for low-variance periods
was equal to 0.7 times that for high-variance periods.
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Absence of adaptation to stimulus statistics under symmetric current stimuli in barrel cortex. 4, Stimulus segment showing three 5 s cycles of high/low variance switching. High- and

low-variance epochs are represented in the top diagram. Stimulus was distributed as a Gaussian and was symmetric about its 0 pA mean. B, High- and low-variance epochs (diagram as for 4; top
trace), stimulus (current; middle trace), and response (membrane potential; bottom trace) for a typical neuron. Traces depict a complete trial. Numerical value at left indicates resting membrane
potential. The neuron fired strongly during high-variance epochs and more weakly during low-variance epochs. G, Firing rate plot for same neuron as B, showing an absence of rate adaptation. The
plot was constructed by binning spike times within each cycle (using 50 ms windows) and averaging responses over the number of cycles in the experiment. High- and low-variance epochs are
represented in the top diagram; the transition from low to high is shown at both edges to emphasize the cyclic character of the plot. D, Population pooled firing rate plot, showing normalized firing
rate averaged over neurons (n = 16). Error bars represent 1 SD. Adaptation was absent across the population. E, Adaptation ratio plot (see Materials and Methods). Dark symbol depicts neuron in
B and C. Adaptation ratios 1 signified adaptation; in this population, ratios were somewhat, but not significantly, <1.

Under these conditions, we found that changes in variance
caused neurons to respond robustly and stably throughout re-
cordings lasting up to 2-3 h (Fig. 1 B). The firing rates of neurons
were thus strongly modulated by changes in variance. However,
neurons typically showed no rate adaptation (Fig. 1C,D); the rate
remained essentially the same within each high- or low-variance
epoch. To measure rate adaptation and compare its magnitude
across neurons, we defined an adaptation ratio, computed from
the firing rates immediately after variance switches and at steady
state; adaptation would correspond to a ratio value significantly
>1 (see Materials and Methods). Across the dataset, adaptation
ratios were smaller than 1, although not significantly different
(0.94 = 0.03; n = 16; p = 0.056, ¢ test) (Fig. 1E).

This lack of adaptation contrasted with the prominence of the
phenomenon in vivo. One plausible explanation for the absence
of adaptation could have been that it has a purely synaptic basis
that did not contribute to the responses recorded in slices. How-
ever, we still found our results puzzling, because previous work
had found some amount of adaptation in cortical neurons under
conditions apparently similar to our own, except for minor dif-
ferences in stimulation protocol (Paninski et al., 2003). This sug-

gested that perhaps subtle differences in stimuli can affect how
neurons adapt to changes in stimulus context. We noted that
several salient features of in vivo stimulation might affect adapta-
tion. First, when stimulated with whisker motion in any direc-
tion, barrel cortex neurons in vivo receive net depolarizing syn-
aptic inputs (Wilent and Contreras, 2005). Second, cortical
responses to whisker white noise stimuli i1 vivo can show bilateral
symmetry (Arabzadeh et al., 2005; Hasenstaub et al., 2007; Ma-
ravall et al., 2007). Hence, we reasoned that complex patterns of
sensory stimulation in vivo may be more similar to rectified (net
depolarizing) current waveforms than to zero-mean, symmetric
current waveforms. We thus next tested adaptation to rectified
stimulus waveforms, interleaving symmetric and rectified stimuli
in a different set of experiments (n = 16). Rectified stimuli were
generated by taking the absolute value of the symmetric white
noise stimuli presented above.

Rectified waveforms caused clear adaptation (Fig. 2). Neurons
typically showed significant adaptive modulation of firing rate
during both high- and low-variance periods (Fig. 2B,C), and
their adaptation ratios were significantly >1 (1.71 = 0.12;n = 16;
p < 0.001, t test) (Fig. 2 D). Ratios were also significantly greater
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Figure 2.  Adaptation to stimulus statistics under rectified stimuli. A, Left, High- and low-

variance epochs (top), stimulus (current; middle), and response (membrane potential; bottom)
for rectified stimuli, for a different neuron to that in Figure 1B. Right, Magnified membrane
potential response, —80 to +80 ms relative to a low- to high-variance transition. Bottom
diagram indicates low- and high-variance periods. Length of bars, 80 ms. Note tendency toward
higher firing threshold during high-variance portion of trace. B, Firing rate plot for same neuron
as A, constructed as Figure 1, showing clear adaptation to rectified stimuli. C, Population rate
plot (n = 16) showing significant adaptation to rectified stimuli. Error bars represent 15D. D,
Adaptation ratio plot comparing ratio values across symmetric and rectified conditions. Lines
connect symmetric and rectified data points for each neuron (n = 16). Asterisk denotes signif-
icant difference; also, ratios for rectified stimuli were significantly >1. Dark symbol depicts
neuron in A and B. E, Adaptation was unchanged in the presence of synaptic blockers. Symbols
and colors arbitrarily chosen to aid discrimination of data points.

for rectified than for nonrectified, symmetric stimuli (0.93 * 0.02
for symmetric; n = 16; p < 0.001, paired ¢ test) (Fig. 2D). The
magnitude of adaptation was less than measured in vivo, which
was unsurprising because contributions from synaptic depres-
sion and its recovery, which are likely to be present in the intact
animal, were bypassed in our slice recordings. This caused steady-
state firing rates in high-variance epochs to be greater than in
vivo, even for neurons whose low-variance firing rates were com-
parable with typical levels in vivo. Strikingly, however, the time-
scale of rate adaptation with rectified stimuli was 330 = 40 ms
(n = 16), close to that observed in vivo [280 = 180 ms (Maravall
et al., 2007)] and longer than that for other forms of adaptation,
such as adaptation to stimulus mean (see below). Therefore, re-
sponses to rectified current stimuli reproduced some essential
features of firing rate adaptation in vivo.

To verify that this adaptation was attributable to intrinsic
properties, we performed one set of experiments with synaptic
transmission blocked via joint application of the NMDA antago-
nist RS-CPP (10 um) and the AMPA/kainate antagonist CNQX
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(10 uM). We observed no significant difference in adaptation
relative to the control experiments (1.56 = 0.13; n = 10 synaptic
block experiments; n = 16 control experiments; p = 0.40, ¢ test)
(Fig. 2E). Therefore, the adaptation to stimulus statistics ob-
served using rectified stimuli was attributable to intrinsic mem-
brane properties.

Adaptive gain rescaling with rectified stimuli

To assess the effect of adaptation on the stimulus—response rela-
tionships of neurons, we characterized these by extracting neu-
ronal filters with spike-triggered average and covariance analysis
and constructing input—output tuning functions separately for
high- and low-variance periods (Fig. 3A) (see Materials and
Methods). Both for symmetric stimuli and rectified stimuli, neu-
ronal filters did not change across high- and low-variance periods
(data not shown).

Using symmetric stimuli, input—output functions for high-
and low-variance periods were not identical (Fig. 3B). This im-
plied that some amount of adaptive change in input—output
functions occurred across changes in stimulus distribution, al-
though the change was usually quite small. Some amount of gain
rescaling can be expected even for integrate-and-fire models
(Rudd and Brown, 1997; Aguera y Arcas and Fairhall, 2003; Pan-
inski et al., 2003). To better visualize the extent of changes in
tuning curves, we normalized the plots so that response proba-
bility appeared in terms of mean spike rate and input value ap-
peared in units of the SD of the current distribution (i.e., as a
z-score). We never found that curves overlapped when plotted in
this way (Fig. 3C). This implied that changes in input—output
function were not enough to compensate for the changes in stim-
ulus distribution; in other words, tuning curves did not rescale
their gain to adjust to the stimulus range.

We next determined tuning curves for responses to rectified
stimuli. Plotted in absolute units, the widths of the tuning curves
now diverged more clearly than for symmetric stimuli (Fig. 3D).
Indeed, repeating the normalization procedure described above
revealed that tuning curves plotted in relative units now over-
lapped (Fig. 3E). This meant that the change in tuning curve
caused by switches in rectified stimulus statistics was just enough
to compensate for the change in stimulus distribution. This
matched the adaptive behavior observed under sensory stimula-
tion in vivo (Maravall et al., 2007).

We extended this analysis of tuning curves to the population
of neurons that were tested with both symmetric and rectified
stimuli, examining whether rectification affected the amount of
gain rescaling. For each neuron, we fit a polynomial to the tuning
curves and rescaled it along the x-axis, looking for the rescaling
factor that gave the most overlap (least error) between high- and
low-variance curves. We set the rescaling factor to be 100% for
perfect rescaling and 0% for no rescaling (see Materials and
Methods). The optimal factor for tuning curves to symmetric
stimuli diverged widely across neurons (Fig. 3F) and differed
significantly from 100% (36 = 9%; n = 16; p < 0.001, sign test).
The best rescaling factor still often produced a considerable error
(Fig. 3G). Neurons did, however, show partial gain rescaling with
symmetric stimuli, because the optimal factor was usually >0%.
Conversely, for rectified stimuli, the optimal factor was always
close to 100% (93 = 3%; n = 16; not significantly different from
100%, p = 0.12, sign test) and was significantly different from
that for symmetric stimuli (p < 0.001, Kolmogorov—Smirnov
test) (Fig. 3F). Error values for rectified stimuli were significantly
better constrained ( p < 0.001, Kolmogorov—Smirnov) (Fig. 3G).
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Figure 3.  Full gain rescaling occurred only for rectified stimuli. A, Schematic of LN frame-

work for characterizing neuronal stimulus—response relationships. Examples of linear filter and
tuning curve correspond to the same neuron as the panels below, tested with rectified stimuli.
B, Absolute input—output functions, or tuning curves, for neuron in Figure 24 tested with
symmetric stimuli. Curves were computed separately for high-variance epoch (dark line) and
low-variance epoch (light line). Output is the predicted instantaneous firing probability in units
of rate; input is the current stimulus projected onto the most significant neuronal filter from
spike-triggered analysis (see Materials and Methods). Error bars represent SD from 30 repeti-
tions of the estimation procedure. Note slight rescaling along x-axis: over values up to ~200
pA, more current was necessary to reach a given firing rate in the high-variance epoch. The curve
folds over for higher values. €, Normalized input— output functions for same recording as in B.
Output is normalized to the average rate, thus representing how the input modulates the
spiking probability of the neuron relative to its average; input is normalized by the SD of the
current distribution. Rescaling is clearly not complete. D, Absolute input— output functions for
same neuron asin B and C tested with rectified stimuli. The width of the curves depended more
strongly on the width of the distribution; in the high-variance epoch, significantly more current
was required to achieve a given rate. E, Normalized input— output functions, computed as in C,
show complete rescaling. F, Rescaling factors across the same neuronal population as in Figure
2, tested with symmetric and rectified stimuli. For each neuron, the high-variance fitted tuning
curve was multiplicatively rescaled along the x-axis until it best resembled the low-variance
curve; plot depicts the resulting best rescaling factor, in units such that 100% (dashed line)
corresponds to full rescaling and 0% to no rescaling. Factors under rectified stimulation, but not
symmetric stimulation, clustered closely around 100%.Here and in G, asterisk denotes
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This implies that, on average, neurons produced essentially full
gain rescaling for rectified stimuli but not for symmetric stimuli.

Preservation of adaptive gain rescaling across different

SD ratios

The above results show that, for rectified stimuli with a ratio of
SDs equal to 0.7, neurons produced adaptive gain rescaling that
was just enough to compensate for the change in SD. We next
asked whether this property still held for a different ratio of SDs.

We tested a set of neurons with symmetric and rectified stim-
uli whose lower SD was 0.5 times their higher SD instead of 0.7
times (Fig. 4). On average, these stimuli produced remarkably
similar behavior: average normalized rate plots for 0.5 and for 0.7
almost overlapped with each other (Fig. 4A-D). As in the 0.7
case, symmetric stimuli with the 0.5 ratio did not cause adapta-
tion (0.90 = 0.02; n = 8; not significantly different from 1, p =
0.29) (Fig. 4B, E). Rectified stimuli again caused greater adapta-
tion than symmetric stimuli (3.01 = 0.52; n = 8; p = 0.0044,
paired ¢ test) (Fig. 4D, E). Not surprisingly, stimuli with the 0.5
ratio, which implied a larger step in SD, tended to produce
greater adaptation than stimuli with the 0.7 ratio (values as
above; p = 0.0025, ¢ test). The timescale for 0.5 rate adaptation
was longer than that for 0.7 rate adaptation, although not signif-
icantly so [timescale for 0.7 equal to 330 = 40 ms, as above (n =
16); timescale for 0.5 equal to 460 = 90 ms (n = 8); p = 0.13, ¢
test].

Finally, we extended the “optimal rescaling factor” analysis
presented above to rectified stimuli with the 0.5 ratio. With sym-
metric stimuli, the best rescaling factor again varied widely (64 +
32%; n = 8) (Fig. 4F) and tended to produce a large error (Fig.
4G). Neither factors nor errors were significantly different from
those for symmetric stimuli with the 0.7 ratio ( p = 0.98 for both,
Kolmogorov—Smirnov test). Of greater interest, responses to rec-
tified stimuli with the 0.5 ratio still showed full rescaling, just as
for the 0.7 ratio. The optimal rescaling factor was 93 * 2% (n =
8), greater than that for symmetric stimuli ( p = 0.01, Kolmog-
orov—Smirnov test) (Fig. 4 F) but identical to that for the 0.7 ratio
(93 £ 3%, as above; n = 16; p = 0.84, Kolmogorov—Smirnov
test). Error values were again significantly smaller than for sym-
metric stimuli ( p = 0.01, Kolmogorov—Smirnov test) (Fig. 4G).
Therefore, responses to rectified stimuli had full adaptive gain
rescaling, compensating for changes in stimulus SD across a
range of at least a factor of 2.

Stimulus specificity of adaptation

Our rectified stimuli had the property that a switch in variance
also caused a switch in mean. Correspondingly, barrel cortex
neurons in vivo are sensitive to absolute whisker velocity, and
changes in velocity variance may also change the mean of the
stimulus effectively driving them: neurons are more strongly
driven by higher-variance stimuli (Maravall et al., 2007). We
therefore next asked whether the enhanced adaptation caused by
rectified stimuli was specific to this particular form of stimula-
tion, i.e., unique to stimuli incorporating joint switches in both
mean and variance. The alternative possibility was that rate ad-

<«

significant difference across distributions. G, Error values for rescaling across the population.
Error values were computed from the difference between tuning curves after applying the
optimal rescaling factors shown in F. Perfect rescaling would give a negligible error. Rectified
stimulation, but not symmetric stimulation, gave well constrained errors. Not shown (out of
scale) are four outlying values (>30) corresponding to symmetric stimuli.
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variance-switching stimuli used previ-
ously. For each neuron, mean-switching
stimuli had an SD equal to that of low-
variance epochs of the variance-switching
rectified stimuli (setup as described
above). The lower mean current value of
the mean-switching stimulus was set to
evoke the same membrane depolarization
reached during low-variance epochs of the
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rectified stimuli. The magnitude of the step
change in current across high-mean and
low-mean stimuli was set to be equal to the
step change in membrane potential in-
duced by switches across high- and low-
variance rectified stimuli, divided by the
input resistance of the neuron. We rea-
soned that this change should suffice to in-
duce an instantaneous change in spiking
rate comparable with that caused by
switches in rectified stimuli, and that the
resulting mean-switching stimulus would
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stimulation, gave well constrained errors. Errors computed as in Figure 3G.

aptation with gain rescaling was not specific to rectified stimuli
but was common to other forms of stimulation (i.e., was generic).
This could happen if rectified stimuli evoked more adaptation
than zero-mean stimuli simply because they drove neurons more
strongly, e.g., by depolarizing them more or by evoking spikes at
a frequency high enough to activate relevant mechanisms. This
possibility would predict that the patterns of adaptation caused
by rectified stimuli could be reproduced with other forms of
stimulation, as long as neurons were comparably excited. To dis-
tinguish between the two possibilities, we applied stimuli that
varied independently in mean and variance and added DCs as
required. In these experiments, different stimulus types were al-
ways interleaved, and the ratio of SDs was always 0.7 as in the
experiments of Figures 1-3.

First, we used current stimuli whose mean switched across
high and low values, over a cycle duration equal to that for the

Time into switching cycle (s)

50

25

Preservation of adaptation and gain rescaling under rectified stimuli for a different ratio of SDs. 4, Firing rate plot for
aneuron, constructed as Figure 1, showing absence of adaptation to symmetric stimuli with a low- to high-SD ratio equal to 0.5.
B, Population rate plot for symmetric stimuli (n = 8) showing absence of adaptation. Here and in D, error bars represent 1SD. C,
Rate plot for same neuron as A, showing pronounced adaptation to rectified stimuli with a low- to high-SD ratio equal to 0.5. D,
Population rate plot for rectified stimuli (n = 8) showing significant adaptation. Also shown (gray line) is the average population
rate for neurons tested with a ratio of SDs equal to 0.7. The gray and black lines overlap with each other, demonstrating the
similarity of the behavior for different SD ratio parameters. E, Adaptation ratio plot comparing ratio values across symmetric and
rectified conditions. Lines connect symmetric and rectified data points for each neuron (n = 8). Asterisk denotes significant
difference; also, ratios for rectified stimuli were significantly >1. White symbol depicts neuron in A and C. F, Rescaling factors
across population, tested with symmetricand rectified stimuli. Asterisk denotes significant difference across distributions. Rescal-
ing factors computed as in Figure 3F. G, Error values for rescaling across population. Rectified stimulation, but not symmetric

5 evoke peak firing rates and patterns of cur-
rent activation similar to those generated
by rectified stimuli. Strikingly, under these
conditions, responses were strongly dis-
¢ . tinct from those evoked by rectified stimuli
(Fig. 5, compare AI, A2). Across the popu-
lation of neurons tested, changes in stimu-
lus mean caused a sharp change in re-
. sponse, larger than that caused by rectified
stimuli, followed by extremely strong and
! 8 rapid rate adaptation (Fig. 5A3). Adapta-

tion to switches in stimulus mean was
therefore very different from adaptation to
switching rectified stimuli, even when
stimulus parameters were set to evoke
comparable response magnitudes.

Next, we considered symmetric (non-
rectified) current stimuli with switching
variance, similar to the waveform depicted
in Figure 1A, except that we now injected
additional DC. The aim of this manipula-
tion was to match the low-variance average
membrane depolarization and firing rate
to those reached with rectified stimuli. Be-
cause, as mentioned above, rectified stim-
uli implied a positive mean current, adap-
tation under rectified stimuli could have been attributable simply
to the greater evoked depolarization and firing rate. Mean depo-
larizing current during rectified stimulation averaged ~80 pA
across neurons (range, 30—200 pA): in added DC experiments,
we provided a similar amount of depolarizing DC manually, sup-
plementing the symmetric variance-switching white noise stim-
ulus. The resulting responses had negligible adaptation (Fig. 5B);
they were qualitatively more similar to responses to symmetric
variance-switching stimuli (as in Fig. 1) than to responses to
rectified stimuli (Fig. 5BI-B3) (see also Fig. 2). The difference
with responses to rectified stimuli held across the population
(adaptation ratio for rectified stimuli, 1.71 * 0.26; for added DC
stimuli, 1.04 * 0.04; n = 7; p = 0.0041, Wilcoxon’s rank sum test)
(Fig. 5B4).

Therefore, adaptation depended strongly on the specific form
of changes in the stimulus distribution. Forms of stimulation

symr'netric rectified
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Figure 5.  Stimulus dependence of adaptation. A, Comparison between responses to rectified stimuli and mean-switching

stimuli. A7, A2, Rate plots for responses to rectified stimuli (A7) and mean-switching stimuli (42) for one neuron. Plots con-
structed as in Figure 1C. Note the striking difference in rate adaptation characteristics, despite the similar firing rate reached at
steady state during the “low” epoch. A3, Population rate plot for mean-switching data (n = 8). Error bars depict 1 SD. B,
Comparison between responses to rectified stimuli and symmetric stimuli with added DC (for explanation, see Results). B1, B2,
Rate plots for responses to rectified stimuli (B7) and added DC stimuli (B2) for a neuron different to the one in A7 and A2. Lack of
adaptation under added DC stimuli is similar to behavior under symmetric stimuli in Figure 1, despite the increased excitation
provided by the DC. B3, Population rate plot for added DCdata (n = 7). Error bars asin A3. B4, Adaptation ratios across population
tested with rectified and added DC stimuli. Lines connect data points for each neuron (n = 7). Asterisk denotes significant
difference. White symbol depicts neuronin B7 and B2. B5, Rescaling factors across population tested with rectified and added DC
stimuli. Factors computed as in Figure 3F. B6, Error values for rescaling across population tested with rectified and added DC
stimuli. Asterisk denotes significant difference across distributions. Errors computed as in Figure 3G. C, Comparison between
responses to symmetric stimuli without and with added DC (for explanation, see Results). €1, €2, Rate plots for responses to
symmetric stimuli (C7) and added DC stimuli (€2) for a neuron different from those in A7, A2 and B1, B2. Lack of adaptation is
similar with or without added DC. €3, Population rate plot for added DC data (n = 6). Error bars as in A3. (4, Adaptation ratios
across population tested with symmetric and added DC stimuli. Lines connect data points for each neuron (n = 6). There was no
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causing matching firing rates or depolar-
ization levels did not evoke similar forms
of adaptation. In vivo-like rate adaptation
only occurred when stimuli were rectified,
implying joint switches in mean and
variance.

We asked whether the amount of gain
rescaling depended on the added DC using
the same optimal rescaling factor method
described above. For the set of neurons
tested with rectified and added DC (Fig.
5B), there was full gain rescaling under rec-
tified stimulation but only partial rescaling
under added DC stimulation [rectified,
99 * 7%; added DC, 44 * 34%; n = 7; no
significant difference in factor, p = 0.42,
Kolmogorov—Smirnov test (Fig. 5B5); but
highly significant difference in error, p <
0.001, Kolmogorov—Smirnov test (Fig.
5B6)].

We also tested an additional, separate
set of neurons with a symmetric variance-
switching protocol with or without added
DC (Fig. 5C). The principal aim of this
dataset was to test whether adding DC
would, in itself, enhance adaptation or gain
rescaling compared with symmetric stim-
uli. We found that adding DC caused no
significant or systematic changes (Fig.
5CI1-C3). Adaptation was unaltered (sym-
metric, no DC, 0.92 * 0.03; added DC,
1.02 £ 0.07; n = 6; p = 0.34, paired t test)
(Fig. 5C4). Gain rescaling was also unal-
tered [symmetric, no DC, 79 * 18%, n = 5;
added DC, 66 * 6%, n = 6; no significant
difference in factor, p = 0.65, Kolmogor-
ov=Smirnov test (Fig. 5C5); or in error, p =
0.99, Kolmogorov—Smirnov test (Fig.
5C6)].

Taking these results together, adding
DC did not affect the incomplete gain
rescaling observed with symmetric stimuli.
Rectifying stimuli did produce full rescal-
ing. The characteristics of adaptation to
rectified stimuli were only evoked by joint
changes in mean and variance.

Experimental analysis of adaptation to
rectified stimuli

Although most of our experiments were
performed at room temperature, one set
was performed at physiological tempera-
ture (T = 34 £ 1°C). Adaptation was

<«

significant difference in adaptation. White symbol depicts neu-
ronin €7and 2. (5, Rescaling factors across population tested
with symmetric and added DC stimuli. Factors computed as in
Figure 3F. Adding DC did not significantly change the distribu-
tion of rescaling factors. €6, Error values for rescaling across
population tested with symmetric and added DC stimuli. Errors
computed as in Figure 3G. Adding DC made no difference to the
distribution of rescaling errors.
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present in these experiments, i.e., the adaptation ratio was signif-
icantly >1 (1.51 = 0.09; n = 9; p < 0.001, ¢ test) (Fig. 6A).
Although ratios were somewhat smaller than for room tempera-
ture experiments, this modest reduction was not statistically sig-
nificant (vs n = 16 room temperature experiments; p = 0.26, ¢
test). There was no significant change in the timescale of rate
adaptation (250 = 60 ms; n = 9; p = 0.23, t test).

We next asked whether the magnitude of rate adaptation var-
ied across pyramidal neurons in different cortical layers. To ex-
amine this, we performed recordings with rectified stimuli and
classified them into categories according to the layer location of
the recorded cell (Fig. 6 B). There was no difference between ad-
aptation ratios for pyramidal neurons in layers 2/3, layer 4, and
layer 5 (layers 2/3, 1.75 £ 0.18, n = 16; layer 4, 1.66 = 0.12,n =
10; layer 5, 1.77 = 0.12, n = 18; p = 0.74, Kruskal-Wallis test).
The behavior was therefore common to regular-spiking neurons
located across different layers.

We further classified our dataset according to internal pipette
solution. Different anions are known to have different effects on
neuronal response properties as they dialyze the cell (Zhangetal.,
1994; Velumian et al., 1997; Kaczorowski et al., 2007). Specifi-
cally, dialysis with potassium gluconate reduces sSAHPs, whereas
potassium methylsulfate and methylsulfonate maintain sAHP
magnitude. The choice of anion affected adaptation: use of po-
tassium gluconate solution (which also contained 1.1 mm EGTA)
resulted in a decrease in rate adaptation compared with the other
ions (gluconate, 1.50 = 0.07, n = 14; methylsulfate, 1.84 = 0.20,
n = 8; methylsulfonate, 1.97 = 0.11, n = 30; p = 0.028, ANOVA)
(Fig. 6C).

Strong correlation between adaptation and
calcium-dependent sSAHP

Cortical neurons express calcium- and sodium-dependent potas-
sium conductances that evoke sSAHPs during spiking and induce
spike-frequency adaptation under stimulation with DC pulses
(Madison and Nicoll, 1984; Schwindt et al., 1988, 1989). As ex-
plained above, calcium-dependent mechanisms, particularly
sAHPs, can be affected by the choice of anion used in whole-cell
recordings, and we found a similar effect on adaptation. Reason-
ing that this suggested a likely link between sAHPs and adapta-
tion, we analyzed this relationship using a standardized pulse-
train protocol to evoke and measure sAHPs (Fig. 7A) (see
Materials and Methods). We first confirmed that SAHP magni-
tude (measured 400 ms after the end of stimulation) depended on
the choice of internal anion, as in the existing literature (see
above). Indeed, sAHPs recorded with methylsulfate or methyl-
sulfonate in the pipette were larger than those with gluconate
(gluconate, —0.1 = 0.2 mV, n = 14; methylsulfate, —2.8 = 0.5
mV, n = 8; methylsulfonate, —3.1 = 0.2 mV, n = 30; p < 0.001,
ANOVA) (Fig. 7A). We also checked the effects of temperature
on the SAHP. As expected from the literature (Thompson et al.,
1985; Lee et al., 2005), sAHP magnitude was smaller at physio-
logical temperature (T = 34 * 1°C), although this effect did not
reach statistical significance (34°C, —1.2 = 0.8 mV, n = 9; room
temperature, —2.1 £ 0.4 mV, n = 16; p = 0.26, t test). The
magnitude of adaptation was therefore linked with the magni-
tude of SAHPs in that they were both modulated by the choice of
internal ion; both were also reduced at physiological tempera-
ture, although not significantly so.

To determine the extent to which calcium-dependent mech-
anisms contribute to adaptation, we blocked calcium entry via
bath application of CdCl, solution (50 um). CdCl, application
abolished the sAHP in responses to pulse-train stimulation
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(—0.50 = 0.06 mV, n = 6; vs ACSF, —3.1 £ 0.4 mV; p < 0.001,
paired ¢ test) (Fig. 7B). Adaptation to rectified stimuli was re-
duced by CdCl, (1.22 = 0.07, n = 6; vs ACSF, 2.16 * 0.39; p =
0.040, paired ¢ test) (Fig. 7C). However, adaptation ratios re-
mained significantly higher than 1 (n = 6; p = 0.026, ¢ test),
implying that non-calcium-dependent mechanisms could play a
role in adaptation.

Cadmium is a nonselective blocker of calcium-dependent
properties. We also manipulated sAHPs via application of the
serotonergic (5-HT,) agonist ame5HT (20 uM), which reduces
sAHPs (Villalobos et al., 2005) and increases neuronal gain to DC
stimulation (Zhang and Arsenault, 2005). We confirmed that
sAHPs were significantly reduced by ame5HT (—0.8 = 0.2 mV,
n = 9; vs ACSF, —3.3 £ 0.4 mV; p < 0.001, paired ¢ test) (Fig.
7D). However, adaptation ratios under rectified stimulation were
not significantly affected (1.88 = 0.23, n = 9; vs ACSF, 1.96 =
0.14; p = 0.76, paired t test) (Fig. 7E). Because serotonergic
5-HT, agonists act on many mechanisms, ame5HT may have
affected other intrinsic properties that might also influence adap-
tation, compensating for its inhibition of the sSAHP.

We further analyzed the relationship between sAHPs and ad-
aptation by measuring correlations between sAHP magnitude
and adaptation ratio in the main dataset (Fig. 7F). This provided
an approach that was complementary to pharmacology and
avoided possible problems of interpretation arising from nonse-
lective effects of drugs. Methylsulfate-, methylsulfonate-, and
gluconate-based recordings gave different results regarding both
adaptation ratio and sAHP magnitude (see above); hence, we
separated the three groups. Correlation analyses were performed
on the gluconate group and the methylsulfonate group (which
had the largest sizes) (Fig. 7F ). We found that, for the methylsul-
fonate experiments, in which the sSAHP was best maintained dur-
ing whole-cell dialysis, SAHP magnitude and adaptation ratio
under rectified stimulation were significantly correlated: sAHP
magnitude accounted for 32% of the variance in the adaptation
data (n = 30; p = 0.0011; Pearson’s r* = 0.32). Conversely, in
gluconate experiments, both the sSAHP and adaptation were de-
pressed (see above) and what remained of adaptation depended
on other mechanisms: there was no significant correlation be-
tween sSAHP magnitude and adaptation (n = 14; p = 0.39; Pear-
son’s r* = 0.062). The degree of adaptation to white noise stim-
ulus statistics was therefore associated with the magnitude of
sAHP currents, consistent with the pharmacology experiments
described above.

We wondered whether the above assessment of the relation-
ship between adaptation and SAHP magnitude was reliable. It was
possible that our standardized pulse-train protocol for sAHP
measurement did not adequately probe the slow currents partic-
ipating in white noise adaptation. This issue might take two
forms. First, the amount of calcium-dependent sAHP evoked by
trains of brief pulses might not be a good predictor of the amount
of calcium-dependent sSAHP evoked with white noise stimula-
tion, implying that the above measurements would produce an
artifactually weak correlation between sAHP activation and ad-
aptation to white noise. Consistent with this idea, previous work
has found that cortical SAHP-related adaptation under fluctuat-
ing stimuli and irregular spike patterns is weaker than adaptation
under regular stimulation with current pulses (Tang et al., 1997;
Destexhe and Pare, 1999). Second, other slowly activating mech-
anisms beyond the calcium-dependent SAHP might come into
play during long-lasting stimulation protocols (e.g., after several
seconds of continuous current injection). For instance, in cat
primary visual cortex, sSAHPs caused by a sodium-dependent po-
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Figure 6.  Experimental analysis of intrinsic adaptation. For all panels, symbols and colors
were arbitrarily chosen to aid discrimination of data points. 4, Adaptation was present at phys-
iological temperatures (34 == 1°C), albeit slightly smaller in magnitude. B, Adaptation was not
significantly different across neurons from different cortical layers. , Adaptation was different
across neurons recorded with different internal anions. Mate, Potassium methylsulfate record-
ings; Mnate, potassium methylsulfonate recordings; Gluc, potassium gluconate recordings. As-
terisk denotes significant difference.
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ate recordings; white symbols, gluconate recordings. There was a significant correlation be-
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stimuli, AV,-WN (n = 6). H, ame5HT also significantly decreased AV, -WN (n = 9).
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tassium current underlie a form of slow contrast adaptation with
a characteristic ~10 s timescale (Sanchez-Vives et al., 2000b),
although the mechanism has not been found previously to play a
significant role in barrel cortex (Chung et al., 2002; Katz et al.,
2006). We reasoned that, if either of these possibilities applied,
voltage deflections at the end of long-lasting white noise stimuli
would predict adaptation ratio values better than sAHPs evoked
by standardized DC pulse trains. We therefore measured the av-
erage voltage deflection from baseline remaining 400 ms after the
end of white noise trials for each neuron. Across the population,
this quantity, termed AV, -WN, correlated with the SAHP mea-
sured with pulse sequences (n = 46; p < 0.001, Pearson’s r* =
0.26; data not shown), suggesting that it reflected similar mech-
anisms. Furthermore, AV,,-WN also decreased after application
of CdCl, (1.0 = 0.6 mV, n = 6 vs ACSF, —0.9 £ 0.4 mV; p =
0.026, Wilcoxon’s test) (Fig. 7G) and of ame5HT (0.8 = 0.8 mV,
n=9vs ACSF, —1.5 = 0.7 mV; p = 0.03, paired ¢ test) (Fig. 7H ).
(However, AV, -WN values were sometimes positive rather than
negative, suggesting contributions from other slowly activating
mechanisms beyond the sAHP, such as afterdepolarizations.)
Most importantly, AV, -WN did not correlate with the adapta-
tion ratio any better than did the sSAHP evoked by pulse sequences
(methylsulfonate recordings, n = 30; p = 0.014; Pearson’s r* =
0.20; data not shown; adaptation ratio vs pulse-evoked sAHP
shown in Fig. 7F). Thus, sAHPs evoked by pulse sequences pro-
vided a good measure of the overall voltage modulation caused by
slowly activating currents. This implies that, out of those cur-
rents, calcium-dependent SAHP currents were the main contrib-
utor to adaptation to white noise stimulus statistics.

For independent confirmation of the dominant role of these
currents, we further tested a subset of neurons (n = 4) with
extended-duration current stimuli designed specifically to evoke
slower-activating potassium currents (>2 s), such as sodium-
dependent potassium currents. Stimuli were current pulses with
a duration of 20 s; the protocol was adapted from Descalzo et al.
(2005). We found no significant hyperpolarization activating
over a slower timescale (data not shown).

Weak correlation between adaptation and sodium

current inactivation

Slow inactivation of sodium currents can contribute strongly to
adaptation during maintained stimulation (Powers et al., 1999;
Blair and Bean, 2003; Kim and Rieke, 2003; Miles et al., 2005). In
the cortex, long-lasting stimuli can generate a significant amount
of slow inactivation, which raises spike thresholds and slows
down spikes (Fleidervish et al., 1996). Sodium current availability
during sustained spiking can be strongly affected by inactivation,
which can therefore impact repetitive firing more than it does
individual action potential waveforms (Madeja, 2000). One vari-
able that is a direct function of availability and thus provides a
convenient surrogate measure is the voltage threshold for spike
firing (Kim and Rieke, 2003). We therefore measured spike
thresholds (see Materials and Methods) and found that they dif-
fered clearly across high- and low-variance epochs for rectified
stimuli: high-variance thresholds were higher (for an example,
seeright trace in Fig. 2A). Across neurons, the difference between
high- and low-variance threshold at steady-state ranged between
land 19 mV (mean = SEM of 7.0 = 0.5 mV; n = 59). We found
no significant correlation between the magnitude of differences
in threshold and the magnitude of the adaptation ratio (n = 58;
p = 0.51; Spearman’s p> = 0.0077). This indicates that slow
sodium current inactivation did not play a significant role in
barrel cortex adaptation, at least within the range of firing fre-
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Figure 8. Weak correlation between adaptation and sodium current inactivation. Plot
shows data from responses to rectified stimuli in the presence of ame5HT (n = 9). The adap-
tation ratio value of each neuron is plotted against the corresponding difference in spike thresh-
old between high- and low-variance epochs (AVy, ). Although these data showed a correlation
between adaptation ratio and AV, overall data using standard ACSF did not.

quencies examined. We did find a correlation between the mag-
nitude of differences in threshold and the magnitude of adapta-
tion for recordings in the presence of ame5HT (1 = 9; p = 0.047;
Pearson’s 7> = 0.45) (Fig. 8). This suggests that there may be a
small effect of inactivation that is occluded when other adaptive
mechanisms (namely, the sSAHP) are intact.

Discussion

We have shown that the intrinsic properties of barrel cortex neu-
rons can sustain adaptive gain rescaling that makes responses
invariant to the scale of the current stimulus distribution. This
form of adaptation adjusts the “operating point” of the neurons
(Ringach and Malone, 2007) and is similar phenomenologically
and functionally to adaptation to stimulus statistics in vivo (Ma-
ravall et al., 2007). The behavior is associated with mechanisms
that are widespread across neurons but is highly sensitive to the
form of stimulation; the crucial requirement is that neurons re-
ceive rectified inputs.

Intrinsic gain regulation

The gain of the responses of cortical neurons to a specified signal
depends on synaptic background noise (Harsch and Robinson,
2000; Chance et al., 2002; Fellous et al., 2003; Mitchell and Silver,
2003; Rauch et al., 2003; Shu et al., 2003). Recently, Higgs et al.
found that intrinsic mechanisms regulate how background noise
affects the gain of responses to a parametrically varying mean DC
signal (Higgs et al., 2006). Neurons can also modulate their sen-
sitivity to fluctuations (i.e., noise) over a range of changes in
stimulus mean (i.e., signal) (Arsiero et al., 2007). Our present
findings show that intrinsic mechanisms can modulate neuronal
gain under changes in the distribution of sensory inputs, when
signal and noise are not identified a priori.

Intrinsic mechanisms of adaptation

Adaptation to rectified stimuli was reduced by blocking calcium-
dependent currents (Fig. 7C); moreover, the correlation between
calcium-dependent sAHP and adaptation ratio was strong (Fig.
7F). These experiments suggest a link between barrel cortex ad-
aptation to stimulus statistics and the expression of a particular
ionic current. A recent study involving simulations of model neu-
rons with a calcium-dependent sSAHP predicted that the sSAHP
may drive adaptation caused by changes in mean but is not acti-
vated by pure changes in variance (Garcia-Lazaro et al., 2007).
Although the stimulation protocols are not directly comparable,
our experimental results show stimulus-specific adaptation cor-
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related with sSAHP magnitude and thus appear at least partially
consistent with this prediction.

The sAHP did not fully explain adaptation: significant adap-
tation remained after the sAHP was abolished by CdCl, (Fig.
7B, C), and variations in sSAHP magnitude accounted for 32% of
the variance in adaptation ratio value (Fig. 7F). Recent work
shows that, in cortical pyramidal neurons, sSAHP magnitude and
the gain of responses to DC stimuli are correlated by a similar
amount (r* = 0.23) (Higgs et al., 2006).

Other known intrinsic mechanisms covaried weakly, at best,
with adaptation. There was no evidence of participation of
sodium-dependent potassium currents. Also, spiking thresholds
differed in high- and low-variance stimulation periods, a result
suggestive of sodium current inactivation; however, differences
in threshold across periods did not covary with adaptation
magnitude.

Other authors have found no evidence that intrinsic mecha-
nisms participate in adaptation to discrete, repeated whisker dis-
placements (Chung et al., 2002; Katz et al., 2006). Adaptation can
depend on the details of the stimuli: intrinsic mechanisms may be
activated to different degrees by different forms of stimulation.
For example, slowly activating currents may fail to be recruited by
sequences of discrete, well separated short whisker
displacements.

Association between adaptation and gain rescaling

Rate adaptation to rectified stimuli over several hundred milli-
seconds was associated with full gain rescaling, i.e., gain rescaling
that compensated for changes in stimulus distribution range
(Figs. 2-5). In other systems, adaptation over hundreds of milli-
seconds can accompany a tonic shift in membrane potential con-
sistent with sSAHP currents or slow inactivation of sodium cur-
rents, whereas changes in filter shape or in gain depend on faster
mechanisms (Fairhall et al., 2001; Baccus and Meister, 2002; Na-
gel and Doupe, 2006) (for review, see Wark et al., 2007). In fact,
gain rescaling can be fast enough to be accounted for by fixed
nonlinearities associated with spiking and acting within the time-
scale of the filter itself rather than true alterations in the stimulus—
response relationship of the neurons (Aguera y Arcas and Fairh-
all, 2003; Borst et al., 2005; Nagel and Doupe, 2006; Gaudry and
Reinagel, 2007). Gain rescaling attributable to generic nonlinear
behavior could occur even in neurons expressing negligible rate
adaptation, including simplified integrate-and-fire model neu-
rons (Rudd and Brown, 1997; Aguera y Arcas and Fairhall, 2003;
Paninski et al., 2003; Borst et al., 2005; Yu et al., 2005; Gaudry and
Reinagel, 2007). There is no direct evidence in our data on
whether rate adaptation and full gain rescaling had common or
separate mechanisms, although partial gain rescaling occurred
even when rate adaptation was small or negligible (Figs. 3A,E,
5B,C), consistent with previous results (Paninski et al., 2003).
However, we only found full gain rescaling under the same con-
ditions as rate adaptation, namely, under rectified stimuli whose
mean and variance switched jointly. Furthermore, neurons lack-
ing full rescaling (counterexamples to generic gain rescaling) are
found experimentally in barrel cortex (Maravall et al., 2007) and
in the trigeminal ganglion and ventroposterior medial thalamic
nucleus (A. Alenda, M. Brambilla, M. Bale, R. S. Petersen, and M.
Maravall, unpublished observation). Together, this evidence sug-
gests that full gain rescaling depends nontrivially on stimulation
mode and occurs under circumstances that also induce rate ad-
aptation, whereas partial rescaling may be a generic property of
spiking neurons.
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Stimulation regimen

Our recordings explored a “noise-dominated regimen” in which
fluctuations in current, rather than its mean value, were the main
factor driving neurons; spikes were evoked in an irregular, ongo-
ing manner (Maravall et al., 2007). Barrel cortex membrane po-
tential trajectories are highly irregular in both the anesthetized
and awake states (Margrie et al., 2002; Petersen et al., 2003; Sach-
dev et al., 2004; Crochet and Petersen, 2006; Waters and Helm-
chen, 2006): wakeful periods of active whisking generate small,
fast fluctuations in membrane potential that depend on whisker
position (Crochet and Petersen, 2006). However, it was beyond
the scope of this study to reproduce differences between anesthe-
tized, awake passive and awake, actively exploring states (Crochet
and Petersen, 2006).

In the noise-dominated regimen, changes in mean stimulus
magnitude did not evoke appreciable changes in steady-state fir-
ing rate (Fig. 5A). This contrasted with the ample dynamic range
of cortical neurons when the magnitude of noise is small com-
pared with the range of variations in mean (Higgs et al., 2006).
Thus, neuronal input—output functions were strongly dampened
by noise, an idea that fits in with known results (Destexhe et al.,
2001; Chance et al., 2002; Fellous et al., 2003; Rauch et al., 2003;
Shu et al., 2003). However, neurons reliably and precisely re-
ported changes in stimulus mean (Fig. 5A) as well as in variance.
This agrees with suggestions from previous experiments and with
predictions from modeling studies (Silberberg et al., 2004;
Fourcaud-Trocme and Brunel, 2005).

The stimuli used in this study were far from saturating neu-
rons. This was supported by the lack of change in filter waveforms
with switches in stimulus distribution, which agreed with our
findings in vivo (Maravall et al., 2007) and with behavior in other
systems under stimuli that switch variance with no change in
mean (Nagel and Doupe, 2006). This similarity between slice and
in vivo findings is consistent with the idea that sensory whisker
stimuli rarely saturate cortical neurons. Indeed, in vivo intracel-
lular studies have shown that barrel cortex activity is sparse (Mar-
grie etal., 2002; Petersen et al., 2003; Sachdev et al., 2004; Crochet
and Petersen, 2006; Waters and Helmchen, 2006). Because re-
sponses in barrel cortex appear to be far from saturation, its
avoidance is probably not a critical function of adaptive gain
rescaling (Ringach and Malone, 2007).

Functional implications for vibrissa motion encoding

If adaptive gain rescaling is not needed to avoid saturation, what
functions might it have? One possibility is that adaptation under-
lies normalization of texture encoding. Rodents can modulate the
overall amplitude and speed of whisking (for review, see Kleinfeld
et al., 2006). During damped whisker motion, cortical neurons
represent texture identity by responding to the whisker vibration
patterns induced as whiskers sweep across the texture (Arabza-
deh et al., 2005, 2006). Ideally, texture perception should be in-
variant to the details of the whisking motion with which the
texture is explored; responses underlying discrimination should
carry information specific to the texture. Adaptation could help
neurons achieve this by making responses to texture-induced
whisker vibrations invariant to the overall scale of the whisking
motion, which does not provide texture-specific information
(Maravall et al., 2007).

Adaptive gain rescaling is favored by rectified inputs. Rectifi-
cation is experimentally found in vivo under white noise stimu-
lation and corresponds to symmetric directional selectivity (Ar-
abzadeh et al., 2005; Hasenstaub et al., 2007; Maravall et al.,
2007). Rectification of whisker synaptic inputs may be frequency
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dependent, occurring when stimuli contain relatively high fre-
quencies (~100-200 Hz) (Puccini et al., 2006). Such frequencies
are reached by whisker vibrations during texture contact (Ar-
abzadeh et al., 2005) but not during free whisking, which occurs
at 5-25 Hz. Because rectification favors gain rescaling, its fre-
quency dependence could also make gain rescaling in down-
stream neurons frequency dependent. If so, full rescaling would
be prominent during texture discrimination, whereas responses
during free motion would depend on overall whisking amplitude.
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