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Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal
nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances

Johann Toudert,1,* Lionel Simonot,2 Sophie Camelio,2 and David Babonneau2
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We calculate, in the quasistatic coupled dipole approximation, the analytical expressions of the effective
dielectric tensor of a single layer of polydisperse ellipsoidal nanoparticles with two of their principal axes in the
layer’s plane and embedded in a homogeneous dielectric medium. The organization (isotropic or anisotropic)
and orientation (without or with a preferential in-plane orientation) of the nanoparticles is taken into account,
together with their (possibly correlated) in-plane size, in-plane projected shape, and height distributions. In
particular, we propose to describe the response of a layer of nanoparticles presenting a height distribution by
using a vertically graded effective medium model. The expressions are tested in the case of finely characterized
dielectric/silver/dielectric granular trilayers grown by means of vapor deposition in which the silver coalesced
nanoparticles present correlated in-plane size and in-plane projected shape/height distributions and a moderate
surface coverage of about 25%. A satisfactory quantitative agreement is obtained between the simulated and
measured surface plasmon extinction bands of the metal nanoparticles. This agreement is permitted by the
capability of the effective medium model of taking into account the ellipsoidal shape of the nanoparticles. The
significant role of the size and shape distributions is also demonstrated.
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I. INTRODUCTION

Nanoparticles (NPs) are known to present optical properties
strongly different from those of the corresponding bulk mate-
rials. In particular, the confinement of conduction electrons in
metal NPs gives rise to localized surface plasmon resonance
(SPR) modes,1 which are responsible for a strong absorption
of light,1 the enhancement of the electromagnetic field around
the NPs (near field)2 and of the scattering to the far field.1

These features make metal NPs interesting candidates for the
development of thin films-based all-optical integrated devices.
Nanocomposite thin films made of metal NPs supported on a
substrate or embedded in a homogeneous dielectric medium
can be tailored to present tunable SPR extinction bands in the
visible, near-infrared or near-ultraviolet range,3,4 a high non-
linear third-order susceptibility,5,6 an ultrafast time response,7

to allow an enhancement or quenching of the luminescence of
nearby emitters8,9 or to trap light in photovoltaic media.10 It
is well known that the optical response of such thin films
is strongly affected by their nanostructure (nature,1 size,1

shape,1,3,4 organization,1,11–13 dielectric environment of the
NPs1,14). Designing such materials with an optimized optical
response therefore requires addressing the influence of the
different structural parameters. For this purpose, plenty of
experimental and theoretical works were undertaken, leading
to the development of models and methods permitting to link
nanostructure and optical response. Such models and methods
are also needed for the determination of the nanostructure
from noninvasive optical measurements such as spectroscopic
ellipsometry,15,16 differential reflectance spectroscopy,17,18

optical transmittance,11 or scattering measurements.19 The
early calculations of Mie1,20 permitted the determination of
the optical response of metal spheres of various sizes in
the framework of classical electrodynamics. More recently,

classical numerical methods, based on a modal decomposition
of the electromagnetic fields or potentials (T matrix21 and
multiple multipole22 methods) or on volume discretization
(discrete dipole approximation,23,24 finite element method,25,26

finite difference time domain25,26) or surface discretization
(surface integral methods such as the boundary element
method27,28), were used to compute accurately the optical
response of metal NPs of various shapes, sizes, either isolated
or forming dimers or more complex aggregates. Quantum
approaches supported the study of the optical extinction of
very small NPs (diameter lower than 5 nm)29 for which a
classical treatment is usually not appropriate, and permitted
a more realistic calculation of the near-field enhancement
at the surface of NPs30 than classical calculations. These
methods are, nevertheless, time and resources consuming,
and their use is generally restricted to systems involving
a small number of NPs. In the case of larger systems,
such as thin films consisting of a statistical assembly of
supported or embedded interacting NPs, approximations are
usually made. The effect of interactions between radiating
NPs arranged in 2D periodic arrays with a low or moderate
surface coverage was reasonably described using the coupled
dipole approximation,13 where each NP is considered as a
point dipole. The point dipole approximation is also at the
basis of many effective medium models, which hold when
the NPs are much smaller than the wavelength of the light,
so that they do not significantly scatter and fulfill quasistatic
conditions. In this small-size limit, it is usually claimed that a
heterogeneous nanocomposite material can be considered as a
homogeneous medium whose macroscopic optical response is
described by an effective dielectric tensor. Effective medium
theories were developed for a 3D31–35 or a 2D organization36,37

of the NPs. In the frequently encountered case of single
layers of NPs (2D organization), the simplest method was
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proposed by Yamaguchi et al. three decades ago.36 The
NPs were first assumed to be monodisperse, distributed at
the nodes of a square lattice, supported on a substrate or
embedded in a homogeneous dielectric medium and to present
a spheroidal shape (with the revolution axis perpendicular to
the NPs layer plane). They were considered as interacting point
dipoles and, when supported, the influence of the substrate
was taken into account by image dipole effects. This model
was shown to fail in describing rigorously the NP-substrate
interaction,38,39 and the interaction between closely packed
NPs22 (high surface coverage), which involve multipolar
contributions to the quasistatic electric potential. In addition,
it requires defining an optical thickness for the single layer
of NPs, whose exact value is linked to the features of the 2D
array of NPs.40–42 An alternative and more general effective
medium approach suitable to the case of nanocomposite thin
films, and rubbing out the concept of optical thickness, was
proposed by Bedeaux and Vlieger, in the framework of the
surface susceptibility method.40–42 It permits, for instance,
to deal with 2D polydisperse assemblies of NPs distributed
homogeneously and isotropically on a substrate or in a
homogeneous medium, and presenting correlated sizes, shapes
and positions. It was then mainly applied to monodisperse
spheroidal or truncated spheroidal supported NPs (with their
revolution axis perpendicular to the substrate) whose optical
response was calculated using multipolar expansions of the
quasistatic electric potential.42–46 In contrast, little has been
done using the surface susceptibility method regarding poly-
disperse ellipsoidal NPs,47 which are nevertheless frequently
encountered in nanocomposite thin films.48,49 Indeed, the
GRANFILM code,50 based on the Bedeaux and Vlieger’s
approach, only permits calculations for supported NPs with
a revolution axis perpendicular to the substrate and ignores
the effects of size and shape distributions, together with their
possible correlations. Due to its complex parameterization, the
implementation of the full polydisperse Bedeaux and Vlieger’s
model does not seem to be straightforward, thus making
the development of more specific models desirable. To our
knowledge, little has been reported about easily implementable
effective medium models suitable for the case of single layers
of polydisperse ellipsoidal NPs, with two of their principal
axes being in the layer’s plane.51 Especially, the influence of
a polydisperse height distribution of the NPs, which may be
correlated to their in-plane effective size and in-plane projected
shape in real systems, has not been examined so far.

In this paper, we thus calculate, in the quasistatic coupled
dipole approximation, simple analytical expressions giving the
effective optical response of a single layer of NPs embedded
in a homogeneous dielectric medium (as it is the case when
the NPs are sandwiched between two dielectric layers having
the same dielectric function) with as few additional approxi-
mations as possible. We will first present the calculations in
a general case of ellipsoidal NPs with two of their principal
axes in the layer’s plane. The height of these NPs will be fixed
and the length of their in-plane axes will be considered as
polydisperse. No assumption will be made about their in-plane
organization and orientation (see Sec. II). The calculation will
then be derived to match the specific case of polydisperse NPs
with a random in-plane orientation and an isotropic in-plane or-
ganization, together with a fixed height and correlated in-plane

size and in-plane projected shape distributions (see Sec. III).
It will then be extended to NPs with a polydisperse height
distribution—correlated to the in-plane polydispersity—the
single layer of NPs being tentatively described in that case
by a vertically graded effective medium (see Sec. IV). The
influence of the different structural parameters on the SPRs of
metal NPs will then be studied from simulations (see Sec. V).
Vapor-deposited dielectric/Ag/dielectric granular trilayered
films, in which the previous conditions are satisfied (poly-
dispersity with in-plane size/in-plane projected shape/height
correlation, random in-plane orientation and isotropic in-plane
organization of the NPs) and with a moderate surface coverage
of about 25%, will finally be used as model materials to test
the theory (see Sec. VI). Transmission electron microscopy
(TEM) on these films provides accurate input parameters for
the calculations, the results of which will be compared to
experimental optical transmittance data, displaying marked
SPRs sensitive to the NPs sizes and shapes.

II. GENERAL CALCULATION: ELLIPSOIDAL
NPS WITH IN-PLANE POLYDISPERSITY

AND CONSTANT HEIGHT

A. Hypothesis and method

Effective medium modeling consists in considering a
heterogeneous material as a homogeneous medium presenting
identical macroscopic physical properties. In the case of a
single layer of NPs with a constant height H embedded in a
homogeneous dielectric medium, the common sense leads to
consider that the effective medium is a homogeneous thin
layer of (optical) thickness t . For monodisperse spherical
NPs, we showed theoretically that it is legitimate to take
t = H for calculating usual measurable quantities such as
optical transmittance or absorbance52 at normal incidence,
provided the effective medium model is adequately chosen.
In an analogous way, we will assume in the following that the
thickness of the effective medium layer representing a single
layer of polydisperse NPs with a constant height H can be
taken equal to H , as depicted in Fig. 1(a).

FIG. 1. (a) Schematic representation of a 2D assembly of NPs
embedded in a homogeneous dielectric medium, in top view and
cross-section view. M is the point at which the local electric field has
to be calculated. The in-plane axes aj and bj of a given j th particle
are shown. All the NPs are supposed to present the same height H ,
which is also the thickness chosen for the effective medium layer.
(b) Top view of the j th NP and orientation of its set of axes.
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The macroscopic optical response of this homogeneous
layer is linked to the nanostructure of the single layer of NPs
by the effective dielectric tensor [εeff], whose expression has
to be determined. When the NPs are dispersed in a homoge-
neous dielectric medium whose dielectric function is εm, the
following relation links the macroscopic electric field E to the
macroscopic polarization P of the nanocomposite material:

P = ε0([εeff] − εm)E. (1)

P is a consequence of polarization events at the nanometer
scale, dominated by the polarization of the NPs. Each of them
is assumed to fulfill the quasistatic conditions and to be excited
by an electric field homogeneous over its whole volume, and
will thus be considered as the superposition of three point
dipoles (one oriented along each of its axes) located at its
mass center. This point dipole approximation is correct for
describing the far-field response of a small isolated ellipsoidal
NP.53 Nevertheless, it fails for deriving properly the electric
field at a short distance from the NP.38 We assume that the
interparticle distances involved in this paper are large enough
so that the point dipole picture is sufficient for describing the
interactions between NPs. In the general case of polydisperse
systems, the NPs can be sorted into classes k of identical
entities (same size, shape and orientation) of given dipolar
momentum pk; one can thus write

P = �Nkpk. (2)

In this equation, Nk is the number of NPs of the class k per
volume unit. The dipolar momentum pk of a given NP is
linked to its polarizability tensor per surface unit [αk] (named
hereafter polarizability tensor for the sake of clarity) and to the

local electric field Eloc,k applied on the NP, using the following
relation in which Vk is the volume of the NP:

pk= ε0εmVk [αk] Eloc,k (3)

As it can be seen from Eqs. (1)–(3), the calculation of
the local electric field applied on each NP is mandatory
for determining the macroscopic polarization and [εeff]. The
calculation of [εeff] will therefore be done by the following
method. First, the local electric field created at an arbitrary NP
will be calculated by taking into account the contribution of the
surrounding ones. Since the NPs are assumed to be embedded
in a homogeneous dielectric medium, no contribution from
image dipoles has to be taken into account in the calculation,
in contrast with the case of NPs supported on a substrate.
Then, assuming that the NPs present a homogeneous in-plane
organization, i.e., that each NP experiences the same local
electric field Eloc,k = Eloc, the macroscopic polarization will
be derived as well as [εeff].

B. Calculations

1. Local field created at an arbitrary NP

In order to calculate the local field Eloc created at a given
point M by the 2D assembly of NPs, whose topology is
presented schematically in Fig. 1(a), it is first necessary to
determine the field created by one of the NPs. Figure 1(b)
shows one of them (j th NP), whose in-plane position relative
to M is defined by rj and ϕj . In the (x,y,z) set of axes, the dipolar
momentum of this NP can be written as pj = (pj,x, pj,y, pj,z).
Its nonretarded contribution to the local field at M can be
written in a matrix form:

Eint/pj
= 1

4πε0εmrj
3

⎡
⎢⎣

3cos2ϕj − 1 3cosϕj sinϕj 0

3cosϕj sinϕj 3sin2ϕj − 1 0

0 0 −1

⎤
⎥⎦
⎛
⎜⎝

pj,x

pj,y

pj,z

⎞
⎟⎠ . (4)

By summing the contributions of all the NPs and taking into account the external electric field E0, which is linked to
the macroscopic field E inside the effective layer by the boundary relation (E0x, E0y, E0z) = (Ex,Ey, ε

−1
m εzzEz), one obtains

Eloc = (Eloc,x, Eloc,y, Eloc,z):

⎛
⎜⎝

Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠ =

⎛
⎜⎝

Ex

Ey

ε−1
m εzzEz

⎞
⎟⎠ + 1

4πε0εm

∑
j

⎛
⎜⎝ 1

rj
3

⎡
⎢⎣

3cos2ϕj − 1 3cosϕj sinϕj 0

3cosϕj sinϕj 3sin2ϕj − 1 0

0 0 −1

⎤
⎥⎦
⎛
⎜⎝

pj,x

pj,y

pj,z

⎞
⎟⎠

⎞
⎟⎠ . (5)

In this relation, εzz is the vertical component of the effective dielectric tensor [εeff]. In order to further derive Eloc from
Eq. (5), it is necessary to determine the components of the pj ’s in the (x,y,z) system of axes. The pj ’s verify the relation
pj = ε0εmVj [αj ]Eloc [see Eq. (3)], the components of [αj ] being well known in the (uj,a, uj,b, uj,H ) set of axes attached to
the NP:53

[αj ] =

⎛
⎜⎝

αj,a 0 0

0 αj,b 0

0 0 αj,H

⎞
⎟⎠ . (6)

Since the (uj,a, uj,b, uj,H ) set of axes is simply tilted by an angle θj in the horizontal plane with respect to the (x,y,z) set of
axes, the pj ’s are obtained by introducing the rotation and inverse rotation matrices corresponding to a rotation angle θj . One
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thus obtains

pj =

⎛
⎜⎝

pj,x

pj,y

pj,z

⎞
⎟⎠ = ε0εmVj

⎛
⎜⎝

cosθj −sinθj 0

sinθj cosθj 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

αj,a 0 0

0 αj,b 0

0 0 αj,H

⎞
⎟⎠

⎛
⎜⎝

cosθj sinθj 0

−sinθj cosθj 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠ . (7)

The components of pj can then be written

pj =

⎛
⎜⎝

pj,x

pj,y

pj,z

⎞
⎟⎠ = ε0εmVj

⎛
⎜⎝

Aj,xx Aj,xy 0

Aj,yx Aj,yy 0

0 0 Aj,zz

⎞
⎟⎠

⎛
⎜⎝

Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠ with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Aj,xx = αj,acos2θj + αj,bsin2θj

Aj,xy = (αj,a − αj,b)cosθj sinθj

Aj,yx = (αj,a − αj,b)cosθj sinθj

Aj,yy = αj,asin2θj + αj,bcos2θj

Aj,zz = αj,H .

(8)

The Aj,uv’s carry the information about the j th NP’s in-plane orientation via the θj ’s and about its shape and size, which govern
the components of its polarizability tensor through53

αj,w = εj,w − εm

εm + Lj,w(εj,w − εm)
, with w = a, b, or H. (9)

εj,w are the (possibly size-dependent) dielectric functions of the NP along the axis w and the Lj,w’s are the depolarization factors
of the ellipsoidal NP, which are linked to its shape via the following relation:53

Lj,w =
∫ ∞

0

ajbjHjdX

16
(
X + w2

j

/
4
)√(

X + aj

4
2)(

X + bj

4

2)(
X + Hj

4

2) , (10)

in which aj and bj are the lengths of the in-plane long and short axis of the j th NP, respectively, and Hj (=H ) its height, as
depicted in Fig. 1(a). Now introducing the components of the pj ’s into Eq. (5) and after regrouping the terms, one gets⎛

⎜⎝
Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠ =

⎛
⎜⎝

Ex

Ey

ε−1
m εzzEz

⎞
⎟⎠ +

⎛
⎜⎝

Bxx Bxy 0

Byx Byy 0

0 0 Bzz

⎞
⎟⎠

⎛
⎜⎝

Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bxx = 1
4π

{∑
j

[ Vj

rj
3 [(3 cos2 ϕj − 1)Aj,xx + 3 cos ϕj sin ϕjAj,yx]

]}
Bxy = 1

4π

{∑
j

[ Vj

rj
3 [(3 cos2 ϕj − 1)Aj,xy + 3 cos ϕj sin ϕjAj,yy]

]}
Byx = 1

4π

{∑
j

[ Vj

rj
3 [3 cos ϕj sin ϕjAj,xx + (3 sin2 ϕj − 1)Aj,yx]

]}
Byy = 1

4π

{∑
j

[ Vj

rj
3 [3 cos ϕj sin ϕjAj,xy + (3 sin2 ϕj − 1)Aj,yy]

]}
Bzz = 1

4π

{∑
j

[−Vj Aj,zz

rj
3

]}
. (11)

Equation (11) forms a linear system whose solutions are the components of the local electric field Eloc at an arbitrary point M,
as a function of the macroscopic electric field E and the topology of the surrounding material (given by the Buv’s, that gather all
the information about the NPs shape, size and orientation— through the Aj,uv’s— and about their organization through the rj ’s
and ϕj ’s): ⎛

⎜⎝
Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠ =

⎛
⎜⎝

1 − Bxx Bxy 0

Byx 1 − Byy 0

0 0 1 − Bzz

⎞
⎟⎠

−1 ⎛
⎜⎝

Ex

Ey

ε−1
m εzzEz

⎞
⎟⎠ . (12)

2. Dipolar momentum of one particle excited by the local electric field

It comes from Eq. (12) that the local field Eloc can be written as

⎛
⎜⎝

Eloc,x

Eloc,y

Eloc,z

⎞
⎟⎠ =

⎛
⎜⎝

Cxx Cxy 0

Cyx Cyy 0

0 0 Czz

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

ε−1
m εzzEz

⎞
⎟⎠ with

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cxx = (1−Byy )
(1−Byy )(1−Bxx )−BxyByx

Cxy = Bxy

(1−Byy )(1−Bxx )−BxyByx

Cyx = Byx

(1−Byy )(1−Bxx )−BxyByx

Cyy = (1−Bxx )
(1−Byy )(1−Bxx )−BxyByx

Czz = 1
(1−Bzz)

. (13)
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After combining Eqs. (8) and (13), one obtains the dipolar momentum pk of a given kth NP excited by Eloc:

pk =

⎛
⎜⎝

pk,x

pk,y

pk,z

⎞
⎟⎠ = ε0εmVk

⎛
⎜⎝

Ak,xx Ak,xy 0

Ak,yx Ak,yy 0

0 0 Ak,zz

⎞
⎟⎠

⎛
⎜⎝

Cxx Cxy 0

Cyx Cyy 0

0 0 Czz

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

ε−1
m εzzEz

⎞
⎟⎠ . (14)

After calculating the matrix products, Eq. (14) gives pk as a function of the kth NP’s size (through Vk and the Ak,uv’s), shape
and orientation (through the Ak,uv’s), the topology of the surrounding material (through the Cuv’s) and the macroscopic electric
field E:

pk=

⎛
⎜⎝

pk,x

pk,y

pk,z

⎞
⎟⎠ = ε0εmVk

⎛
⎜⎝

Fk,xx Fk,xy 0

Fk,yx Fk,yy 0

0 0 Fk,zz

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

ε−1
m εzzEz

⎞
⎟⎠ with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fk,xx = Ak,xxCxx + Ak,xyCyx

Fk,xy = Ak,xxCxy + Ak,xyCyy

Fk,yx = Ak,yxCxx + Ak,yyCyx

Fk,yy = Ak,yxCxy + Ak,yyCyy

Fk,zz = Ak,zzCzz

. (15)

3. Macroscopic polarization and effective dielectric tensor

On one hand, from Eqs. (2) and (15), one obtains the macroscopic polarization P as a function of the Fk,uv factors, which are
linked to the size, shape, orientation, and organization of the NPs:

P =
∑

k

⎡
⎢⎣Nkε0εmVk

⎛
⎜⎝

Fk,xx Fk,xy 0

Fk,yx Fk,yy 0

0 0 ε−1
m εzzFk,zz

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠
⎤
⎥⎦. (16)

On the other hand, from Eq. (1), the macroscopic polarization is linked to the effective dielectric function of the nanocomposite
material:

P = ε0

⎛
⎜⎝

εxx − εm εxy εxz

εyx εyy − εm εyz

εzx εzy εzz − εm

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠ . (17)

After combining Eqs. (16) and (17), one obtains the final expression of the effective dielectric tensor of the nanocomposite
material consisting of a single layer of NPs of constant height H and embedded in a homogeneous dielectric medium with a
dielectric function εm:

[εeff] =

⎛
⎜⎝

εxx εxy 0

εyx εyy 0

0 0 εzz

⎞
⎟⎠ =

⎛
⎜⎝

εm

[
1 + ∑

k NkVkFk,xx

]
εm

[∑
k NkVkFk,xy

]
0

εm

[∑
k NkVkFk,yx

]
εm

[
1 + ∑

k NkVkFk,yy

]
0

0 0 εm

[
1 − ∑

k NkVkFk,zz

]−1

⎞
⎟⎠ . (18)

Due to the 2D organization of the NPs, it can be useful to
introduce the surface densities Ns,k of NPs in Eq. (18). Since
the thickness of the effective medium layer is H, one can write
Nk = Ns,k/H . Since no restrictive hypothesis was made on the
in-plane organization and orientation of the NPs, the obtained
formulas are suitable to the case of NPs with a random or
preferential in-plane orientation, distributed isotropically or
at the nodes of an anisotropic array, provided the relation
Eloc,k = Eloc holds. In addition, the summation on k permits
to take in-plane size and in-plane projected shape distributions
into account. In the following section, we apply Eq. (18) to the
case of a polydisperse assembly of ellipsoidal NPs embedded
in a homogeneous dielectric medium with a random in-plane
orientation and an isotropic in-plane organization.

III. APPLICATION: RANDOM IN-PLANE ORIENTATION
AND ISOTROPIC IN-PLANE ORGANIZATION OF NPS

WITH CONSTANT HEIGHT

A. Polydisperse case: NPs with in-plane size/in-plane projected
shape correlation

Embedded NPs grown by vapor deposition techniques
usually display an isotropic in-plane organization, a random
in-plane orientation and present correlated distributions of
their in-plane size and in-plane projected shape.48,49 The
general equations obtained in Sec. II (sets of coefficients Aj,uv ,
Buv , Fk,uv) can be adapted to obtain simple formulas that take
into account these features. The in-plane size of the j th NP is
given by its in-plane effective diameter Dj = (ajbj )1/2, and
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its in-plane projected shape depends on the values of the axes
lengths aj and bj , the values of which are assumed to be
correlated to Dj , following the relations aj = a(Dj ) and bj =
b(Dj ), usually written under the form bj/aj = b/a(Dj ). The
polarizabilities therefore depend on Dj and H . Accordingly,
the Aj,uv coefficients of the j th NP only depend on Dj , H , and
its in-plane orientation (given by θj ). One thus obtains from
Eq. (8),

Axx(Dj,H,θj ) = αa(Dj,H ) cos2 θj + αb(Dj,H ) sin2 θj

Axy(Dj,H,θj ) = [αa(Dj,H ) − αb(Dj,H )] cos θj sin θj

Ayx(Dj,H,θj ) = [αa(Dj,H ) − αb(Dj,H )] cos θj sin θj

Ayy(Dj,H,θj ) = αa(Dj,H ) sin2 θj + αb(Dj,H ) cos2 θj

Azz(Dj,H,θj ) = αH (Dj,H ) (19)

In order to obtain the expression of the Buv coefficients
from Eq. (11), one can assume that the discrete sums over

the NPs j can be replaced by integrals over a 4D space with
NPs position (given by ϕ and r), orientation (given by θ ), and
size (given by D) as coordinates. Knowing the surface density
Ns(r, ϕ, θ,D) of NPs whose coordinates in this 4D space are
r , ϕ, θ , and D, one obtains the number d4Ns(r,ϕ,D,θ ) of NPs
with an in-plane effective diameter between D and D + dD,
an orientation angle between θ and θ + dθ , which are located
inside a small area dS = rdϕdr of the (x,y) plane:

d4Ns(r,ϕ,D,θ ) = Ns(r,ϕ,D,θ )rdϕdrdDdθ. (20)

In the case of a random in-plane orientation and an isotropic
organization of the NPs, one can write

Ns(r,ϕ,D,θ ) = Ns (r) G (D) /2π, (21)

where G(D) is the normalized size distribution of the NPs and
Ns(r) is the number of NPs per unit area located at the distance
r from the central point M, i.e., the pair correlation function.
Equation (11) can thus be written as

Bxx = 1

4π

∫ ∞

r=0

∫ 2π

ϕ=0

∫ ∞

D=0

∫ 2π

θ=0

[
V (D,H )

r3
[(3 cos2 ϕ − 1)Axx(D,H,θ ) + 3 cos ϕ sin ϕAyx(D,H,θ )]

]
NS(r)

1

2π
G(D)rdϕdrdDdθ,

Bxy = 1

4π

∫ ∞

r=0

∫ 2π

ϕ=0

∫ ∞

D=0

∫ 2π

θ=0

[
V (D,H )

r3
[(3 cos2 ϕ − 1)Axy(D,H,θ ) + 3 cos ϕ sin ϕAyy(D,H,θ )]

]
NS(r)

1

2π
G(D)rdϕdrdDdθ,

Byx = 1

4π

∫ ∞

r=0

∫ 2π

ϕ=0

∫ ∞

D=0

∫ 2π

θ=0

[
V (D,H )

r3
[3 cos ϕ sin ϕAxx(D,H,θ ) + (3 cos2 ϕ − 1)Ayx(D,H,θ )]

]
NS(r)

1

2π
G(D)rdϕdrdDdθ,

Byy = 1

4π

∫ ∞

r=0

∫ 2π

ϕ=0

∫ ∞

D=0

∫ 2π

θ=0

[
V (D,H )

r3
[3 cos ϕ sin ϕAxy(D,H,θ ) + (3 sin2 ϕ − 1)Ayy(D,H,θ )]

]
NS(r)

1

2π
G(D)rdϕdrdDdθ,

Bzz = 1

4π

∫ ∞

r=0

∫ 2π

ϕ=0

∫ ∞

D=0

∫ 2π

θ=0

[−V (D,H )

r3
Azz(D,H )

]
NS(r)

1

2π
G(D)rdϕdrdDdθ, (22)

with the volume V of each NP being a function of D and H . After inserting the Auv
′s taken from Eq. (19) into Eq. (22), separating

the integrals and calculating the angular integrals (over θ and ϕ), one gets

Bxx = Byy = 1

8

[∫ ∞

r=0
NS(r)

dr

r2

][∫ ∞

D=0
(αa(D,H ) + αb(D,H ))G(D)V (D,H )dD

]
Byx = Bxy = 0

Bzz = −1

2

[∫ ∞

r=0
NS(r)

dr

r2

][∫ ∞

D=0
αH (D,H )V (D,H )G(D)dD

]
. (23)

The Cuv’s are then obtained from Eq. (13):

Cxx = Cyy = 1

(1 − Bxx)
= 1

(1 − Byy)
= C‖

Cxy = Cyx = 0

Czz = 1

(1 − Bzz)
= C⊥. (24)

The Fuv’s of the central NP (with an effective in-plane diameter D and an in-plane orientation described by θ ) can then be
calculated following Eq. (15):

Fxx(D,H,θ ) = C‖[αa(D,H ) cos2 θ + αb(D,H ) sin2 θ ]

Fxy(D,H,θ ) = Fyx(D,H,θ ) = C‖ cos θ sin θ [αa(D,H ) − αb(D,H )]

Fyy(D,H,θ ) = C‖[αa(D,H ) sin2 θ + αb(D,H ) cos2 θ ]

Fzz(D,H,θ ) = C⊥αH (D,H ). (25)
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The final step of the calculation consists in deriving the components of the dielectric tensor using Eqs. (18) and (25). Since
the Fuv’s only depend on H , D, and θ , the discrete sums over the NPs can be replaced by integrals over the two latter variables.
The number Nk of identical NPs per volume unit is thus the number of NPs with a given value of D and θ per unit of volume.
Introducing the total surface density Ns of NPs (integrated over all the sizes and orientations) and the thickness of the effective
medium layer being assumed to be H (as explained in Sec. II), Nk can be replaced by

N (D,θ ) = NsG (D) /(2πH ). (26)

One then obtains from Eqs. (18), (25), and (26) the components of the dielectric tensor:

εxx = εyy = εm

[
1 + NSC‖

2πH

∫ 2π

θ=0

∫ ∞

D=0
G(D)V (D,H )[αa(D,H ) sin2 θ + αb(D,H ) cos2 θ ]dDdθ

]

εxy = εyx = εm

[
NSC‖
2πH

∫ 2π

θ=0

∫ ∞

D=0
G(D)V (D,H ) cos θ sin θ [αa(D,H ) − αb(D,H )]dDdθ

]

εzz = εm

[
1 − NSC⊥

2πH

∫ 2π

θ=0

∫ ∞

D=0
G(D)αH (D,H )V (D,H )dDdθ

]−1

. (27)

In these expressions, the C factors account for interactions in the layer of NPs, whereas the integrals take into account their
in-plane size and in-plane projected shape distributions. After replacing these factors, using Eqs. (23) and (24) and integrating
over θ , the final expressions of the dielectric functions can be obtained:

εxx = εyy = εm

[
1 +

NS

H

∫ ∞
D=0 G(D)V (D,H ) [αa(D,H ) + αb(D,H )] dD

2
(
1 − 1

8

[∫ ∞
r=0 NS(r) dr

r2

] {∫ ∞
D=0 G(D) [αa(D,H ) + αb(D,H )] V (D,H )dD

})
]

= ε‖

εxy = εyx = 0

εzz = εm

[
1 −

NS

H

∫ ∞
D=0 G(D)αH (D,H )V (D,H )dD

1 + 1
2

[∫ ∞
r=0 NS(r) dr

r2

] [∫ ∞
D=0 G(D)αH (D,H )V (D,H )dD

]
]−1

= ε⊥. (28)

B. Monodisperse case

Equation (27) can be simplified in order to obtain the dielectric functions for identical ellipsoidal NPs embedded in a
homogeneous dielectric medium with an isotropic in-plane organization and random in-plane orientation. This time, the
polarizabilities can be expressed directly as a function of a, b, and H :

εyy = εxx = εm

{
1 + NSC‖

H
V [αa(a,b,H ) + αb(a,b,H )]

}
= ε‖

εxy = εyx = 0

εzz = εm

[
1 − NSC‖

H
V αH (a,b,H )

]−1

= ε⊥. (29)

In order to calculate the C factors in Eqs. (27) and (29), one has to express the pair correlation function Ns (r). Rigorously, it
accounts for the short-range and long-range ordering of the NPs and can be taken from the literature.54 Nevertheless, since the
calculations are based on dipole-dipole interactions, the most relevant parameter is the distance between neighbor NPs. The C

factors can thus be simplified by introducing the mean interparticle distance �‖ and assuming that the surface density Ns (r) is
equal to 0 for r < �‖ and is equal to Ns for r>�‖:∫ ∞

r=0
NS(r)

dr

r2
=

∫ ∞

r=�‖
NS

dr

r2
= NS

�‖
. (30)

By writing explicitly the C coefficients in Eq. (29) using Eq. (30), one gets

εyy = εxx = εm

(
1 + NS

V
H

[αa(a,b,H ) + αb(a,b,H )]

2
{
1 − V

8
NS

�‖
[αa(a,b,H ) + αb(a,b,H )]

}
)

= ε‖

εxy = εyx = 0

εzz = εm

[
1 − NSαH (a,b,H ) V

H

1 + V
2 αH (a,b,H )NS

�‖

]−1

= ε⊥. (31)

045415-7



TOUDERT, SIMONOT, CAMELIO, AND BABONNEAU PHYSICAL REVIEW B 86, 045415 (2012)

FIG. 2. (a) Schematic representation of a single layer of polydis-
perse NPs with correlated in-plane size, in-plane projected shape, and
height distributions. (b) Effective medium corresponding to NPs with
a bidisperse height distribution. (c) Effective medium corresponding
to a continuous height distribution.

After a few maths, the expression of ε‖ in Eq. (31) yields a
surface susceptibility equivalent to that obtained in Ref. 47. Let
us moreover note that, if we assume a monodisperse system
of spheroidal NPs (a = b and thus αa = αb), Eq. (31) leads
to the Yamaguchi formulas36,38 written to match the case of
NPs embedded in a homogeneous dielectric medium51,52 (i.e.,
with no image dipole field contributions) and with an isotropic
in-plane organization.52

IV. EXTENSION: RANDOM IN-PLANE ORIENTATION
AND ISOTROPIC IN-PLANE ORGANIZATION OF NPS

WITH POLYDISPERSE HEIGHT DISTRIBUTION

It has been shown48,49 that coalesced NPs embedded in a di-
electric medium, grown by vapor deposition, present a polydis-
perse height distribution correlated to their in-plane size and in-
plane shape distributions [see Fig. 2(a)]. In order to achieve a
realistic modeling of the optical response of such polydisperse
systems of NPs, one thus has to take into account the height dis-
tribution. For this purpose, we develop here an approach based
on a graded effective medium modeling, in the case of a ran-

dom in-plane orientation and isotropic in-plane organization
of the NPs. As a typical example, let us first consider a single
layer of NPs with a bidisperse height distribution [as shown in
Fig. 2(b)], the NPs of the first class (respectively, second class)
presenting in-plane axes lengths a1 and b1 (respectively, a2

and b2) and a height H1 (respectively, H2). If taken separately,
the single layer of NPs of the first class (respectively, second
class) could thus be modeled as an effective layer of thickness
t1 = H1 (respectively, t2 = H2 > H1) with the corresponding
in-plane dielectric functions being derived from Eq. (29):

ε‖,1 = εm + εm

NS,1C‖,1
H1

V1 [αa(a1,b1,H1) + αb(a1,b1,H1)]

ε‖,2 = εm + εm

NS,2C‖,2
H2

V2 [αa(a2,b2,H2) + αb(a2,b2,H2)] .

(32)

Under this form, the effective dielectric functions in Eq. (32)
consist of a sum of two contributions: one from the dielectric
medium, one from the NPs that tends toward zero when the NPs
surface density decreases. The second term in both sums can
thus be seen as an “excess quantity” that makes the effective
dielectric function depart from that of the dielectric medium.
Now, when considering the bidisperse single layer of NPs as
a whole, one has to take into account the excess quantities
related to both classes of NPs. More precisely, we will derive
the effective response of the bidisperse single layer of NPs from
a superposition of the excess quantities related to both classes
of NPs. Following the assumptions made previously (t1 = H1

and t2 = H2), we will sum the contributions of both classes of
NPs in a bottom layer of thickness H1 (i.e., for 0 < z < H1),
and only that of the second class will be considered in a top
layer of thickness H2-H1 (i.e., for H1 < z < H2), as depicted
in Fig. 2(b).

Then, assuming that C‖,1 = C‖,2 = C‖, i.e., that each NP
interacts with NPs of both classes in an undifferentiated way,
one obtains the in-plane effective dielectric functions in the
two layers:

ε‖(0,H1) = εm + εmNSC‖
∑
k=1,2

GkVk

Hk

[αa(ak,bk,Hk) + αb(ak,bk,Hk)] for 0 < z < H1

ε‖(H1,H2) = εm + εmNSC‖
G2V2

H2
[αa(a2,b2,H2) + αb(a2,b2,H2)] for H1 < z < H2, (33)

where Ns is the total surface density of NPs, and G1 = NS,1/NS (G2 = NS,2/NS) is the fraction of NPs of the first (second)
class. Let us note that, due to the different height of the NPs of the first and second classes, the corresponding dipoles are located
in two distinct planes (z = H1/2 and z = H2/2). In the conditions chosen for this paper, the distance between the two planes
has an insignificant effect on the (weak) interaction between NPs, and can thus be neglected compared to the projected in-plane
interparticle distance. One can then calculate the C‖ as in Sec. III B with �‖ being the projected in-plane interparticle distance.
This approach can be generalized to an unlimited number kmax of classes k, assuming a correlation between the height Hk , the
in-plane projected shape and the in-plane effective diameter Dk of the NPs. The fraction, volume and polarizabilities of the NPs
of the kth class can thus be written G(Dk),V (Dk),αa(Dk), and αb(Dk), respectively, and one gets, in the thin layer verifying
H (Dn) < z < H (Dn+1):

ε‖(H (Dn),H (Dn+1)) = εm

{
1 + NSC‖

kmax∑
k=n+1

G(Dk)V (Dk)

H (Dk)
[αa(Dk) + αb(Dk)]

}
. (34)

Then, in the continuous limit, the value of the in-plane dielectric function for a given value of z can be derived by replacing
the sum over k by an integral over the NPs in-plane diameter, the lower bound being the diameter D(H = z) of NPs whose height
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is z. One thus obtains, after writing explicitly the C coefficients:

ε‖(z) = εm

[
1 +

NS

∫ ∞
D(H=z)

G(D)V (D)
H (D) [αa(D) + αb(D)]dD

2
(
1 − 1

8

[∫ ∞
r=0 NS(r) dr

r2

]{∫ ∞
D=0 G(D)[αa(D) + αb(D)]V (D)dD

})
]

. (35)

The dependence of ε‖ on z is characteristic of a gradient
of optical properties along the z axis, as shown in Fig. 2(c) z

varying from 0 (bottom of the NPs) to Hmax (maximum height
of the NPs). Let us remark that, if a constant height is assumed
for the NPs (as in Sec. III), the lower bound of the integral has
to be set to 0 whatever z, thus leading to Eq. (28).

V. SIMULATIONS

A. Monodisperse NPs

1. Effect of interaction between spherical NPs

Monodisperse calculations have been performed using
Eq. (31) for a single layer of silver NPs in a transparent
dielectric medium. The dielectric function of the metal was
taken from the Palik database and corrected for interface
electron damping effects1, assuming the collision frequency
	 of the electrons to depend, as a first approximation, on the
effective in-plane NPs diameter D:

	(D) = 	0 + 2AvF /D, (36)

with 	0 and vF being the electron collision frequency and
the Fermi velocity of the bulk metal, respectively. A is the
“damping factor” that we fix arbitrarily at 1. The dielectric
constant εm of the dielectric medium was fixed arbitrarily
at 4. We focus here on the ε‖ component of the dielectric
tensor, which describes the in-plane effective optical response
of the material, as probed frequently by measurements at
normal incidence. Simulations of the optical response at
oblique incidence, which are beyond the scope of this paper,
would require the calculation of both ε‖ and ε⊥ dielectric
functions. Figure 3(a) presents the spectrum of the in-plane
extinction coefficient k‖ (imaginary part of the complex
effective refractive index ñ‖ verifying ñ‖2 = ε‖) of an
assembly of spherical NPs (a = b = H = D = 15 nm) with
an interparticle (center-to-center) distance �‖ = 75 nm. An
absorption band peaking at around 500 nm can be seen, as a
result of the in-plane SPR of the NPs, occurring upon excitation
by an electric field oriented in the xy plane.

The influence of the interparticle distance and thus of
interaction between spherical NPs was probed by varying �‖
between 20 and 75 nm, D being fixed at 15 nm. As shown in
Fig. 3(b), a decrease in �‖ below 40 nm induces a significant
redshift of the SPR absorption band together with an increase
in its width. Above 40 nm, the spectral features of the SPR band
are almost unaffected by �‖, thus suggesting that interaction
between NPs can be neglected for L‖ > 2.5D, as reported in
other papers.55,56 In the following, �‖ will be fixed at 75 nm
so that the effect of interaction between NPs can be neglected
and the influence of the NPs shape and size distributions be
studied independently of other effects.

2. Effect of the NPs shape anisotropy

Figure 4(a) shows the k‖ spectra of spherical NPs
(D = 15 nm,b/a = 1,H/D = 1), flattened spheroidal NPs
(D = 15 nm,b/a = 1,H/D = 0.66), and ellipsoidal NPs
[D = (ab)1/2 = 15 nm,b/a = 0.66,H/D = 1]. In the case of
spherical and spheroidal NPs, the in-plane dielectric function
of the metal was corrected for finite-size effects using Eq. (36),
with A = 1. For ellipsoidal NPs, shape anisotropy on the
electron interface damping was taken into account by using
the relations

	 (a) = 	0 + 2AavF /a and 	 (b) = 	0 + 2AbvF /b

(37)

along the long and short in-plane axes of the NP, respectively,
as done in Refs. 51 and 57. We assume here that Aa (longi-
tudinal damping factor) and Ab (transverse damping factor)
are equal to unity. As spherical NPs, flattened spheroidal
NPs present one in-plane absorption band resulting from their
in-plane SPR, which, however, peaks at a longer wavelength.
In the case of ellipsoidal NPs, in-plane shape anisotropy
(a �= b) splits the resonance into two modes corresponding
to resonances along the short axis b (“transverse mode”) and
long axis a (“longitudinal mode”) of the NPs. The evolution of
the spectral position of these two modes is plotted in Fig. 4(b)
as a function of the in-plane aspect ratio b/a for different
H/D values (D being fixed at 15 nm). It can be seen that
a decrease of H/D at a given b/a (flattening of the NPs)
results in a comparable redshift of both resonance bands, at a
rate increasing as H/D decreases. Besides, the spectral shift

FIG. 3. (a) Calculated spectrum of the in-plane extinction coeffi-
cient k‖ of a single layer of monodisperse spherical Ag NPs (particle
diameter D = 15 nm, interparticle distance �‖ = 75 nm) in a dielectric
medium (εm = 4), (b) influence of �‖ on the spectral position and
half-width at half-maximum (hwhm) of the SPR absorption band, D

being fixed at 15 nm.
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FIG. 4. (a) Calculated spectra of the effective in-plane extinction
coefficient k‖ for a single layer of monodisperse spherical (b/a = 1,
H/D = 1), spheroidal (b/a = 1, H/D = 0.66), and ellipsoidal (b/a =
0.66, H/D = 1) Ag NPs in a transparent dielectric medium (εm = 4).
(b) Evolution of the spectral position of the longitudinal and
transverse SPR modes of the NPs as a function of b/a and H/D.
The distance �‖ between NPs was set at 75 nm and their in-plane
effective diameter D at 15 nm.

between the two bands increases as b/a decreases (in-plane
elongation of the NPs).

B. Polydisperse NPs with constant height

1. Spheroidal NPs with polydisperse in-plane
diameter distribution

The effect of the width of the in-plane diameter D distribu-
tion on the optical response of a single layer of spheroidal NPs
with constant height has been studied using Eq. (28), with
a = b. Normalized Gaussian functions G(D), shown in
Fig. 5(a), were chosen to account for the D distribution, with
a half-width at half maximum (hwhm) w. The mean in-plane
diameter 〈D〉 of the NPs was set at 15 nm, their height H

at 11.25 nm [thus yielding the H/D = 11.25/D relation, as
shown in Fig. 5(a)]. The dielectric functions of the metal
and the dielectric medium was the same as in Sec. V A, and

FIG. 5. (Color online) (a) Schematic representation of a single
layer of spheroidal NPs, with a polydisperse distribution of in-plane
diameter D and a constant height H = 11.25 nm (thus yielding
the correlation law H/D(D) = 11.25/D), the Gaussian functions
accounting for the D distribution, and the H/D(D) correlation law.
(b) Calculated spectra of the in-plane extinction coefficient k‖ for
several values of the hwhm w of the D distribution, and evolution of
the spectral position of the SPR absorption band as a function of w.

in-plane interface damping factors Aa = Ab = 1were taken
for the metal using Eq. (37).

Figure 5(b) shows the k‖ spectra obtained for several
values of w. Upon increasing w, it is observed that the SPR
absorption band slightly shifts and broadens toward the red.
At constant height, the larger the NPs diameter, the flatter
their shape [as seen in Fig. 5(a)] and, according to Fig. 4(b),
the longer the peak wavelength of their SPR absorption band.
Thus the overall optical response of an assembly of NPs with
polydisperse shape distribution results from contributions of
absorption bands peaking at distinct wavelengths. Since the
weight of the contribution of one spheroidal NP depends on its
volume Vj = πHjD

2
j /6, which increases with Dj , the overall

spectrum will be more influenced by the large and flat NPs
of the distribution resonating at longer wavelengths than by
the smaller ones. Thus the redshift and broadening of the SPR
band observed in Fig. 5(b) are likely due to the broadening
of the shape distribution and thus the strengthening of the
contribution of the flattest and biggest NPs when w increases.
Let us moreover note that, due to the dependence of Vj on
Dj

2, a broadening of the Dj distribution induces an increase
in the total volume occupied by the NPs. The total oscillator
strength of the NPs assembly thus increases with w, in addition
to the width of the shape distribution. Since a decrease in
the amplitude of the SPR band is expected when the shape
distribution broadens at a given total oscillator strength, the
observed saturation in the peak amplitude (for w > 5 nm)
may result from the competition between the increase in the
oscillator strength and the broadening of the shape distribution.

2. Ellipsoidal NPs with correlated in-plane effective diameter
and in-plane shape distributions

The in-plane effective diameter distribution was taken into
account, as previously, by normalized Gaussian functions.
The correlation between the in-plane projected shape of
the NPs and their in-plane effective diameter was described
successively by two correlation laws of different slopes
(typical of those found in the literature for NPs grown by
vapor deposition48,49), which are displayed in Fig. 6(a). The
mean in-plane diameter 〈D〉 of the NPs was set at 15 nm
and the height H at 11.25 nm. In these conditions, the flatter,
the bigger are the NPs. The dielectric function of the dielectric
medium was the same as in the previous sections. The in-plane
interface electron damping was taken into account using
Eq. (37) with Aa = Ab = 1. For a slowly decreasing b/a
(D) law [see Fig. 6(b)], it is seen that both SPR bands shift
and broaden towards the red upon increasing w, these effects
being more pronounced for the longitudinal mode than for
the transverse mode. In the case of a rapidly decreasing b/a
(D) law [see Fig. 6(c)], a faster redshift and broadening of
the longitudinal mode is observed, whereas the transverse
mode slightly blue-shifts. As a result, the shift between the
two modes increases upon increasing w whatever the slope
of the b/a (D) law, but with higher values for a rapidly
decreasing correlation law. As said previously in the case
of polydisperse spheroidal NPs with a constant height, these
trends can be related to the increasing contribution of large
and flat NPs (low H/D), which also present a strong in-plane
elongation (low b/a). As discussed in Sec. V A2 [see Fig. 4(b)],
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FIG. 6. (Color online) (a) Schematic representation of a single layer of ellipsoidal NPs, with a polydisperse distribution of in-plane diameter
D and a constant height H = 11.25 nm (thus yielding the relation H/D = 11.25/D). Gaussian functions accounting for the D distribution,
b/a (D) and H/D (D) correlation laws used for the calculations. Calculated spectra of the in-plane extinction coefficient k‖ as a function of
the hwhm w of the D distribution: (b) for the slowly decreasing b/a (D) law, (c) for the fastly decreasing b/a (D) law, and the corresponding
peak wavelengths.

a decrease in H/D leads to an equal redshift of both modes,
while a decrease in b/a induces a blue shift (redshift) of
the transverse (longitudinal) mode. In the case of decreasing
b/a (D) and H/D (D) functions, the longitudinal mode will
therefore redshift upon increasing w. This shift is expected
to go faster when the slope of the b/a (D) law increases,
as observed from comparison between Figs. 6(b) and 6(c).
Meanwhile, due to the competitive effect of decreasing b/a
and H/D, the transverse mode may blue-shift, redshift or not
shift at all, depending on the respective slopes of both laws. The
slight redshift (blue shift) of the transverse mode observed in
Fig. 6(b) [in Fig. 6(c)] is thus due to the faster (slower) decrease
of the H/D (D) law when compared to the b/a (D) law.

C. Polydisperse NPs with polydisperse height distribution

The effect of a polydisperse height distribution in the single
layer of NPs on its effective optical response is twofold: (i)
the H/D (D) correlation law departs from that of Sec. V B.
(scaling as 1/D) and (ii) the NPs layer is proposed to be
described as a vertically graded material, i.e., by an effective
dielectric tensor depending on z, following Eq. (35). The
influence of the H/D (D) correlation law on the SPRs has
been studied by computing the effective optical response of
the NPs layer at z = 0 for a constant H/D on the one hand,
and a fast decreasing correlation law (H/D = 1–0.001D2) on
the other hand. A slowly decreasing b/a (D) law was chosen
(b/a = 1–0.017D) and the electron damping was taken
into account using Eq. (37) with Aa = Ab = 1. The other
structural parameters were the same as in the previous section
(〈D〉 = 15 nm,�‖ = 75 nm,εm = 4). Figure 7 shows that, for
a given hwhm (w = 2.5 nm) of the Gaussian distribution of
NPs in-plane diameter D, increasing the slope of the H/D
(D) distribution mainly leads to a decrease in the amplitude
of the longitudinal SPR band, as was already observed upon
increasing the slope of the b/a (D) law (see Fig. 6). The ratio
between the amplitudes of the transverse and longitudinal SPR
thus depends on the b/a (D) and H/D (D) correlation laws, as

a result of inhomogeneous broadening of the longitudinal SPR
band. Let us note that the ratio between the amplitudes of these
two bands can also be affected by interface electron damping.
In case of anisotropic in-plane projected shape of the NPs
(a �= b), one expects a stronger damping along their short
axis,51,57 i.e., Aa < Ab. Upon increasing Ab from 1 to 3 at
fixed Aa = 1, the transverse SPR band is gradually damped,
as shown in Fig. 7, while the longitudinal band remains
unchanged.

VI. TEST OF THE MODEL FOR REAL MATERIALS

Model trilayers consisting of a single layer of Ag NPs
sandwiched between two transparent dielectric layers were
elaborated by means of ion beam alternate sputtering of Ag
and nitride targets. Details about the fabrication procedure are

FIG. 7. Single layer of ellipsoidal NPs, with a polydisperse
distribution of in-plane diameter D and height H : (left) b/a (D)
and H/D (D) correlation laws used for the calculations, in which the
hwhm w of the D distribution is fixed at 2.5 nm and 〈D〉 = 15 nm.
(right) Spectra of the in-plane extinction coefficient k‖ obtained
assuming a constant H/D (H/D = 0.75) and a fast decreasing H/D
(D) law (H/D = 1–0.001D2). The effect of varying the transverse
damping coefficient Ab is also studied.
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FIG. 8. Examples of TEM plane and cross-section views of the single layer of NPs in Si3N4:Ag (a) and in BN:Ag
(b) films, together with typical in-plane effective diameter D histogram (dots) and the G(D) Gaussian function used for the polydisperse
calculations in Sec. VI (full line), (c) b/a and (d) H/D values of individual NPs (dots), and the b/a (D) and H/D (D) correlation laws
considered for the two films (full lines). The transmittance spectra of the two films are also shown (e) and (f), together with simulated spectra
obtained by using the Yamaguchi model (i.e., considering the NPs as monodisperse spheroids) and taking A = 1 in Eq. (36). Grey dots and
lines in (c), (d), (e), and (f) refer to the BN:Ag film, black dots and lines refer to the Si3N4:Ag film.

given elsewhere.48 The nanostructure of the nanocomposite
materials was studied by TEM using a JEOL 200CX electron
microscope operated at 200 kV.48,51 Figure 8 shows examples
of plane views and cross-section views of the single layer
of NPs in dielectric/NPs/dielectric trilayers containing similar
amounts of metal (with an effective metal thickness of about
2 nm), one consisting of Ag NPs embedded in a Si3N4 medium
[Si3N4:Ag film, Fig. 8(a)] and the other one of Ag NPs in a
BN medium [BN:Ag film, Fig. 8(b)]. In both cases, the NPs
can be approximated as ellipsoids with two of the principal
axes in the layer’s plane, as a result of coalescence events
and partial reshaping during the Ag deposition.48 Moreover, it
can be clearly seen that the NPs present polydisperse in-plane
sizes, in-plane projected shapes, and heights. The size, shape
anisotropy and related distributions clearly depend on the
nature of the dielectric material: NPs present more anisotropic
shapes when embedded in a Si3N4 medium than in a BN
medium.48 These trends were quantified by digital analysis of
the TEM images,48,51 thus providing the average interparticle
distance �‖, the distributions of the in-plane effective diameter
D, the in-plane axis ratio b/a and the height-to-effective
diameter ratio H/D of the NPs. As shown in Figs. 8(c) and 8(d),

and as assumed in Sec. IV, the H/D, b/a, and D distributions
are correlated. Moreover, the D distribution is broader for the
NPs embedded in the Si3N4 medium. These correlations can
be approximated by bijective b/a (D) and H/D (D) laws,
represented in Figs. 8(c) and 8(d) and explicited in Table I,
together with the values of �‖, and the average in-plane
effective diameter 〈D〉 and hwhm w of the D distribution used
in the following optical calculations for both films. Regarding
the size of the NPs (around 10 nm) and the interparticle
distance (in the 15–20 nm range), it seems reasonable to
calculate the optical response of the NPs assembly in the
coupled dipole approximation22 on which this work is based.

The experimental transmittance spectra of both trilayers
at normal incidence48 are presented in Figs. 8(e) and 8(f)
(dots). They are dominated by one absorption band, peaking
at 660 nm (Si3N4:Ag) and 510 nm (BN:Ag), which is likely
due to the longitudinal SPR of the NPs. In the case of
the BN:Ag film, a shoulder located around 440 nm can
be seen and could be due to the transverse SPR. Such a
blue-shifted shoulder, although very weak, might also be
present in the transmittance spectrum of the Si3N4:Ag film.
Rough simulations of the transmittance spectra (thin full

TABLE I. Structural parameters of both films as used in the optical calculations.

Film �‖ (nm) 〈D〉 (nm) w (nm) b/a (D) H/D (D)

Si3N4:Ag 18.5 12.5 3.9 1.12–0.024D − 0.038 + 1.58D−0.35

BN:Ag 14.6 8.8 2.3 0.86–0.0004D 1.15–0.024D
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lines) performed using the Yamaguchi formulas simplified
to match the case of NPs embedded in a homogeneous
dielectric medium (i.e., considering the NPs as monodisperse
spheroids (w = 0,b/a = 1, and H/D = 〈H/D〉), with �‖
and 〈D〉 taken from Table I) and taking A = 1 in Eq. (36)
yield a unique and too sharp absorption band peaking at a
shorter wavelength than the measured dominant band. Taking
into account the nonspheroidal shape of the NPs seems
necessary to obtain a better agreement between simulation
and experiment for the spectral position of the two SPR
bands. Besides, reproducing accurately their shape, width,
and amplitude requires taking the size/shape distributions
into account and considering finite-size effects properly. The
full set of structural data presented in Table I were thus
used as input parameters for the calculation of the in-plane
optical response of the single layer of embedded NPs in both
cases (BN:Ag and Si3N4:Ag). For the sake of simplicity, the
dielectric functions of BN and Si3N4 were approximated as
εBN = 3.24 and εSi3N4 = 4 (i.e., the higher order terms of
the Cauchy law were neglected) for the effective medium
calculations. We checked that such an approximation has no
relevant effect on the effective response of the single layer
of NPs. The dielectric function of a given NP was calculated
using Eq. (37), assuming Aa = Ab = 2 for Ag NPs in BN
and Aa = 4.5 and Ab = 6 for Ag NPs in Si3N4, these values
being chosen so that simulated transmittance spectra could
match reasonably the measured ones, as shown below. Such
high values could reflect the existence of chemical damping
events at the NPs/dielectric medium interface, as underlined
in the works of Kreibig and coworkers.58 Since the NPs
present a polydisperse height distribution, the NPs layer was
described as a graded effective medium, using Eq. (35). For
the sake of simplicity, discrete calculations were performed,
in which the effective medium was considered as a stack of
eight layers. The layer thicknesses were chosen to coincide
with the height H (D) of the NPs with D = 〈D〉 + / − 0.5nw,
n being a nonzero integer. Hmax was taken equal to 11.1
and 10.1 nm for the BN:Ag and Si3N4:Ag film, respectively.
The obtained spectra of the in-plane extinction coefficient
k‖ in these eight layers, numbered from 1 (bottom) to 8
(top) are shown in Fig. 9(a) (thin lines). Spectra calculated
using Eq. (28) assuming a constant height H = 〈H 〉 instead
of the H/D (D) correlation laws presented in Table I (thus
considering the effective medium to be a homogeneous layer
of thickness t = 〈H 〉), are also shown for comparison (dashed
lines). The calculated spectra of both Si3N4:Ag and BN:Ag
films are dominated by the longitudinal SPR band (peaking
around 600 and 500 nm, respectively), the transverse mode
appearing as a shoulder below 500 nm. By plotting the
evolution of the peak value of k‖ (k‖,max) as a function of z

[see Fig. 9(b)], it is observed that the absorption of the NPs
calculated from Eq. (35) (thin lines) remains constant in a layer
whose thickness is similar to the NPs mean height 〈H 〉, and
then gradually decreases. In contrast, the calculations with a
constant height H = 〈H 〉 (dashed lines) yield a constant value
for k‖,max below z = 〈H 〉 and a null value above. The direct
consequence of this distinct behavior is that the absorption
integrated over the whole thickness of the effective medium is
higher when the effective medium is considered as a graded
layer. Simulated transmittance spectra were computed from

FIG. 9. (a) Spectra of the in-plane extinction coefficient k‖
calculated in the eight layers of the graded effective medium
accounting for the layer of NPs in the Si3N4:Ag (black) and the
BN:Ag (grey) films, using Eq. (35) (ellipsoidal NPs with polydisperse
in-plane projected shape and height; full lines). For comparison,
spectra calculated using Eq. (28) (ellipsoidal NPs with polydisperse
in-plane projected shape and constant height H = 〈H 〉; dashed lines)
are presented. (b) Evolution of the peak value of k‖ (k‖,max) as a
function of z, for NPs with polydisperse height (full lines) and at
constant height H = 〈H 〉 (dashed lines). (c) Comparison between
experimental (dots) and simulated transmittance spectra obtained
from Eq. (28) (ellipsoidal NPs with a constant height and in-plane
polydispersity, dashed lines) and from Eq. (35) (ellipsoidal NPs with
in-plane polydispersity and height distribution, thin lines).

the ε‖ spectra obtained (i) using Eq. (28) assuming that all
the NPs present the same height 〈H 〉 [and are thus described
by a homogeneous layer of thickness t = 〈H 〉, dashed lines
in Fig. 9(c)], (ii) using the ε‖(z) derived from Eq. (35) [i.e.,
considering the effective medium as a graded layer, thin lines
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in Fig. 9(c)]. The transmittance was calculated by multilayer
modeling using the Abeles matrix formalism. The reflection
and transmission of light at the interfaces, together with the
propagation and absorption of light in each layer were taken
into account in a coherent way. As shown in Fig. 9(c), the
spectral position and shape of the measured longitudinal SPR
band and transverse SPR shoulder (dots) can be reasonably
reproduced if taking the ellipsoidal shape and polydispersity
of the NPs into account together with finite size effects.
Nevertheless, when assuming H = 〈H 〉 (dashed lines), the
transmittance is overestimated in the whole visible range. This
overestimation, even if still present, is more moderate when the
effective medium is considered as a graded layer (thin lines).
The remaining discrepancy between simulated and measured
spectra could be ascribed to the simplified description of the
height distribution by Eq. (35). Indeed, the H/D (D) [and b/a

(D)] functions depicted in Fig. 8 do not take into account the
dispersion of H/D (or b/a) values at a given D. The thickness
of the graded effective layer and the slope of the gradient
are thus likely underestimated by the model, leading to an
underestimation of the absorption integrated over the whole
thickness of the NPs layer. In addition, non-quasi-static effects
such as dynamic depolarization24 and retarded dipole-dipole
interaction,59 which are not taken into account by the model,
can affect the amplitude of the SPR bands. Nevertheless,
the influence of these two effects should be weak in the
size, interparticle and wavelength ranges considered in this
work. Experimental errors may also contribute significantly
to the discrepancies between simulated and measured spectra.
Indeed, TEM measurements are prone to an underestimation of
the NPs size43 and thus to an underestimation of the NPs optical
absorption by calculations based on TEM structural data.

VII. CONCLUSIONS

We have presented a generalized effective medium model
that permits to simulate the optical response of a single layer
of polydisperse NPs embedded in a homogeneous dielectric
medium, with the capability of taking into account the
ellipsoidal shape of the NPs (with two of their principal axes
in the layer’s plane), and the (possibly correlated) distributions
of their in-plane effective diameter D, their in-plane projected
shape (through the b/a aspect ratio) and height H . This
model also takes into account the in-plane orientation and
organization of the NPs. It can thus be derived to match, for
instance, the case of an array of NPs oriented in a specific
direction11,60 or to that of NPs with an isotropic in-plane

organization and a random orientation. In this paper, we have
focused on the latter case, in order to test the accuracy of the
model for a quantitative description of the optical response
of single layers of polydisperse metal NPs embedded in a
homogeneous dielectric medium, grown by vapor deposition
in the coalescence regime. In such systems of NPs, correlation
between the D, b/a, and H distributions are usually evidenced.
It has first been shown from simulations assuming a constant
height H for the NPs, that the distributions of D and b/a, and
the correlations between them significantly alter the symmetry,
amplitude, width, and spectral position of the SPR absorption
bands of the NPs. The calculations have then been extended
to the case of a single layer of NPs with polydisperse height
distribution, which has been tentatively described as a graded
effective medium layer. Single layers of Ag NPs embedded
in BN or Si3N4 matrices finely characterized by TEM
provide structural data that have been used for simulating the
transmittance using the graded effective medium model. This
approach yields an improved quantitative agreement between
simulated and experimental spectra, which are, in contrast,
poorly reproduced by the Yamaguchi model simplified to
match the case of NPs embedded in a homogeneous dielectric
medium. The obtained results suggest that a proper effective
medium description should take into account the ellipsoidal
shape, together with the size and shape distributions and
the correlation between them. Moreover, a graded effective
medium provides a slightly better empirical description of a
single layer of NPs with polydisperse height distribution than a
homogeneous effective layer. To our knowledge, these features
have not been taken into account up to now in any other easily
implementable model. Further work is, however, desired to
take into account in a more accurate way the height distribution
of the NPs, in order to evaluate the usefulness and correctness
of the graded layer approach. Such works are of interest for the
optical characterization of NPs of any kind (i.e., not only metal
NPs): for instance, for semiconductor NPs, whose nondestruc-
tive characterization has been at the focus of recent studies.61,62
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B. Lamongie, and V. Antad, Thin Solid Films 518, 2637 (2010).

18R. Lazzari, G. Renaud, C. Revenant, J. Jupille, and Y. Borensztein,
Phys. Rev. B 79, 125428 (2009).

19D. D. Evanoff Jr. and G. Chumanov, J. Phys. Chem. B 108, 13957
(2004).

20G. Mie, Ann. Phys. 3, 377 (1908).
21M. I. Mischenko, L. D. Travis, and D. W. Mackowski, J. Quantum

Spectrosc. Radiat. Transfer 55, 535 (1996).
22B. Khlebtsov, A. Melnikov, V. Zharov, and N. Klebtsov,

Nanotechnology 17, 1437 (2006).
23B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).
24E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).
25T. Grosges, A. Vial, and D. Barchiesi, Opt. Express 13, 8483 (2005).
26J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman,

A. L. Atkinson, and G. C. Schatz, Acc. Chem. Res. 41, 1710 (2008).
27F. J. Garcia de Abajo and A. Howie, Phys. Rev. B 65, 115418

(2002).
28V. Myroschnychenko, J. Rodrı́guez-Fernández, I. Pastoriza-Santos,

A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J.
Garcia de Abajo, Chem. Soc. Rev. 37, 1792 (2008).
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