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ABSTRACT

This paper presents the results of the interpolation of
annual precipitation over a reqular grid performed in Aragén
(Spain). The main objective was the quantification of the
improvement in estimation precision by including elevation in
the interpolation and by using base 10 logarithms of both

annual precipitation and elevation versus the original values.

Long-term annual precipitation (APRE) was available at
182 weather stations. Elevation above sea level (ELEV) was
available at those stations and at 1913 additional points over

a regular 5 km grid. The spatial variability of APRE, ELEV



and their base 10 logarithms (LAPRE and LELEV, respectively),
and the spatial correlation between APRE and ELEV, APRE and
LELEV, LAPRE and ELEV, and LAPRE‘énd LELEV were described by
gaussian‘direct—“énd cross-semivariogram models‘with nugget

effects.

Geostatistical interpolation methods, ordinary kriging
and cokriging, were used to estimate APRE and LAPRE at the
1913 additional elevation points. Estimates of LAPRE were
transformed back to APRE values. Cokriging estimates were in
general higher than kriging ones, mainly at points of high
elevation. The average percent difference among cokriging and
kriging estimates was 9 to 12 %. Cokriging estimates obtained
with the different sample data sets were in general terms
similar. However, at points of high elevation, cokriging with
FLEV as the auxiliary variable seemed to overestimate annual

precipitation.

Estimation error standard deviations (EESD) also were
computed in each interpolation point. For all points, the
EESD obtained using LAPRE values were lower than those
obtained using APRE values, being the average percent
differences of -38 to -42 %. Likewise, for all interpolation
points, cokriging EESD were lower than kriging ones. Using
LAPRE and LELEV values, the average percent difference among
cokriging and kriging EESD was -11.0 %, with minimum and

maximum percent differences of -6.7 and -35.8 %, respectively.
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INTRODUCTION

The appropriate management of agricultural and water
resources demands a good knowledge of the spatial distribution
of precipitation, one of the key variables for guantification
and modeling of the hydrological balance at regional scales.
Frequently, precipitation values are available at a number of
weather stations and estimates in other areas are obtained by

interpolation of those values.

Most of the interpolation technigues commonly used give
arbitrary weights to the local values. Likewise, they usually
do not provide any indication of the precision of the results
(Delhomme, 1978). Geostatistics allows the modeling of- the
spatial variability of a variable based on the correlation
petween neighboring measurements. Geostatistics applies this
modeled spatial variability together with spatial
interpolation techniques such as ordinary kriging, to estimate
that variable at locations where no measurements are available
(Journel and Huijbregts, 1978). The method also guantifies
the precision of the estimation (Delhomme, 1978). Ordinary
kriging has previously been applied to the spétial
interpolation of precipitation (Tabios and Salas, 1985; Beek,

1991) .

Precipitation tends to increase with elevation above sea
level. Weather stations usually are concentrated in areas
with low elevations and ordinary kriging may thus

underestimate the regional precipitation (Phillips et al.,



1992). Previous attempts to solve this situation include
those of Chua and Bras (1982) and Dingman et al. (1988).
These authors used the method known as detrended kriging in
which simple linear regre551ons of precipitation on elevation
were computed, the spatlal variability of the regre551on
residuals was analyzed and modeled, and kriging of the
regression residuals was performed. Ordinary cokriging is a
multivariate geostatistical method which uses a second
correlated auxiliary variable, such as elevation, to aid in
the estimation of the primary variable, such as precipitation
(Hevesi et al., 1992a, 1992b; Phillips et al., 1992).
ordinary cokriging is expected to reduce the estimation error
variance if the auxiliary variable is highly correlated with
the primary variable and is oversampled compared with this
one, the magnitude of this reduction also depending on the
data’s spatial configuration (pavid, 1977; Hoeksema et al.,

1989) .

Geostatistical interpolation methods lead to optimum
estimators when the sample values are normally distributed
(Samper and Carrera, 1990). In the case of skewed
distributions, it may be very convenient the transformation of
the original sample values such that the transformed values
approach a normal distribution. It has been argued that
transformation to normality prior to geostatistical analysis
resulte in a nonlinear function of the origihal data and then
(co)kriging estimates may not be obtained with minimum

estimation variance and without bias (Trangmar et al., 1985}.



This paper presents the spatial analysis and modeling of
long-term mean annual precipitation (APRE) performed in
Aragén, Spain, using a multivariate geostatistical approach.
The spatial correlation of APRE with elevation above sea level
(ELEV) also was analyzed and modeled. Cross-validation was
used for selection ana vélidation of appropriate semivariogram
models. The main objective wés the interpolation of mean
annual precipitation over a regular 5 km grid and the
quantification of the improvement in estimation precision by
including elevation in the interpolation. 1In this study, the
sample values of APRE and ELEV approached a log-normal
distribution. Therefore, the differences in estimation
results obtained using the original values of these two
variables versus their base 10 logarithms were compared to see
whether the use of log-transformed sample values could improve

the estimation precision.

MATERIAL AND METHODS

General description of the study area (Aragdn)

The regionAof Arggén is located in the north east of
Spain (Figure 1}, covefing'én areé of approximately 47,000 km’.
Aragdén has three main landscape units (Figure 2): (a) the
Pyrenees Range to the north, being Aragdn where it attains the

highest elevations (Aneto, 3408 m) and width (around 100 km);



(b) the Iberian Range, a mountainous chain stretching from
northwest to southeast, less massive and continuous than the
pyrenees, with elevations not exceeding 2000 m, with a few
exceptions: Moncayo (2316 m), Gadar (2024 m) and.javalambre
(2020 m); and (c) the Ebro RiveerepréSSion:to the centre, a
plain consisting of a series of platforms and wvalleys, with

elevations ranging from 200 to 800 m.

In the Ebro River Depression, the climate is continental
mediterranean. The center of the Depression is markedly arid,
with an average annual precipitation of 420 mm, but minimum
values of 300 mm in some locations, and a large seasonal
temperature variation: annual means of 15 °C and a mean annual
oscillation of approximately 20 °C. The precipitation
increases towards the mountainous ranges with an average
annual precipitation of 1300 mm at the Pyrenees. However, in
the Iberian Range, only the highest elevation locations
receive 800 mm. The mean annual temperature at elevations
higher than 1000 m is less than 10 °C and the mean annual
oscillation is approximately 15 °C. Finally, the dominant
wind is the so-called cierzo, whose direction is WNW and which

js channelled along the Depression.

Description of the precipitation and elevation data bases

Long-term averages of monthly pfecipitation (MPRE, mm)
were available at 182 precipitation weather stations. Length
of meteorological records was 10-20 years for most weather

stations although it was up to 50 years for some of the



stations (Faci and Martinez-Cob, 1991). The 12 MPRE values
were summed up to obtain long-term mean values of total annual
precipitation (APRE, mm). Elevation (ELEV) was available at
the weather gtations and at 1913 additional sample points on a
5 km gri&. These values were cobtained from the 1:100000 maps

of the Spanish Army Geographical Service.

Histogram aﬁd normal probability plots indicated that the
values of APRE and ELEV were lognormally distributed. The fit
of the histograms to a normal distribution was improved by the
transformations LAPRE = 1000 [log{(APRE)], and LELEV = 1000
[log)ELEV) ], respectively, where log stands for the base 10
logarithm. Then, in this study four sets of sample values

were avalilable: APRE, LAPRE, ELEV and LELEV.

The following statistics were computed for a preliminary
statistical analysis of the data values: mean, median,
minimum, maximum, variance, coefficient of variation and
standardized skewness. Likewise, simple linear regressions of

both APRE and LAPRE on both ELEV and LELEV were calculated.

Geostatistical analyses

Semivariograms are the geostatistical tools which
describe the spatial variability of the variables of interest
and their spatial correlation. The first step required to
model semivariograms is the computation of sample direct- and
cross-semivariograms {David, 1977; Journel and Huijbregts,

1978; Hevesi et al., 1992a). Isotropic sample direct-



semivariograms were computed for APRE, LAPRE, ELEV and LELEV.
Isotropic sample cross-semivariograms were computed for APRE-

ELEV, APRE-LELEV, LAPRE-ELEV and LAPRE~LELEV.

Visual inspection of sample semivariograms indicated that
a gaussian semivariogram model might be appropriate for
direct- and cross-semivariograms. The gaussian model has beeﬁ
described elsewhere (Delhomme, 1978; Journel and Huijbregts,
1978). Model parameters (nugget effect, $ill and range) were
estimated visually. Cross-validation was performed to check
the validity of the model. The estimated parameters of the
model were then modified in a trial-and-error procedure until

adequate cross-validation statistics were obtained.

Po cross-validate a semivariogram model, a sample was
removed from the primary variable data set, and kfiging or
cokriging were used to estimate the value of the deleted
sample. The estimation.was done using the remaining samples
and the selected semivariogram model and parameters. This
procedure was repeated for all samples. - bDifferences between
estimated and sample values were summarized using the cross-
validation statistics (Hevesi et al., 1992a): percent average
estimation error (PAEE), relative mean-square error (RMSE),

and standardized mean-square error (SMSE).

A model was considered to ensure unbiased estimates if
the PAEE was close to zero. The RMSE also should be close to
0 and the model with minimum RMSE should be chosen (Cooper and
Istok, 1988). The SMSE indicated the consistency of the

calculated estimation error variances with the observed RMSE.



The estimation error variances were considered consistent if
the SMSE was in the range 1x2,/2/n; (Delhomme, 1979) where n;
was the sample size. In this study, the SMSE should be within

the following randgs: .a) dirthisemivariograms for APRE and

LAPRE and croés~semivariograms, 1+ 0.2097; and b} direct-

semivariograms for ELEV and LELEV, 1 & 0.0618.

Once, the semivariograms were modeled and cross-
validated, they were used together with the geostatistical
interpolation methods of ordinary kriging and cokriging to
estimate APRE and LAPRE on a 5 km grid at the 1913 elevation
sample points. The ordinary kriging and ordinary cokriging
estimators are linear combinations of the sample values

(Journel and Huijbregts, 1978; Hevesi et al., 1992a):

Iy 'nj
zi (X)) = ) Az (x) + Y Aj2;(x) H
k=1 1=1

where z; is the estimate at point x,, n; and n; are the number

of sample points of z; and z; used in the estimation, and A;,
and A;; are the associated weights. These weights account for

the modeled spatial dependence expressed by the semivariograms
and the geometric relationship among the sample points. The

values z;(x,) represent those of APRE or LAPRE at sample
points x,, while the values oquﬂza) represent those of ELEV
or LELEV at sample points x,;. For ordinary Kriging, the

weights A;, are 0 since only APRE or LAPRE contribute to the
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estimation process. Under the conditions of unbiasedness of
the estimators and minimal ordinary kriging or ordinary
cokriging estimation error variances, the model semivariograms
were used within a system of equations to solve for the
unknown weights (Journel and Huijbregts, 1978; Hevesi et al.,

1992a).

The minimized estimation error variance at the unsampled

location x,, oéﬂz%), was computed by the following expression

(Journel and Huijbregts, 1978; Hevesi et al., 1992a):

Hi nj
U%K(Xb) = - g; AieYas () + 2; JLjlYij(hla) Py (2)

where v,;;(h, 1s the value of the direct-semivariogram for
variable I for distance h,, separating the sample point X,
from the point x,, and y;;(h;,) is the value of the cross-
semivariogram for variables i and j for distance h,
geparating the sample point x; from the point X,. As in

equation (1), the weights A, are 0 for ordinary kriging.

Estimation error standard deviations (EESD) were computed
as the square root of estimation error variances. Equations
(1) and (2) were applied to obtain estimates and EESD of APRE
for six different cases (Figure 3): KP, kriging of APRE;

KLP, Xriging of LAPRE; CKPE, cokriging of APRE and ELEV;
CKPLE, cokriging of APRE and LELEV; CKLPE, cokriging of LAPRE

and ELEV; and CKLPLE, cokriging of LAPRE and LELEV.
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Fstimates and EESD of LAPRE (cases KLP, CKLPE and CKLPLE) were
transformed back to APRE values using the procedure described

by Samper and Carrera (1990) and Hevesi et al. (1992b) .

The geostatistical analysis were carried out with own
software (computation‘of sample semivariograms) and software
provided (cross-validation‘and interpolation} by Drs. J.A.
Hevesi and A.L. Flint (Hydrologic Research Facility, U.s.

Geological Survey, Mercury, Nevada).

RESULTS AND DISCUSSION

Table 1 lists some descriptive statistics of the sample
values of APRE and LAPRE available at the weather stations and
ELEV and LELEV available at the weather stations and 1913
additional sample points. These sample values showed an ample
range of variation. Thus, APRE and ELEV varied from minimum
values of 296.0 mm and 70.0 m, respectively, up to maximum
values of 1976.0 mm and 2880.0 m, respectively. The
coefficients of variation of APRE and ELEV were high (51 to 58
%), while those of LAPRE and LELEV were smaller (7.2 to 9.6
%). The standardized skewness of LAPRE and LELEV was reduced
compared to that of APRE and ELEV. This suggests thet the
normal approximation was improved by applying the log

transformation (Cochran, 1977).

Table 2 lists the results of simple linear regressions of
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both APRE and LAPRE on both ELEV and LELEV. The four linear
regressions were significant and their correlation
coefficients ranged from 0.68 to 0.74. These correlation
coefficients indicate that an improvement of the estimation
precision should be expected when using cokriging instead of
kriging to interpolate annual precipitation using elevation as

auxiliary variable.

Table 3 lists the parameters (nugget, sill and range) of
the gaussian models fit to the different isotropic sample
direct- and cross-semivariograms. The cross-validation
statistics of the fit semivariogram models also are listed.
The ranges of APRE and LAPRE were similar (132 and 136 km,
respectively). Then, in Aragdn, there was a spatial
correlation among neighboring precipitation mesurements up to
distances of approximately 130-140 km. Because of the spatial
distribution of the sample points, this study was not
appropriate to analyze spatial variability at small scales
(microclimates). The nugget effects of the fit semivariogram
models may reflect the spatial variability of APRE and LAPRE
at these small scales (Journel and Huigbregts, 1978). The
ELEV and LELEV had higher range values .(165 and 156 knm,
respectively). These values indicate that the scale of
spatial variatibility of ELEV and LELEV was slightly higher
than that of APRErénd LAPRE. Cross-validation statistics were
used as the main criteria to validate a éemi&ariogram model.
The analysis and modeling of the spatial variability of annual
precipitation and elevation and their spatial correlation is

discussed in more detail by Martinez-Cob (1994) .
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Table 4 lists some descriptive statistics of the

estimates and the EESD values of APRE obtained at the 1913
interpolation points using kriging and cokriging with the
different sets of sample values. The averages of the kriging
estimates (cases KP and KLP) were lower, 531-534 mm, than
those of the cokriging estimates (cases CKPE, CKPLE, CKLPE and
CKLPLE), 584-602 mm. The minima of the kriging estimates were
in general higher, 323-327 mm, and the maxima were lower,
1639-1692 mm, than those of the cokriging estimates, 210-326
mm and 1672-2521 mm, respectively. The average elevation of
the complete ELEV data set was higher than thé average
elevation of the weather stations (Table 1). Due to this fact
and the positive correlation between annual precipitation and
elevation (Table 2), iﬁ was expected that cokriging would lead
to higher estimates. The coefficients of variation of the
estimates were relatively similar in all cases, ranging from
43 to 48 %, except for cokriging estimates obtained using
LAPRE and ELEV sample values (case CKLPE) for which the

coefficient of variation was 57 %.

The kriging and cokriging EESD obtained using LAPRE
sample values (cases KLP, CKLPE and CKLPLE) were significantly .
lower than those obtained using APRE sample values (cases KP,
CKPE and CKPLE, Table 4). The averages of the EESD for these
three last cases rénqed from 94 to 111 mm while the averages
of the EESD for cases KLP, CKLPE and CKLPLE ranged from 58 to
67 mm. These results suggest that the estimation precision
was improved by the use of log-transformed values of annual

precipitation. Likewise, cokriging EESD were lower than
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kriging ones. ‘The highest differences among cokriging and
kriging were observed for the maxima of the EESD. The maximum
EESD were computed at points whére few weather stations were
available for the interpolatidn. Then, in these points the
inclusion of the elevation values in. the interpolation greatly
improve the es;imation precision. The coefficients: of
variation of the kriging EESD were about 28 %, and those of
the cokriging EESD ranged from 16 to 22 %, depending whether

ELEV or LELEV sample values were used.

For each interpolation point, it was computed the percent
difference among the estimateé_obtained with the different
sample data sets (Table 5). These results showed that the
percent differences among kriging estimates (cases KP and KLP)
were relatively small, with an average percent difference of
~0.4 %. The averages of the percent differences among kriging
and cokriging estimates obtained using APRE sample values
(case KP versus cases CKPE and CKPLE) were 11-13 %, while the
averages of the percent differences among kriging and
cokriging estimates obtained using LAPRE sample values (case
KLP versus cases CKLPE and CKLPLE) were around 9 %.
Nevertheless, for some interpolation points of low elevation,
cokriging estimates were lower than kriging ones (Figure 4).
Likewise, the averages of the percent differences among the
different cokriging estimates were small, less than 3 % (Table

5) .

Therefore, in general terms the estimates were not

affected by the use of the original or the log-transformed
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sample values. The differences among estimates mainly were
due to the use of cokriging versus kriging because of the good
correlation between annual precipitation and elevation.
Nevertheless, tﬁere'were some”differepces among cokriginé
estimates fér extreme vaiueé of;ARRE. Figure 5 shows the
cokriging estimateé obtained for case_CKPLE versus those
obtained for case CKLPLE. It can be seen that for low or high
values of APRE; estimates using LAPRE tend to bé higher than
those using APRE. Figure 5 also shows the cokriging estimates
obtained for case CKLPE versus those obtained for case CKLPLE.
The latter tend to be lower than the former for higher values
of APRE. Similar behavior was observed when comparing the
cokriging estimates obtained for case CKPE versus those
obtained for case CKPLE. In other words, using ELEV as
auxiliary variable instead of LELEV lead to higher estimates
in the upper range of annual precipitation, i.e., at points of

high elevation.

There were lower and higher elevation values at the 1913
additional sample points than those available at the weather
stations (Table 1). This was the reason for cokriging
estimates of APRE to be either lower or higher than the
minimum or the maximum APRE sample values (Tables 1 and 4).
Similar behavior'wés observed in previous geostatistical
analysis of precipitation (Hevesi et al., 1992b; Phillips et
al., 1992). It was particularly noticéabiéithe case CKLPE for,
wich 24 estimates of APRE were higher than 2000 mm (the
maximum APRE sample value was 1976 mm). These estimates were

computed at sample locations with elevations well above the
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maximum elevation of the weather stations, 1660 mm (Table 1).
It is possible that APRE was overestimated in case CKLPE for

interpolation points with high elevation values.

Figure 6 shows maps of isolines of annual precipitation
obtained by kriging of LAPRE and cokriging of LAPRE and LELEV.
It can be scen that cokriging estimates followed more closely
the topography of Aragdn (Figure 2). This was more noticeable
in the south of Aragén where less weather stations were
available. The lowest estimates of annual precipitation
(around 300-350 mm) were obtained in the central part of
Aragén along the course of the Ebro River. The annual
precipitation increased to the north reaching values of more
of 1600 mm in the Pyrenees and to the south where it only

reaches values of about 700 mm in the highest elevations.

Also, for each interpolation point, it was computed the
percent difference among the EESD obtained with the different
sample data sets (Table 6). The average of the percent
differences among cokriging EESD for case CKLPE and cokriging
EESD for case CKPE was -38 %, while the average of the percent
differences among cokriging EESD for case CKLPLE and cokriging
EESD for case CKPLE was -42 %. These results strongly suggest
that the use of log-transformed values of annual precipitation
has improved the estimation precision. If the original sample
values are clearly lognormally distributed, smaller absolute
values of the EESD should be expected when log-transformed
sample values are used (Journel and Huigbregts, 1978). For

all interpolation points, the cokriging EESD obtained using
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LAPRE sample values were lower than those obtained using APRE
sample values and the percent differences were very similar
for all points (Table 6). By the other hand, the average of
the percent differences among cokriging EESD for case CKLPLE
and cokriging EESD for case CKLPE was 0.59 %, with a minimum
percent difference of 3 % and a maximum difference of -16 %.
These results suggest that in general terms the use of log-
transformed values of annual precipitation lead to similar
precision of the estimates regardless of the use of the

original or the log-transformed values of elevation.

Cokriging improved the estimation precision as the
percent differences among cokriging EESD and kriging EESD were
negative for all interpolation points (Table 6). The averages
of the percent differences among cokriging EESD and kriging
EESD ranged from -7 to -14 % when using APRE sample values and
from -11 to -12 % when using LAPRE sample values. These
percent differences were as low as -2 % for some interpolation
points and as high as -36 % for some other points. Again,
these results suggest that in general terms the use of LAPRE
sample values lead to smilar improvement of the estimation
precision regardless of the use of ELEV or LELEV as the

auxiliary variable.

The areas where more weather stations were available
showed the lowest EESD for both kriging and cokriéing, while
the highest EESD were observed where few or none weather
stations were available (Figure 7), where also the greatest

percent differences among cokriging and kriging EESD were
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observed. It was noticeable the lack of weather stations in
the south of Aragén. In this area, the EESD increased
dramatically for both kriging and cokriging. This increase
also was due to the border effect because no weather stations
outside the limits of Aragén were used. However, this increase
was less pronounced for cokriging as elevation sample values
were used for the interpolation (Figure 7). The percent
differences among cokriging EESD and kriging EESD were
relatively similar for most of the interpolation points, with
values about -7 to -15 %, but decreased dramatically for the
southern interpolation points, reaching values up to =35 3%

(Figure 8).

The improvement due to cokriging was approximately of the
same order of magnitude of that observed in previous
multivariate geostatistical analyses of log annual
precipitation using elevation (Hevesi et al., 1992a, 1992b)
and log elevation (Phillips et al., 1992) as auxiliary
variables, although the average of the percent differences
obtained in this study was slightly lower. It should be kept
in mind that the EESD reflect the uncertainty of the
interpolation process, the model semivariograms represent the
true spatial relationships and then, the ESSD do not reflect
uncertainties in the fitting of these models. The improvement
of the EESD due to cokriging is mainly due to the statistical
correlation between the primary and the auxiliary variables
and to the spatial configuration of the sample values (David,
1977; Hoeksema et al., 1989). In this study, the statistical

correlation between annual precipitation and elevation was
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around 0.68 to 0.74 (Table 2). Hevesi et al. (1992a) showed a
similar statistical correlation between annual precipitation
and elevation (0.76), while Phillips et al. (1992) showed a
higher statistical correlation (0.82). The ratio of number of
sample elevation points to sample precipitation points was
similar in this study and the work by Phillips et al. (1992)
and so the higher improvement of the estimation precision due
to cokriging observed in this latter work was probably caused
by the highest spatial correlation between the primary and
auxiliary variables. Hevesi et al. (1992a, 1992b) used a
higher ratio of number of sample elevation points to number of
precipitation points but the space domains of the two
variables were different. The estimation precision by using
cokriging is improved when the primary variable is greatly
undersampled compared to the auxiliary wvariable but better
results are obtained when the interpolation points coincide
with sample values of the auxiliary variable (bavid, 1977;

Samper and Carrera, 1990).

CONCLUSIONS

The spatial variability of long-term annual precipitation
(APRE), log-transformed APRE (LAPRE), elevation above sea
level (FLEV) and log-transformed ELEV (LELEV) has been

analyzed and modeled in the region of Aragdén (Spain). The




20
spatial correlation between APRE and ELEV, APRE and LELEV,
LAPRE and ELEV, and LAPRE and LELEV has also been analyzed and
modeled. The respective direct- and cross-semivariogramas
have been fitted with gaussian models with nugget effects.
Ranges of the direct-semivariogram models for APRE and LAPRE
were about 132-136 km, while those of the direct-semivariogram
models for ELEV and LELEV were about 156-165 km. Ranges of
the cross-semivariograms were the same than those of the

respective direct-semivariograms for APRE and LAPRE.

The estimates obtained at 1913 interpolation points by
kriging were in average about 11-12 % higher than cokriging
estimates when APRE sample values were used, and about 9 %
higher when using LAPRE sample values. The positive
statistical correlation between annual precipitation and
elevation and the higher average elevation of the additional
elevation sample points compared to average elevation of the
weather stations were the reasons for the higher estimates
obtained by cokriging. Nevertheless, for some points of low-
elevation cokriging estimates were lower than kriging ones.
The four sets of cokriging estimates obtained in this study
were in general terms similar and the averages of the percent
differences among them was less than 3 %. Nevertheless, the
use of ELEV instead of LELEV sample values as the auxiliary
variable seemed to overestimate annual precipitation at points
of high elevation. Estimates obtained by cokriging reflected
more closely the topography of Aragdén as shown by the

respective isolines maps of the estimates.
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For all interpolation points, the use of LAPRE instead of
APRE sample values lead to reduced estimation error standard
deviations (EESD). The averades of the percent differences
among cokriging EESD obtained using LAPRE sample values and
cokriging EESD obtained using APRE sample values ranged
from -38 to -42 % depending on the use of ELEV or LELEV as the
auxiliary variable, respectively. Likewise, for all sample
points cokriging EESD were lower than kriging EESD. The
averages of the percent differences among cokriging EESD and
kriging EESD ranged from -7 to -14 % when APRE sample values
were used, while those averages were about -11 % when LAPRE

sanple values were used.

As final conclusion, the results of this study suggest
that an improved estimation of annual precipitation in Aragdn
was obtained when a multivariate geostatistical approach
(cokriging) was used, together a log~-transformation of the
primary (annual precipitation) and the auxiliary (elevation)

variables.
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Table 1. Descriptive statistics of APRE and LAPRE available
at the weather stations and ELEV and LELEV available
at the weather stations and 1913 additional sample
points.

Statistics APRE LAPRE® BLEV® ELEV? LELEV®¢

(mm) (m) (m)

Number 182 182 182 2095 2095

Average 650.2 2764.8 649.6 791.8 2820.6

Minimum 296.0 2470.9 i22.0 70.0 1845.1

Maximum 1976.0 3295.8 1660.0 2880.0 3459.4

Median 500.5 2699.3 600.5 720.0 2857.3

Variance 110858.0 39428,1 105327.0 213999.0 735633.1

Coeff. of 51.2 7.2 50.0 58.4 9.6

variation

Standard. 7.0 3.2 2.8 18.7 -6.2

skewness

o o o ®

Log (mm) x 103
Log(m) x 103
Elevation at the

sample points

weather stations
Elevation at the weather stations and 1913 additional
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Table 2. Simple linear regression analysis of sample values

of APRE and LAPRE on ELEV and LELEV. (n=182).

Dependent Independent Intercept Slope Coeff. of
variable® variable® correlation
APRE ELEV 155. 6% 0.762% 0.748
APRE LELEV -1885.9° 0,922% 0.68%
LAPRE ELEV 2472.0% 0.451% 0.74%
LAPRE LELEV 1169.8°% 0.580% 0.728%
a APRE, mm; LAPRE, Log(mm) x 107
b ELEV, m; LELEV, Log(m) x 10°

Significant at a = 0.05
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Table 3. Parameters and cross-validation statistics of the

gaussian models fit to the experimental direct-

semivariograms for APRE, LAPRE, ELEV and LELEV, and

the cross-semivariograms for APRE-ELEV, APRE-LELEV,

LAPRE-ELEV and LAPRE-LELEV.

Model parameters Cross-valid. statistics
Semivariog. Nugget®* Sill® Range PAEE RMSE SMSE
(km) (%) (dimensionless)
APRE 8260 121050 132 0.413 0.091 0.986
LAPRE 2830 48090 136 0.031 0.091 0.980
ELEV 28950 279890 165 0.514 0.137 0.977
LEELV 6590 109150 156 0.036 0.091 0.970
APRE-ELEV 7330 108150 132 2.097 0.072 1.037
APRE-LELEV 1550 80450 132 3.216 0.088 1.052
LAPRE-ELEV 3850 69700 136 0.256 0.072 0.986
LAPRE-LELEV 1520 53950 136 0.351 0.077 1.030
* APRE, nmm’; LAPRE, {Log(mm)]? x 10%;  ELEV, m’;

LELEV, {[Log(m)]? x 10%;
APRE-LELEV, mm Log(m) x 10%;

APRE-ELEV, mm m;

LAPRE-ELEV, m Log(mm)
LAPRE-LELEV, Log(mm) Log(m) x 10°

x 103;



Table 4. Descriptive statistics of the estimates and
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estimation error standard deviations (EESD) of APRE

obtained at 1913 interpolation points for six cases:

KP, Xriging of APRE;

ELEV;

CKPLE, cokriging of APRE and LELEV;

CKPE, cokriging of APRE and

KLP,

kriging of LAPRE; CKLPE, cokriging of LAPRE and

ELEV; CKLPLE, cokriging of LAPRE and LELEV.
Estimates of APRE (mm)®
Statistics KP CKPE CKPLE KLP CKLPE CKLPLE
Mean 534.3 601.9 589.9 531.3 593.0 583.6
Minimum 323.0 296.,3 209.9 327.3 326.0 279.4
Maximum 1638.7 1866.5 1672.2 1691.5 2520.6 1919.0
Std. deviation 239.6 285.9 254,2 237.1 334.8 282.1
Coef. variation 44.8 47.5 43.1 44,6 56.5 48.3
EESD of APRE (mm)?
Statistics KP CKPE CKPLE KLP CKLPE CKLPLE
Mean 110.5 93.8 101.0 66.7 58.4 58.3
Minimum 93.8 82.4 91.4 56.6 51.1 52.7
Maximum 324.4 242.6 220.8 198.6 152.9 128.9
std. deviation 30.4 20.3 16.5 18.6 12.9 9.6
Coef. variation 27.5 21.6 16.3 27.9 22,1 16.5

Coefficient of variation, %
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Table 5. Descriptive statistics of the percent differences,
for each of 1913 interpolation points, among the
estimates of APRE obtained for six cases: KP,
kriging of APRE; CKPE, cokriging of APRE and ELEV;
CKPLE, cokriging of APRE and LELEV; KLP, kriging of
LAPRE; CKLPE, cokriging of LAPRE and ELEV; CKLPLE,
cokriging of LAPRE and LELEV.

Cases Mean Minimum Maximum

(%) (%) (%)

CKPE vs KP 12.8 -21.7 122.0

CKPLE vs KP 11.3 -40.5 69.8

KLP vs KP ~0.4 -5.0 6.4

CKLPE vs KP 9.0 -16.5 87.5

CKLPLE vs KP 8.7 -26.6 49.3

CKPLE vs CKPE -0.8 19.6 -33.7

KLP vs CKPE -9.8 22.3 -53.8

CKLPE vs CKPE -2.8 -22.7 37.4

CKLPLE vs CKPE -2.7 16.3 -33.5

KLP vs CKPLE -8.9 -39.6 66.2

CKLPE vs CKPLE ~-1.4 ~23.3 67.1

CKLPLE vs CKPLE -1.7 -14.4 33.1

CKLPE vs KLP 9.4 -12.8 89.6

CKLPLE vs KLP 9.2 -25.7 45.8

CKLPLE vs CKLPE 0.3 16.6 -29.2
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Table 6. Descriptive statistics of the percent differences,
for each of 1913 interpolation points, among the
estimation error standard deviations (EESD) of APRE
obtained for six cases: KP, kriging of APRE; CKPE,
cokriging of APRE and ELEV; CKPLE, cokriging of
APRE and LELEV; KLP, kriging of LAPRE; CKLPE,
cokriging of LAPRE and ELEV; CKLPLE, cokriging of
LAPRE and LELEV,

Cases Mean Minimum Maximum

(%) (%) (%)

CKPE vs KP -14.,30 -12.09 -27.61

CKPLE vs KP -6.99 =-2.47 -32.93

CKLPE vs KLP -11.62 -9.59 -24.60

CKLPLE vs KLP -11.00 -6.65 ~35.81

CKLPE vs CKPE -37.79 -36.66 -37.97

CKLPLE vs CKPLE -42.,28 -41.65 -42.52

CKLPLE vs CKLPE 0.58 3.26 =15.7%
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Figure 1. Map showing the location of Aragdn.
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Figure 2. Isolines of elevation above sea level (m) of Aragdn.
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Primary variable

APRE LAPRE
None KP KLP KRIGING
ELEV CKPE CKLPE
LELEV CKPLE CRLPLE COKRIGING

Scheme of the six cases compared in this study,
resulting of the application of two geostatistical
interpolation methods, kriging and cokriging, to two
variables, annual precipitation (APRE) and elevation
(ELEV), and their respective log-transformations

(LAPRE and LELEV).




Figure 4. Percent differences among cokriging (case CKLPLE)

and kriging (case KLP) estimates of APRE versus

elevation. (n=1913).
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Figure 5. Cokriging estimates of APRE obtained with sample
values of (A) LAPRE and LELEV (case CKLPLE) vs APRE
and LELEV (case CKPLE); and (B) LAPRE and ELEV
(case CKLPE) vs those obtained with cokriging of

LAPRE and LELEV (case CKLPLE)}. (n=1913).
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Figure 6. Maps of isolines of APRE. (A) Kriging (case KLP).

(B) .

Cokriging (case CKLPLE).
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Figure 7. Maps of isolines of estimation error standard
deviations (EESD) of APRE. (A) Kriging (case KLP).
(B) Cokriging (case CKLPLE). +, avalilable weather

stations.
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Figure 8.

Percent differences among coKkriging {case CKLPLE)
and kriging (case KLP) estimation error standard
deviations (EESD) versus the latitude (UTM North-

south). (n=1913).
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