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This work investigates the influence of aluminium, in solid solution, on austenite formation in a low-

carbon aluminium alloyed (0.48 wt. %) steel during continuous heating. A thin section across an 

untransformed ferrite and austenite interface was prepared for transmission electron microscopy by 

focused ion beam milling.  Microstructural characterization using imaging and elemental analysis 

demonstrates that aluminium partitions from austenite to ferrite during very slow heating conditions, 

stabilizing this latter phase and shifting the final transformation temperature for austenite formation (Ac3). 
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1.Introduction 

Austenite formation is an important and much studied process in steel research, being intensively 

investigated in low and medium carbon steels..  In ferritic-pearlitic steels this process can be split into 

two: nucleation of austenite in pearlitic colonies with rapid growth of austenite consuming pearlite 

followed by the slower growth of austenite consuming ferrite [1-6]. Studies of the effect of substitutional 

elements such as manganese and chromium on austenite formation have shown that they slow down the 

transformation when partitioning of the elements occurs during austenitization [2, 3]. There has been little 

research concerning the effect of aluminium as a substitutional element in steel in amounts higher than 

0.1 wt. % despite a general awareness that Al is a ferrite stabilizer and tends to expand the ferrite + 

austenite phase field of the equilibrium phase diagram. This could be due to technological concerns over 

the production of high Al-content steels. Commercial interest has emerged recently with studies on Al 

additions, of the order of 0.5–2 wt.%, to low carbon high strength strip steels to produce a multi-phase 



microstructure containing retained austenite for cold forming applications [7-10]. There is still limited 

knowledge regarding the role of Al as a solute in such steels; work is required to understand its influence 

on phase transformations and microstructures. This study investigates the influence of Al in solid solution 

on austenite formation during continuous heating. 

2. Experimental procedure 

Steels with a base composition of: 0.02 wt.% C, 1.41 wt.% Mn, 0.001 wt.% N and different 

concentrations of aluminium: 0.02 wt.% (Steel E) and 0.48 wt.% (Steel F) were produced. The initial 

microstructure of the steel is ferritic with some small pearlite islands. For more details regarding the 

processing, microstructure and sample preparation readers are referred to other publications [11-14]. A 

high resolution dilatometer (Adamel Lhomargy DT1000) was employed to determine the critical 

transformation temperatures for the end of the austenite formation process (Ac3); samples of 12 mm in 

length and 2 mm in diameter were continuously heated at 0.05 °C/s and 7 °C/s.  

3. Results and discussion  

Table 1 displays the Ac3 temperature determined from dilatometry plots, for the two heating conditions.  

The addition of 0.48 wt % Al increases Ac3 from ~910 to 987-1025 
o
C, consistent with Al acting as a 

ferrite stabilizer and expanding the ferrite + austenite phase field. The Al-alloyed steel (F), has an Ac3 that 

is very sensitive to the applied heating rate, in contrast to steel E. For steel F, the Ac3 increases (from 987 

to 1026 
o
C) with a slower heating rate. Previous work on the effect of heating rate on Ac3 in low and 

medium steels without Al show the opposite, a faster heating rate gives a higher Ac3 since a faster heating 

rate takes the steel from equilibrium conditions [1, 15]. The most likely interpretation for the observation 

here is the diffusion or partitioning of Al to the untransformed ferrite grains, delaying their transformation 

to higher temperatures. Thus, at temperatures close to Ac3 a greater concentration of Al is expected in the 

untransformed ferrite grains of an Al-rich steel (steel F); this would be most prominent at a slow heating 

rate (such as 0.05 °C/s) since this allows Al time to diffuse and partition. We have investigated Al levels 

(by energy dispersive X-ray spectroscopy [EDX] in TEM) in an untransformed ferrite grain and a former 

austenite grain of the partially transformed steel F (details below). It is well known that during 

austenitization heat treatment, partitioning of alloying elements may occur, that the extent is dependant on 

the relative solubilities in austenite and ferrite and that this phenomenon can affect the transformation 

kinetics in steel [2, 3]. It is well documented that annealing in the ferrite-austentite phase region can 

produce  Mn partitioning [16, 17] however, there is little literature concerning partitioning of Al during 

the austenitization process. Koo et. al. [18] have shown that Al partitions under certain heating conditions 

during intercritical annealing (ferrite/austenite region) of steels alloyed with 1 wt.% Al and 



Amirthalingam et.al.[19] have shown higher concentrations of Al in ferrite grains in welded, high silicon 

and high aluminium TRIP steels. 

To study the austenite/ferrite interface in the Al added steel (F), a specimen (2 cm cube) was heated 

continuously at 0.05 °C/s up to 970 °C and water quenched to room temperature. Standard metallographic 

procedures were carried out to reveal the microstructure (Fig. 1a). To ensure a TEM thin foil sample 

containing an appropriate untransformed ferrite and former austentite boundary was produced site-

specific focused ion beam (FIB) preparation was utilized. A TEM thin foil (thickness ~60 nm, determined 

by the ratio of inelastic to elastically scattered electrons in the electron energy loss spectrum)  was 

prepared using a FEI NOVA200 dual beam FIB/SEM (Fig. 1b). A 30 keV Ga ion beam was used, and for 

final thinning the beam current was varied from 500 to 50 pA.  An FEI CM200 TEM, fitted with a Gatan 

imaging filter and an Oxford Instruments EDX spectrometer was used to examine the FIB section.. EDX 

spectra were taken in TEM mode with a spot size of ~6 nm diameter (we estimate this increases to 10 nm 

after beam broadening by the specimen) and were quantified using Oxford Instruments’ ISIS software 

(including an appropriate absorption). 

The heat treated steel contains a mixture of large ferrite grains (approximately 10 % of the bulk) and 

relatively fine ferrite grains (approximately 90 % of the bulk; Fig. 1a and b).  Due to the low carbon and 

high Al content of the steel, the hardenability of austenite at temperatures close to Ac3 is extremely low, 

resulting in the unavoidable formation of ferrite, even at cooling rates greater than 300 ºC/s (confirmed 

through dilatometry experiments [14]). Consequently, for this water-quenched specimen, the fine grained 

ferrite is presumed to be formed on quenching austenite grains formed at temperature and the large ferrite 

is presumed to be untransformed ferrite consistent with the volume fraction of ferrite and austenite at 970 

°C based on dilatometry data. We have assumed that the interface between coarse and fine ferrite grains 

represents the interface between an untransformed ferrite and austenite grain at high temperatures and that 

the rapid quench has prevented any Al re-diffusion. This suggests that the rhomboidal indentation shown 

in Fig. 1b is located at the interface between an untransformed ferritic region (Grain A in Figs 1(b-d) and 

2(a, b)) and a transformed, former austenitic region (Grain B). A thin foil of this identified boundary 

region was prepared for TEM by dual beam FIB (Fig. 1c). Electron diffraction confirms that the two 

grains in the FIB section are ferrite (Fig. 1d and 2a).  Atomic lattice imaging of the section revealed a 

sharp grain boundary interface (Fig. 2b). The spatial distribution of Al and Mn respectively across the 

interface was determined by spot EDX (Figs 3a and b). The areal concentration of Al is significantly 

higher in grain A (mean 0.94 +/- 0.06 wt % Al) than grain B (mean 0.53 +/- 0.03 wt % Al). The variation 

in the areal concentrations of Al and also Mn could be either due to the fact that the Al and Mn 

distribution is inhomogenous within ferrite or, following the assumptions above, that we are examining 



the dynamic at-temperature transformation interface. If the latter, such a distribution would be expected if 

partitioning/diffusion of Al into the untransformed ferrite phase is taking place at high temperature. 

MTData [20] calculations indicate that the equilibrium Al concentration in both grains should be lower 

(grain A 0.7 wt % and grain B 0.48 wt %) and may be the case if observed at greater distances from the 

interface (i.e. in the bulk).  The corresponding concentration profile for Mn is inverse to that for Al (i.e. it 

increases from grain A to B) as, in contrast to Al, Mn is an austenite stabilizer and so partitions to 

austenite (Fig. 3b). EDX elemental analysis was also performed across what is presumed to be a former 

austenite/austenite interface (in the region indicated with an arrow in Fig. 1a) and Fig. 3c shows the areal 

concentration profile of Al across this interface. As expected, the results do not show any significant 

difference in the level of Al between these two former austenite grains and is similar to the base 

composition of the steel.  

4. Conclusion 

This investigation shows an increase in Ac3 temperature in the Al alloyed steel during slow (0.05 ºC/s) 

heating as compared with fast (7 ºC/s) heating.  TEM-EDX analysis of an untransformed ferrite and 

former austenite interface shows that the rise in Ac3 is due to partitioning of Al atoms from austenite to 

the untransformed ferrite, so further stabilizing this phase. In addition, the results show that partitioning 

of Mn to austenite takes place during slow heating, consistent with previous studies [2, 3, 16, 17] and is 

expected because Mn is a known austenite stabilizer. 
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Fig. 1 Micrographs of the microstructure of the heat treated Steel F: a) Back scattered electron image; b) 

optical metallography image of an interface between a ferritic region and a former austenitic region 

marked A and B respectively; c) secondary electron image recorded during FIB sectioning of the selected 

area marked by the rhomboid in b; d) FIB section imaged in the TEM at low magnification, grains A and 

B are marked. 

Fig. 2 a) Bright field TEM image of the untransformed ferrite and former austenite interface identified in 

Fig. 1, inset are the selected area electron diffraction patterns from the two grains, both index to ferrite in 

[111] orientation  in grain A and [001] orientation in grain B  b) TEM lattice image showing that the 

interface is atomically abrupt  

Fig. 3 Elemental concentrations (EDX) of Al (a) and Mn (b) across the former austenite/ untransformed 

ferrite interface and Al (c) across a former austenite/austenite interface. 









Table 1 Influence of heating rate on temperature Ac3 for steels E (0.02 wt% Al) and F (0.48 wt% Al) 

 

Heating rate 

0.05 ºC/s 7 ºC/s 

Steel E: Ac3 9107 ºC 9044 ºC 

Steel F: Ac3 10253 ºC 9872 ºC 

 




