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Abstract

Schumpeter stated that “wave-like fluctuations in business...are the form economic development

takes in the era of capitalism.” This paper argues that observed long lags in the implementation

of innovations make modern economies to behave consistently with Schumpeter’s statement. In

a simple endogenous growth model with implementation delays, the paper finds that: First, the

equilibrium path admits a Hopf bifurcation where consumption, R&D and output permanently

fluctuate. Innovations arrive en masse, moving the economy to a boom; the associated increase

in purchasing power all over the business sphere induces research activities to flourish again;

but, innovations will take a while to develop; when the new wave of innovations is eventually

implemented, new products enter the market producing a second boom; a third will follow,

then a forth and so on and so for. Second, this mechanism is quantitatively consistent with US

aggregate data. Finally, a procyclical R&D subsidy rate moving around 10% and designed to

half consumption fluctuations increases the growth rate from 2.4% to 3.4% with a 9.6% increase

in welfare, 6.3% of the welfare gains due to consumption smoothing.
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1 Introduction

The conjecture that in the modern era business fluctuations and economic growth are two faces

of the same coin comes back to Schumpeter [49], who pointed out that “wave-like fluctuations

in business...are the form economic development takes in the era of capitalism.” Starting from

this premise, Schumpeter raised the key question of “why is it that economic development does

not proceed evenly..., but as it were jerkily; why does it display those characteristics ups and

downs?” When searching for an answer, he drew attention to the critical fact that innovations

“appear en masse at intervals”, “discontinuously in groups or swarms,” which “signifies a very

substantial increase in purchasing power all over the business sphere.”

Following the seminal work by Aghion and Howitt [2], Grossman and Helpman [35] and

Romer [47], important developments have been undertaken in the last twenty years addressed

to improve our understanding on the main channels through which innovations promote de-

velopment and growth. Endogenous growth theory is in a fundamental sense Schumpeterian,

since it stresses the critical role played by innovations in the observed growth of total factor

productivity. However, little has been written since then on the relation between innovation and

business fluctuations.

A natural candidate for the study of Schumpeterian wave-like business fluctuations is the

observed long delay elapsed between the realization of R&D activities and the implementation

and adoption of the associated innovations.1 Schumpeter [49]’s description of the periodicity of

business fluctuations is, in this sense, very appealing: “the boom ends and the depression begins

after the passage of the time which must elapse before the products of the new enterprise can

appear on the market.” The argument in this paper is very close to Schumpeter’s description:

waves of innovations arrive en masse, moving the economy to a boom; the associated increase in

productivity raises purchasing power all over the business sphere, inducing research activities to

flourish; but, the new products will take a while to develop; when the new wave of innovations

is eventually implemented, the new products enter the market producing a second boom, which

will generate a third, then a forth and so on and so for.

It is important to notice that Schumpeterian wave-like business fluctuations as described

in the previous paragraph substantially differ from the type of fluctuations studied in modern

business cycle literature. Inspired on Kydland and Prescott [41], it has focused on the study

of high frequency movements, those between 4 and 40 quarters. Schumpeter, indeed, was more

interested in medium (Juglar) and low (Kondratieff) frequency movements lasting around 10

and 50 years, respectively. A description of economic fluctuations more in accordance with the

Schumpeterian’s view was recently suggested by Comin and Gertler [20]. They estimate the

medium term movements of US per capita GDP growth by analyzing frequencies between 40

and 200 quarters, and find that it permanently undulates with a periodicity of around 11 years

and an amplitude of around 8 percentage points from pick to valley. This paper focuses on

1Comin and Hobijn [22] study the pattern of technology diffusion around the globe and find that countries

on average adopt technologies 47 years after their invention. Comin et al [23] find that, when compared to the

US, lags in the use of technology are measured in decades for most countries. Adams [1] estimates that academic

knowledge is a mayor contributor to productivity growth, but its effects lag roughly 20 years. Mansfield [42]

estimates the mean adoption delay of twelve mayor 20th-century innovations in 8 years. Jovanovic and Lach [36]

estimate at 8.1% the annual diffusion rate of new products.
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Juglar cycles or, equivalently, on medium terms movements.

In this paper, Schumpeter’s wave-like fluctuations are modeled in a simple way by adding

an implementation delay to an otherwise standard endogenous growth model with expanding

product variety –see Romer [47]. The paper shows that the equilibrium path admits a Hopf

bifurcation where consumption, research and output permanently fluctuate. The main mech-

anism relating growth to wave-like fluctuations is based on the assumption that innovations

being fundamental for economic growth require long implementation and adoption lags. The

mechanics is the following. Let say that the economy initially reacts by some concentration of

research activities, which makes new ideas to appear en masse. This is the standard reaction of a

dynamic general equilibrium model when the initial stock of (technological) capital is relatively

low. However, the economic effects of this wave of research activity will be delayed in time.

When a swarm of new businesses will become eventually operative, the associated increase in

productivity will inject additional resources to the economy –“a substantial increase in purchas-

ing power” in Schumpeter’s words. Consumption smoothing makes the rest, by allocating the

additional resources to create a second wave of innovations. This process will repeat again and

again as time passes. A simple quantitative exercise is undertaken by calibrating the model to

some US aggregates. The paper finds that under this calibration, the model shows permanent

cycles of the observed pattern. In this sense, the suggested mechanism relating the sources of

growth and business fluctuations is not only theoretically possible but quantitatively relevant.

Additionally, the paper makes some welfare considerations. Firstly, it shows that detrended

consumption is constant from the initial time in an optimal allocation, and both R&D and

output converge by oscillations. Second, it proves that a procyclical subsidy/tax scheme would

restore optimality. Finally, it quantitatively find that a procyclical 10% subsidy rate halving

consumption fluctuations will increase the growth rate from 2.4% to 3.4% with a 9.6% increase

in welfare, 6.3% due to consumption smoothing.

The model in this paper belongs to the literature on dynamic general equilibrium with

time delays, including time-to-build and vintage capital theories. Firstly, fluctuations in the

vintage capital literature are the result of machine replacement, as described in Benhabib and

Rustichini [13], Boucekkine et al [16] and Caballero and Hammour [18].2 Following the lumpy

investment literature, initiated by Doms and Dunne [28], Cooper et al [24] find robust evidence

on the existence of machine replacement, but little support for the contribution of machine

replacement to the understanding of observed business fluctuations. Second, since the seminal

paper by Kydland and Prescott [41], investment lags have been shown to make the business cycle

highly persistent. Asea and Zak [3] and, more recently, Bambi [4] go further and prove that

time-to-build may generate endogenous fluctuations. However, time-to-build delays are short

relative to Junglar cycles, since they last some few quarters only. These observations make

implementation delays a more appealing object to the understanding of Schumpeterian business

fluctuations than vintage capital or time-to-build arguments.

There is an extensive literature on endogenous competitive equilibrium cycles in discrete time

economies, along the seminal contributions of Benhabib and Nishimura [11] and Grandmont

[34]. Benhabib and Nishimura [12] relate optimal cycles to the existence of a Hopf bifurcation

in continuous time multisector growth models. Furthermore, our policy implications goes in the

2See also Boucekkine et al [15] and Boucekkine and de la Croix [14].
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same direction of those found, even if in a different context, by Grandmont [34]; more precisely

the policy designed to restore efficiency reduces the persistence of the business cycle and then

make our economy to converge by damping fluctuations toward the balanced growth path.

This paper is also related to Matsuyama [43] and Francois and Lloyd-Ellis [32], among the

few exceptions connecting endogenous growth with cycles. Firstly, Matsuyama [43] shows that,

under some conditions regarding the saving rate, endogenous cycles arrive in a discrete time

Rivera-Batiz and Romer [46] endogenous growth model, where monopoly rents last only one

period and implementing an innovation entails fixed costs. Along the cycle, the economy moves

periodically from a Neoclassical regime to an AK regime. Research activities come en masse as

in Schumpeter’s theory, but, contrary to the empirical evidence, they are counter-cyclical. In our

theory, indeed, R&Dmoves pro-cyclically.3 Second, Francois and Lloyd-Ellis [32] link growth and

cycles combining animal spirits, such as in Schleifer [48], to a Schumpeterian endogenous growth

model. In their framework, a cyclical equilibrium exists because firms are interested in delaying

implementation to the boom in order to maximize the expected length of incumbency. In our

model, cycles are also related to implementation delays too, but they are not the consequence

of animal spirits but result from a Hopf bifurcation.

The idea that delayed gains in productivity may generate persistence has being deeply studied

in the recent literature on “news shocks” –see Beaudry and Portier [8].4 However, the main

source of fluctuations in this literature remains exogenous. In our theory, indeed, current research

activities and the associated future innovations may be seen as perfectly forecasted, endogenous

news shocks. Endogenous news are at the basis of the the cyclical behavior of our economy,

since more resources are allocated to produce current news when past news realize.

Our adoption delay are indeed very different from the delay elapsing between the arrival of

a general purpose technology (GPT) and its implementation. In fact, GPT refers to a major

technology breakthrough, as for example the discovery of the electric dynamo, whose implemen-

tation requires costly and very long restructuring. According to David [25], the implementation

of a new GPT may generally take several decades: the electric dynamos takes for example three

decades to attain a fifty percent diffusion level in the U.S.. Then the consequences of a discovery

of a GPT may well reproduce the low (Kondratieff) frequency movements in the data but not

the medium ones which are the objective of our analysis.

Finally, this paper shares with Comin and Gertler [20]’s the view that lags of technology

adoption do generate medium-term movements in models of endogenous productivity growth. In

Comin and Gertler’s view, medium-term movements “reflect a persistent response of economic

activity to the high-frequency fluctuations normally associated with the cycle.” In our theory,

indeed, medium-term movements are self-sustained.

The paper is organized as follows. Section 2 describes the decentralized economy and studies

its main dynamic properties. In particular, it shows the existence of a Hopf bifurcation. Finally,

it quantitatively studies its empirical relevance. Section 3 analyses optimal allocations and

suggests a procyclical R&D subsidy as a Pareto improving policy. A counterfactual exercise

is performed showing that a 10% R&D procyclical subsidy halving consumption fluctuations

3The empirical countercyclical behavior of R&D is reported in Geroski and Walters [33], Fatas [31] and Walde

and Woitek [50], among others.
4More recently, Comin et al [21] stress the importance of endogenous adoption in the amplification of these

shocks.
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generates first order welfare gains.

2 The decentralized economy

The economy is populated by a continuum of infinitely lived, identical households of unit mea-

sure, holding a constant flow endowment of one unit of labor. There is a sole final good, used

for consumption purposes only. Household preferences are represented by:

U =

∫ ∞

0
log (ct) e

−ρtdt, (1)

where ct is per capita consumption and ρ > 0 represents the subjective discount rate.

In line with the literature on expanding product variety, see Romer [47], the final consumption

good is produced by a CES technology defined on a continuum of intermediary inputs in the

support [0, n]. As usual, the extend of product variety n represents also the aggregate state

of knowledge. Knowledge positively affects the productivity of the consumption sector as an

externality, meaning that n has a positive effect on the production of the consumption good.

Differently from the existing literature, we assume that adopting new technologies requires a

time delay d > 0, meaning that varieties discovered at time t become operative at time t+ d. It

can be interpreted as an adoption delay which elapses from the discovery of a new variety to its

economic implementation. Then the consumption good technology is

ct = n
v+1− 1

α

t−d

(∫ nt−d

0
xt (j)

α dj

) 1
α

, 0 < α < 1 (2)

where nt−d represents the extend of operative varieties at time t, and xt(j) is the amount of

the intermediary input j used at time t in the production of ct. This consumption good tech-

nology implies a constant (and equal) elasticity of substitution between every pair of varieties,

θ = 1
1−α

> 1. The parameter v is the elasticity of the externality n, but also the return to

specialization as explained extensively in Ethier [30] and Benassy [10]; from now on we assume

v = 1 to simplify our analysis and at the same time to distinguish between the markup charged

by the monopolistic firms producing x(j) and the degree of returns to specialization.5 The as-

sumption that the externality operates only through the measure of operative varietes nt−d is

consistent with the love variety argument as suggested by Dixit and Stiglitz [27].

Technology in the intermediary sector is assumed to be symmetric across varieties

xt (j) = lt (j) , (3)

where lt (j) is labor allocated to the production of variety j. Total labor L allocated to the

production of the intermediary sector is given by

∫ nt−d

0
xt (j) dj = Lt. (4)

5The main qualitative properties of the Romer’s model do not depend on the elasticity being unity –see Benassy

[10]. However, when the adoption delay is strictly positive, a unit elasticity allows for a mathematical study of

the main properties of the model, which would not be the case otherwise.

4



An efficient allocation of labor to the production of the consumption good, spreading through

the intermediary sector, results from maximizing (2) subject to (4). It is easy to see that an

efficient allocation is symmetric, meaning xt (j) = xt for all j, which implies

ct = nt−dLt and nt−dxt = Lt. (5)

As stated above, labor allocated to the production of the consumption good benefits from a

knowledge externality, n, which comes linearly in the reduced form of the consumption goods

technology (5). In the following sections, we show that optimal and equilibrium allocations are

both efficient in the sense defined above –see Koeninger and Licandro [38].

Finally, R&D activities are also assumed to be linear on labor and addressed to the creation

of new intermediary inputs. The innovation technology creating these new varieties is assumed

to be:

ṅt = Ant−d (1− Lt) , (6)

where 1 − Lt is labor assigned to R&D production, its marginal productivity depending on

parameter A, A > 0. It is also assumed that the R&D sector benefits from a positive externality

depending linearly on the extend of operative varieties.

Note that consumption and R&D technologies, (5) and (6) respectively, collapse to

ṅt = A (nt−d − ct) . (7)

The AK structure of the model, see Rebelo [45], can be easily seen if the extend of product

variety nt−d is interpreted as (intangible) capital. In the following, we will refer to (7) as the

feasibility constraint.6

2.1 Decentralized equilibrium

The economy is decentralized as in Romer [47]. The market for the final consumption good is

supposed to be perfectly competitive, so that individuals and firms take the consumption price,

normalized to unity, as given. Innovations are protected by an infinitely lived patent and the

market for intermediary inputs is monopolistically competitive. The R&D sector is perfectly

competitive, implying that research firms make zero profits. Finally, the labor market is also

assumed to be perfectly competitive. In the following, the key equations are presented while

their derivation can be found in the Appendix.

A representative firm produces the consumption good by the mean of technology (2). It

takes intermediary prices as given and maximizes profits by choosing xt(j) for j ∈ [0, nt−d],

which results on the inverse demands function

pt(j) = n2α−1
t−d

(
ct

xt(j)

)1−α

(8)

with p(j) the relative price of the intermediate good j. Consequently, the intermediaries oper-

ating under monopolistic competition, and facing the inverse demand function (8), maximizes

6Equivalently, it can be assumed that labor is only used to the production of goods, and output is assigned to

both consumption and R&D, with L representing the consumption to output ratio and A the rate at which the

consumption good is transformed into innovations.
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their profits by setting the following price rule

pt(j) =
1

α
wt, (9)

where w is the marginal cost of production (technology is linear in labor), and 1
α

represents

the markup over marginal costs, which depends inversely on the elasticity of substitution across

varieties. The equilibrium is then symmetric, meaning that (5) holds, and equation (8) becomes

pt = nt−d. (10)

Recall that the consumption good is the numeraire, which implies that pt is the price of the

intermediary input relative to the price of consumption. An expansion in product variety im-

proves productivity in the consumption sector, inducing an increase in the relative price of the

intermediary input as reflected by (10).

From (5), (9) and (10), intermediary profits can be written as

πt = (1− α)
ct

nt−d
> 0. (11)

Profits are proportional to total sales per firm, the proportionally factor being directly related

to the markup rate.

By assumption, the inventor of a new variety receives a patent of infinite life, which can be

sold in the market for patents at the price vt. Given the R&D technology (6), a new variety

costs wt

Ant−d
. From equations (10) and (9), the free entry condition implies

vt =
α

A
, (12)

which is constant at equilibrium.

Finally, let us solve the representative household problem.

max

∫ ∞

0
log (ct) e

−ρtdt

subject to the instantaneous budget constraint

ṅt =
1

v
(πtnt−d + wt − ct)

and the initial condition nt = n̄t, for t ∈ [−d, 0], where n̄t is a known continuous function

defined on the t domain. At equilibrium, patents are the only asset households may hold,

paying dividends πtnt−d at time t. Non consumed income is then saved in the form of new

patents, priced v. In the following, it is assumed that the solution is interior, meaning ṅt ≥ 0.

The households problem is an optimal control problem with delays, which can be solved

following the optimal control theory in Kolmanovskii and Myshkis [39]. The first order conditions

are
ve−ρt

ct
= µt

µ̇t

µt
= −

πt+d

v

µt+d

µt
,
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and the transversality condition

lim
t→∞

ntc
−1
t e−ρt = 0, (13)

where ct is a control, nt−d is a delayed state and µt the associated costate. The representative

household faces the following trade-off, consuming at time t or buying new patents which will

become operative at time t+ d. The return of a new patent
πt+d

v
has to be then discounted by

the mean of the discount factor
µt+d

µt
.

After substituting equilibrium profits from (11), the two optimal conditions collapse into the

following Euler-type equation

ċt
ct

=
1− α

α

ct+d

nt
A

︸ ︷︷ ︸

private R&D return

e−ρd

(
ct

ct+d

)

︸ ︷︷ ︸

discount factor

−ρ =
1− α

α
A e−ρd ct

nt
− ρ. (14)

The private return to R&D, π/v, arrives after a period of length d. For this reason, it has to

be discounted using the appropriate ratio of marginal utilities. Moreover, the private return to

R&D is different from the social return, which is equal to A. Under log utility, the term in ct+d

cancels and the Euler equation does not depend on it, but on the state nt.

Equilibrium is then a path (ct, nt), for t ≥ 0, verifying the feasibility condition (7), the Euler

equation (14), the initial condition nt = n̄t, ∀t ∈ [−d, 0], the transversality condition (13) and

the irreversibility constraint ṅt ≥ 0.

2.2 Balanced growth and transitional dynamics

At a balanced growth path, from (14), the consumption to knowledge ratio is

ct
nt

=
α(ge + ρ)eρd

(1− α)A
, (15)

where ge is the growth rate of both c and n. Substituting this expression into (7), we obtain

Ae−ged − ge =
α(ge + ρ)eρd

1− α
. (16)

It is easy to show that a strictly positive growth rate ge exists and is unique under the following

parametric conditions:

A >
αρeρd

1− α
≡ Ae

min. (17)

A straightforward application of the implicit function theorem on (16) shows that ∂ge
∂A

> 0 and
∂ge
∂α

< 0, implying that both more productive economies and economies with larger markups

grow faster.

In order to proceed with the stability analysis, let us define x̃t = xte
−get, xt = {ct, nt},

with c̃t, ñt representing detrended consumption and detrended knowledge stock, respectively.

Equations (14) and (7) then become

˙̃ct
c̃t

=
1− α

α
A e−ρd c̃t

ñt
− (ρ+ ge) (18)

˙̃nt = A(ñt−de
−ged − c̃t)− geñt. (19)
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By linearizing the Euler equation (18) around the steady state and using (15), we get

˙̃ct = (ge + ρ)c̃t −
(ge + ρ)2αeρd

A(1− α)
ñt. (20)

Existence and uniqueness of a continuous solution for the system of delay differential equa-

tions (19)-(20) is guaranteed by Theorem 6.1 page 167 and Theorem 6.2 page 171 in Bellman

and Cooke [9]. It is worth noting that our detrending generates a spurious zero root (eigen-

value) which does not, consequently, play any role in the asymptotic behaviour of the detrended

system. The linearized system (20)-(19) is a good approximation of the original one (18)-(19),

provided that all the other roots of its characteristic equation –(23) below– have no zero real part

(Bellman and Cooke [9], pages 337-392, or more recently Diekmann et al [26]).7 The Laplace

transform solution and its series expansion is in Proposition 1.

Proposition 1 The series expansion of the Laplace transform solution of (19)-(20) is

ñt =
+∞∑

r=0

pre
λrt (21)

c̃t =
1

A

+∞∑

r=0

(Ae−(ge+λr)d − ge − λr)pre
λrt (22)

where {λr}
+∞
r=0 are the roots of the characteristic equation:

h(λ) = λ2 − ρλ− λAe−(ge+λ)d +A(ge + ρ)e−(ge+λ)d −A(ge + ρ)e−ged (23)

and {pr}
+∞
r=0 the residues:

pr =
˙̃n0 + ñ0

(
λr − ρ−Ae−(ge+λr)d

)
+Ae−(ge+λr)d

∫ 0

−d

[
˙̃nt − (ge + ρ)ñt

]
e−λrtdt

h′(λr)
(24)

with ˙̃nt =
d
dt
(n̄te

−get) for t ∈ [−d, 0), and ˙̃n0 = A(ñ−de
−ged − c̃0)− geñ0.

Proof. See Appendix.

In order to study the stability properties of the solution, we need information about the

spectrum of roots of the characteristic equation (23). For a given delay d and A sufficiently

close to Ae
min by its right, let us define the D-Subdivision Di as a set in the space (ρ, α), ρ > 0

and α ∈ (0, 1), such that the characteristic equation (23) has i and only i roots with strictly

positive real part. The assumption “A sufficiently close to Ae
min by its right” corresponds to

situations where the growth rate is positive but small. Remind that from (17), Ae
min is a function

of α, ρ and d. Figure 1 divides the space (ρ, α) in D-Subdivisions. The curve separating the

D-Subdivision D1 from the D-Subdivision D3 corresponds to a parameters configuration where

the spectrum has a pair of purely imaginary roots. Then, for continuous variation of the two

parameters (ρ, α) crossing this curve the number of roots with positive real part changes from

one to three since a couple of conjugate roots passes through the imaginary axis. This feature

will be critical for the rising of permanent cycles. Figure 2 shows how this curve separating

D1 and D3, moves when the delay d increases. As it can be seen, it moves to the left making

permanent cycles more plausible for smaller values of ρ and α.

7A similar local stability analysis of a functional differential equation around the balanced growth path can be

found in Boucekkine and Pintus [17].
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Proposition 2 For any admissible choice of parameters, the characteristic equation (23)

• has a spurious zero root, λ1, and a positive real root, λ0;

• when A is sufficiently close to (Ae
min)

+, subdivisions D1,D3 are non empty.

Proof. See Appendix.

Proposition 2 shows the two fundamental properties of the model. Firstly, as usual in

endogenous growth models with one state variable, when parameters belong to the D-Subdivision

D1 the spectrum has one and only one strictly positive real root. Local stability is proved in the

proposition below by using the transversality condition to rule out this root. Second, Proposition

2 shows that permanent cycles may arise in endogenous growth models with adoption delays

through a Hopf bifurcation. It is the case when parameters belong to the frontier between regions

D1 and D3 –see Figure 1– where two complex roots cross the imaginary axes. In this case, the

solution has two pure imaginary roots showing a permanent cycle (see Diekmann et al [26]).8

It is in this last sense that our results are in line with Schumpeter’s statement that “wave-like

fluctuations in business are the form economic development takes in the era of capitalism.”

Proposition 3 Let us assume parameters belong to the D-Subdivision D1, then the equilibrium

paths nt, ct follow

nt = p1e
get +

+∞∑

r=2

pre
(ge+λr)t (25)

ct =
1

A

[
(

Ae−ged − ge

)

p1e
get +

+∞∑

r=2

(

Ae−(ge+λr)d − ge − λr

)

pre
(ge+λr)t

]

(26)

with

c0 = ñ−de
−ged +

ñ0

A

(

−ge + λ0 − ρ−Ae−(ge+λ0)d
)

+ e−(ge+λ0)d

∫ 0

−d

[
˙̃nt − (ge + ρ)ñt

]
e−λ0tdt. (27)

Proof. See Appendix.

Under log utility, consumption is expected to depend linearly on wealth. This is implicit

in equation (27), where the left hand side implicitly defines initial wealth as an equilibrium

valuation of the flow of past innovation activities. When the economy is in the D-Subdivision

D1, the equilibrium path is unique and both nt and ct converge to the balanced growth path by

damping oscillations.

2.3 Quantitative analysis and medium-term movements

In this section, we undertake a quantitative exercise to show that the conditions required for our

economy to be on a permanent cycle equilibrium are quantitatively sensible. For this purpose,

we calibrate the model to the US economy by setting the following parameters values:

d = 8.2, ρ = 0.03, α = 0.9 and A = 0.786.

8It has been assumed that ṅ ≥ 0, otherwise negative labor should be allocated to R&D, which is not fea-

sible. Since we were not able to exclude in general that oscillations require negative innovation activities, we

systematically check for this condition in our numerical exercises.
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Figure 3: Spectrum of Roots.

The adopted value of d is consistent with Mansfield’s estimations, and α = .9 is in line with

estimated markups in Basu and Fernald [7], implying a markup rate of 11%. Parameters A and

ρ were chosen for the growth rate ge = 2.4% as in Comin and Gertler [20] and the economy be

in D-Subdivision D1, but close to its admissible border.

We use the software DDE-BIFTOOL developed by Engelborghs and Roose [29] to compute

the subset of the rightmost roots of the characteristic equations (23) corresponding to the equi-

librium allocation. The spectrum of roots is represented in Figure 3. As stated in Proposition 2,

the detrended system has a spurious zero root and a strictly positive real root, the latter being

ruled out by the transverality condition. Given our calibration strategy, the spectrum shows two

conjugate complex roots very close to the imaginary axes, all the other conjugate roots having

strictly negative real part.

To calibrate the initial conditions, we assume that during the years 1948 to 1959 the US

economy faced a wave-like movement of 11 years and an amplitude of around 8% of per capita

GDP when adjusting to the new economic environment emerging after World War II.9 The

corresponding initial conditions are represented by

n̄t = a cos (bt/π) + 1

where the amplitude of oscillations is given by parameter a, set equal to .375 for the amplitude

be close to 8%, and the period by parameter b, set equal to 20/11 for the period be equal to 11

years.10

9A similar figure emerges from the medium-term movements estimated by Comin and Gertler [20], for example.
10The particular choice n0 = 1 comes without any lost of generality, since the profile of the solution does not

depend on the level of the state variable, as usual in endogenous growth models, but on the profile of the initial

conditions.
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Figure 4: Equilibrium path for nt.

To compute a numerical solution, we use the strategy proposed by Collard et al [19], which

combines the method of steps suggested by Bellman and Cooke [9] with a shooting algorithm

–see Judd [37]. We apply this strategy to the nonlinear system (18)-(19) and use the solution

(27) of the linearized system to initialize c0 when applying the shooting algorithm. The solution

for nt is represented in Figure 4. As expected from Propositions 2 and 3, the decentralized

equilibrium converges to a Juglar cycle with periodicity close to 11 years and an amplitude of

around 8 percentage points. The amplitude of the cycle depends crucially on the amplitude

of the initial conditions as previously defined in the time interval [−d, 0]. Given that initial

conditions are periodic with a periodicity close to the permanent cycle period, the economy

converges to its permanent cycle very fast.

As can be observed in Figure 4, in a permanent cycle equilibrium the period of the solution

is larger than the adoption delay. Remember that the behavior of n is governed by the feasibility

condition (7), whose detrended version is in (19). Let first show that the solution cannot be

periodic of period d. We can prove it by contradiction. Suppose the solution is periodic of period

d, then ñt = ñt−d, implying that (19) becomes

˙̃nt

ñt
= Ae−ged − ge −

c̃t
ñt

.

Firstly, when detrended ñt is at its maximum value, because of consumption smoothing the ratio

c̃t/ñt is at its minimum value, implying that the growth rate is maximal at this point. Second,

since the solution is periodic, it has to be that the growth rate ˙̃nt/ñt = 0 at a maximum, but

positive before. This contradicts the result that the growth rate is maximal at the maximum.

Let us now show that if a periodic solution exists, it has to be that the period is larger than

d. Since the solution is periodic, ñt has to be bounded, meaning that ñt ∈ [nmin, nmax]. Since

the period of the solution is different from d, ñt−d 6= nmax. Let us call tm at a time t at which

ñt = nmax. From (19), at any t larger than but close to tm

Ae−ged∆ñt−d −∆c̃t = ∆ ˙̃nt + ge∆ñt,

12



where ∆xt refers to the discrete change in variable x with respect to tm. The right-hand-side

is strictly negative, since ñt is decreasing and concave at the right of the maximum, meaning

that ∆ñt < 0 and ∆ ˙̃nt < 0. From consumption smoothing, we know that detrended output

Ae−gedñt−d reacts more than consumption, meaning that the left-hand-side has the same sign as

∆ñt−d, which has to be negative then. Consequently, when nt is at n
max, nt−d has to be close,

but at the right of the previous spike, which proves that the period of the solution is larger than

d.

How do cycles work? When the economy is on a recession, i.e. on a neighborhood of nmin,

purchasing power is relatively low allowing few innovators to invest on R&D. This period of low

innovation activity will eventually generate a recession in the near future with negative effects on

future innovation. For a similar argument, when the economy is on a boom, purchasing power

is relatively high allowing many innovators to undertake R&D activities, creating the bases of a

new boom when all these innovation will eventually become operative.11

3 R&D Subsidies

An optimal allocation solves the following social planner problem12

max

∫ ∞

0
log(ct)e

−ρtdt

subject to the feasibility constraint

ṅt = A (nt−d − ct) , (7)

the irreversibility constraint ṅ ≥ 0 and the initial condition nt = n̄t, ∀t ∈ [−d, 0], the same n̄t

as in the decentralized equilibrium. Notice that for d = 0 the variable change ĉ = Ac renders

this problem formally identical to the AK model as in Rebelo [45].

Following Kolmanovskii and Myshkis [39] and operating as in the decentralized economy,

optimality requires the Euler-type equation

ċt
ct

= Ae−ρd ct
ct+d

− ρ, (28)

and the transversality condition

lim
t→∞

ntc
−1
t e−ρt = 0, (13)

where λt is the costate associated to the state nt−d. The social planner faces a trade-off between

consuming at time t or saving and consuming at t + d. For this reason, in (28) the R&D

productivity, A, is weighted by the ratio of marginal utilities of consuming at t+ d and t, which

multiplied by e−ρd represents the discount factor on a period of length d. It is useful to observe

that, as in the AK model, the Euler-type mixed functional differential equation (28) does not

depend on the state variable n. Consequently, since the social return to R&D is constant, the

planer may allocate consumption over time without caring about the path of knowledge n. As

shown in Proposition 4, optimal consumption is in its balanced growth path from time zero.

11This property is referred as echo effects in the vintage capital literature. See Boucekkine et al (1997).
12We implicitly assume that the solution is interior, meaning that Lt ∈ (0, 1). Bambi el al [5] in a similar

framework explicitly states the needed parameter restriction.
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However, since initial conditions affect production from zero to time d, R&D has to adjust to

fulfill the feasibility condition. This mechanism will repeat again and again making the optimal

allocations to fluctuate, as shown in Proposition 4, converging by damping oscillations.

An optimal allocation is then a path (ct, nt), for t ≥ 0, verifying the mixed functional

differential equations system (7) and (28), the transversality condition (13), the initial condition

nt = n̄t, ∀t ∈ [−d, 0] and the irreversibility constraint ṅ ≥ 0.

At a balanced growth path, from (28), consumption grows at the constant rate g holding

g + ρ = A e−(g+ρ)d. (29)

The following parameter condition

A > ρeρd ≡ A∗
min (30)

is necessary and sufficient for g to be strictly positive. When d = 0, this condition collapses to

the standard assumption in the AK model that A > ρ. Even if the transcendental equation (29)

has an infinity of complex solutions, under assumption (30), existence and uniqueness of a real

solution are trivial, since for g > 0 the right-hand-side of (29) is decreasing from A e−ρd to zero

and the left-hand-side is increasing from ρ to infinity.

The main properties of the transitional dynamics are stated in the proposition below. The

proof follows from the maximum principle approach developed by Bambi [4] and the dynamic

programming approach as in Bambi et al [5].

Proposition 4 Let’s assume that A > A∗
min, then the optimal equilibrium paths for nt and ct

are

n∗
t = aLe

gt +

+∞∑

j=1

aje
zjt (31)

c∗t = c0e
gt (32)

where g is the unique real solution of (29), aL and {aj}
+∞
j=1 are the residues associated to the

roots {zj}
+∞
j=0 of the characteristic equation h(z) ≡ z −Ae−zd = 0,

aL = A
+∞∑

j=0

c∗0
(zj − g)h′(zj)

aj =
n̄0 + zj

∫ 0
−d

n̄se
−zjsds

h′(zj)
−

Ac∗0
(zj − g)h′(zj)

(33)

with z0 = g + ρ and the initial value of consumption, c0, equals to

c∗0 =
ρ

A

(

n̄−d +

∫ 0

−d

˙̄nse
(g+ρ)sds

)

. (34)

Proof. See Appendix.

From the transversality condition, as usual, the proposition above states that detrended

consumption is constant all along the transition path. Optimal detrended n, however, converges

by damping oscillations to a positive constant.13

13See Bambi [4] and Bambi et al [5] for details; in particular, the discussion about the conditions for the solution

to be interior.
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Under log utility, consumption equals the return on wealth, the latter being represented by

the term within brackets at the right hand side of (34) divided the relative productivity A –see

(7). Notice that initial wealth is the sum at time zero of the value of operative varieties n−d plus

the value of produced but still non operative varieties, i.e., those produced between −d and zero.

The factor e(g+ρ)s, multiplying the mass of varieties ˙̄ns created at time s, s ∈ [−d, 0], discounts

the varieties’ value for the period still remaining until those varieties will become operative.

3.1 Comparing centralized and decentralized balance growth path allocations

Optimal and equilibrium allocations differ in at least two dimensions. First, consumption is

perfectly smoothed in the optimal allocation, but fluctuates at equilibrium. Second, the growth

rates are different at the balanced growth path. We develop these two arguments below, before

suggesting an optima R&D policy.

The fact that consumption does not fluctuate in the optimal allocation comes from the

Euler-type equation (28), which does not depend on the state of knowledge n due to linearity

in the aggregate technology. This is not the case at the equilibrium Euler-type equation (14),

since the private return to R&D depends on future profits, which are a negative function of

the market share. For example, when the economy is expected to be on a boom at the time

the innovation will be implemented, market shares are expected to be relatively low, making

current R&D investments less attractive and the growth rate of current consumption low too.

Individuals would like to smooth consumption at equilibrium, but since they expect returns to

R%D be fluctuating, they adjust consumption consistently.

At the equilibrium and optimal balanced growth paths

ge

(

e−ρd +
α

A(1− α)

)

+
αρ

A(1− α)
= A e−(ge+ρ)d, (16)

g + ρ = Ae−(g+ρ)d (29)

where ge and g represent the equilibrium and optimal growth rates, respectively. The following

proposition studies the relation between them.

Proposition 5 For α ∈ (0, 1), ge = g iff α = α and ge < g iff α < α < 1 , where

α ≡
g + ρ− ge−ρd

2(g + ρ)− ge−ρd
< 1/2. (35)

Proof. See Appendix.

This proposition is consistent with Benassy [10], who shows for d = 0 that the equilibrium

growth rate is smaller than the optimal rate if and only if the knowledge externality, v in equation

(2), is small enough or, equivalently, the elasticity of substitution α is large enough. Since in

our framework v is assumed to be unity, let argue in terms of the elasticity of substitution for

a given knowledge externality. For d = 0, α =
(

1 + A
ρ

)−1
, meaning that there is a range of

parameters for which the optimal growth rate is smaller than the equilibrium growth rate at the

balanced growth path. Increasing α makes goods more substitutable, reducing markups, the

return to R&D and the growth rate. Consequently, there is a degree of substitutability beyond

which the optimal growth rate is larger than the equilibrium rate.
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Since private R&D returns are different from public returns, optimality may be restored by

the mean of a time dependent subsidy/tax scheme imposed on current R&D investments or,

equivalently, on the return to R&D. By comparing the Euler equation associated to the optimal

allocation (28) to the one associated to the equilibrium allocation (14), after using (5), it is easy

to see that private and public returns equalize when the subsidy rate is

1 + st =
α

1− α

nt

ct+d
.

An optimal policy has two components. Firstly, as in the Romer model, it has to equalize

the average private return to the social return. Second, it has to compensate for fluctuations in

the private return. The social return to R&D is constant and equal to A, but the private return

fluctuates following the consumption to knowledge ratio ct/nt, which moves countercyclically

due to consumption smoothing. To render the equilibrium allocation optimal, the subsidy has

to be procyclical to counterbalance fluctuations in this ratio.

3.2 A quantitative comparison

This section suggests a R&D policy designed to partially remedy the distortions underlined in

the previous section, with the purpose of undertaking some counterfactual exercise around the

equilibrium computed in section 2.3 and evaluate the corresponding welfare gains. The model

is then extended to study a time varying R&D subsidy addressed to increase the average return

to R&D and reduce the volatility of consumption. Let assume the R&D policy follows

1 + st = (1 + s)

(
ct
nt

)σ−1

,

where s is a constant rate and σ < 1 represents the additional smoothing introduced by the

R&D policy. The Euler equation (14) becomes

ċt
ct

=
1− α

α
(1 + s)A e−ρd

(
ct
nt

)σ

− ρ.

Notice that an equilibrium without R&D policy requires s = 0 and σ = 1.

In order to make welfare comparisons, we compute a consumption equivalent measure defined

as the constant rate at which consumption in the decentralized equilibrium should increase all

over the equilibrium path to make equilibrium welfare equal to the corresponding welfare of the

equilibrium path with subsidies. Since utility is logarithmic, our welfare measure collapses to

ω = eρ (WR&D−We) − 1,

where WR&D and We measure welfare, as defined by the utility function (1), evaluated at

equilibrium with and without subsidies, respectively.

When the R&D policy pays a 10% average subsidy, s = .10, and the subsidy rate moves

procyclically in order to smooth consumption, with a smoothing parameter σ = 1/2, the growth

rate increases from 2.4% to 3.4%. In Figure 5, detrended consumption paths, relative to initial

consumption, are represented for the economies with and without subsidies. The smother corre-

sponds to the economy with procyclical subsidies. As can be observed, the subsidy halves con-

sumption fluctuations. Moreover, consistent with Proposition 4, the economy slowly converges
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Figure 5: Consumption paths with and without subsidy.

by oscillations instead of permanently cycling. There are welfare gains of 9.6% as measured by

ω. The order of magnitude is consistent with the findings in Barlevy [6]. If the 10% subsidy

were constant, the growth rate would be 2.8% and the welfare gains 3.3%. Consequently, a 6.3%

welfare gain may be attributed to consumption smoothing alone.

4 Conclusions

This paper studies the relation between Schumpeterian wave-like business fluctuations and eco-

nomic development in an endogenous growth framework with implementation delays. The paper

shows that the equilibrium path admits a Hopf bifurcation where consumption, research and

output permanently fluctuate around a positive trend. The main mechanism relating growth

to wave-like fluctuations is based on the assumption that innovations being fundamental for

economic growth require long implementation and adoption lags. A simple quantitative ex-

ercise shows that such an endogenous mechanism relating the sources of growth and business

fluctuations is not only theoretically possible but quantitatively relevant.

Additionally, the paper makes some welfare considerations. Firstly, it shows that detrended

consumption is constant from the initial time in an optimal allocation, and both R&D and

output converge by oscillations. Second, it proves that a procyclical subsidy/tax scheme would

restore optimality. Finally, it quantitatively find that a procyclical 10% subsidy rate halving

consumption fluctuations will increase the growth rate from 2.4% to 3.4% with a 9.6% increase

in welfare, 6.3% due to consumption smoothing.
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Appendix

More details on the three sectors

We start with the consumption good sector . The profit maximization problem which leads

to the inverse demand function for the intermediate good j, equation (8), is

max
xt(j)

pcct −

∫ nt−d

0
pt(j)xt(j)dj (36)

subject to the consumption good technology (2), and assuming pc = 1.

Each firm j in the intermediary good sector sets the monopolistic prices of xt(j) by

solving the following maximization problem

max
pt(j)

pt(j)xt(j)− wtlt(j)

subject to the technology constraint (3), and the inverse demand function (8) of its intermediate

good j, coming from the consumption good sector. It is straightforward to show that once all

the constraints are substituted into the objective function the problem is equivalent to:

max
pt(j)

pt(j)
1

α−1 (pt(j) − wt)

which implies the monopolistic price equation (9).

Firms may enter freely into R&D . Each new patent has a value of vt and cost wt(1−Lt) to

be produced. Then the value to be maximized is

max
1−Lt

vtṅt − wt(1− Lt)

subject to the R&D technology (6). This implies

max
1−Lt

(1− Lt)[vtAnt−d − wt]

and then

• Lt = 0 if vt >
wt

Ant−d
not possible (why?)

• Lt = 1 if vt <
wt

Ant−d
which implies ṅt = 0;

• Lt ∈ (0, 1) and vt =
wt

Ant−d
if ṅt > 0

In the paper we focus on this interior solution and we will show that the inequality ṅt > 0 will

be always respected both in the market and the central planner economy. Observe also that at

the symmetric equilibrium this condition implies the free entry condition (12).

Proof of Proposition 1. We first rewrite the system (19), (20) as a second order delay

differential equation

¨̃nt − ρ ˙̃nt −Ae−ged ˙̃nt−d −

(

ge(ge + ρ) +
α(ge + ρ)2eρd

1− α

)

ñt +A(ge + ρ)e−gedñt−d = 0
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Taking the Laplace transformation L(ñt)(λ) =
∫∞
0 ñte

−λtdt of this equation and taking into

account that

L(¨̃nt)(λ) = − ˙̃n0 − λñ0 + λ2
L(ñt)(λ)

L( ˙̃nt)(λ) = −ñ0 + λL(ñt)(λ)

L( ˙̃nt−d)(λ) = e−λd

[

−ñ0 +

∫ 0

−d

˙̃nte
−λtdt+ λL(ñt)(λ)

]

L(ñt−d)(λ) = e−λd

[∫ 0

−d

ñte
−λtdt+ L(ñt)(λ)

]

we have that

L(ñt)(λ) · h(λ) = φ(λ)

where

φ(λ) = ˙̃n0 + ñ0

(

λ− ρ−Ae−(ge+λ)d
)

+Ae−(ge+λ)d

∫ 0

−d

[
˙̃nt − (ge + ρ)ñt

]
e−λtdt

and h(λ) is the characteristic equation (23) associated to the second order delay differential

equation. Since ñt is a continuous differentiable function in [0,+∞),14 and therefore certainly

continuous and of bounded variation on any finite interval, then we can use the inversion formula

for the Laplace transformation on the set of circle contours Cℓ with ℓ = 1, 2, ..., center in the

origin of the complex plane, and radius yℓ, to obtain its solution:

ñt =

∮ ˙̃n0 + ñ0

(
λ− ρ−Ae−(ge+λ)d

)
+Ae−(ge+λ)d

∫ 0
−d

[
˙̃nt − (ge + ρ)ñt

]
e−λtdt

h(λ)
eλtdλ (37)

Then we can obtain the series expansion (21) of this solution by using the residue theorem. Since

the argument of the contour integral in (37) is not complex differentiable in all of its domain

due to the singularities represented by the roots of h(λ), then we may use the Residue theorem

(see for example Bellman and Cooke [9], chapter 4.6 page 121-126) to rewrite the solution of ñt

as:

ñt = lim
ℓ→∞

∑

λr∈Cℓ

Res

(
φ(λ)

h(λ)
, eλt

)

= lim
ℓ→∞

∑

λr∈Cℓ

pλr
eλrt =

∞∑

r=0

pre
λrt (38)

where the residues pr =
φ(λr)
h′(λr)

are defined in the complex field C. Finally the solution of c̃t can

be derived from (21) and (19).

Proof of Proposition 2. First of all, the system in the normalized variables c̃(t) and ñ(t)

implies that h(0) = 0, and then λ1 = 0 is a spurious root of (23) coming from the detrending.

Moreover, a positive real root, λ0, always exists since limλ→±∞ h(λ) = +∞ and h′(0) = −ρ −

Ae−ged − dA(ge + ρ)e−ged < 0 for any admissible choice of the parameters. No other positive

real root exists since

h′(λ) = 2λ− ρ−A[(1 + d(−λ+ ge + ρ)]e−λde−ged

has only one critical point. This comes directly by looking at f(λ) = A[1 + d(−λ + ge +

ρ)]e−λde−ged and noticing that the following relations always hold: f(0) > 0, f ′(0) = A{−d[2 +

d(ge + ρ)]}e−ged < 0, and limλ→+∞ f(λ) = 0.

14See the previously mentioned theorem of existence and uniqueness of solution in Bellman and Cooke [9]

19



Following Kolmanovskii and Nosov [40], we use the D-Subdivision method to determine the

regions Di (separated each other by what we call D curves) having i roots with strictly positive

real part (from here on p-roots). Moreover we focus our analysis on the quasi-polynomial h(λ)

when A → A+
e , and then ge → 0+; in this case, the characteristic equation becomes a continuous

function of only two parameters, (ρ, α), and a visual representation of the results can be provided.

Moreover the stability results obtained for this restriction still hold for any sufficiently small and

continuous variation of A. Under this assumption on A we have that

h(λ) = λ2 − ρλ− λe−λdα̂ρeρd + e−λdα̂ρ2eρd − α̂ρ2eρd = 0 (39)

where α̂ = α
1−α

∈ [0,+∞) since α ∈ [0, 1). We also extend the domain of ρ to the interval

(−ε, 1 + ε), with ε positive and infinitely small, in order to pin down more easily the different

Di.

Let’s start with the analysis of the two extreme cases: α̂ = 0 and ρ = 0. When α̂ = 0 then

the parameters space is partitioned in two regions, D1 if ρ ∈ (0, 1 + ε) and D0 if ρ ∈ (−ε, 0]; in

fact when α̂ = 0 then h(λ) = λ(λ− ρ) = 0 and there are only two real roots λ0 = ρ, and λ1 = 0.

On the other hand ρ = 0 implies h(λ) = λ2 = 0.

Let’s now focus on the purely imaginary roots λ = iv when α̂ and ρ can take any values in

their respective domains in order to identify the D-curves, α̂ = α̂(v) and ρ = ρ(v), separating

different Di regions. The characteristic equation writes

h(iv) = −v2−ρiv− α̂ρeρdv [i cos(vd) + sin(vd)]+ α̂ρ2eρd [cos(vd)− i sin(vd)]− α̂ρ2eρd = 0 (40)

Observe also that h(iv) = U(v) + iW (v) = 0 with:

U(v) = 0 ⇔ v2 + α̂ρ2eρd + α̂ρeρd [v sin(vd) − ρ cos(vd)] = 0 (41)

W (v) = 0 ⇔ v + α̂eρd [v cos(vd) + ρ sin(vd)] = 0 (42)

From W (v) = 0 follows immediately that

α̂ =
−v

eρd [v cos(vd) + ρ sin(vd)]
(43)

when v cos(vd) + ρ sin(vd) 6= 0; then substituting (43) into (41) leads to

ρ = ρ(ω) = ±
1

d

√

ω2 cos(ω)

1− cos(ω)
with ω = vd (44)

Then substituting back (44) into (43) leads to

α̂(ω) =
−ω

e

√

ω2 cos(ω)
1−cos(ω)

[

ω cos(ω) +
√

ω2 cos(ω)
1−cos(ω) · sin(ω)

]
(45)

Relations (44) and (45) determine the point (ρ1, α̂1) = (ρ(ω1), α̂(ω1)) of a D curve for ω = ω1.

If ω varies in its domain ω ∈
(
(2k−1)π

2 , (2k+1)π
2

)

\ 2kπ with k = . . . ,−2,−1, 0, 1, 2, . . ., we obtain

all the D-curves.15 Besides these curves, the D-subdivision may contain some straight lines for

15The domain of ω excludes the points 2kπ and (2k+1)π
2

which are discontinuity for 1− cos(ω) and ω
d
cos(ω) +

ρ(ω) sin(ω) = 0 respectively.
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the values of ω which imply an indeterminate form of the type 0
0 or ∞

∞ to ρ(ω) or α̂(ω). However

in our specific case, the only indeterminate form emerges at ω = 0 which implies h(0) = 0

confirming the presence of a zero root in all the parameters space. Then the properties of the

parametric D-curves can be analytical derived; among them, we show in the following why the

region [−ε, 0] × [0,+∞] in the parameters space (ρ, α̂) is a subset of D0.

To show this fact we will prove that if ρ → 0− then α̂ → ±∞ and then no D-curve can be

in the region under analysis. From (44) it is clear that ρ → 0− if and only if ω → (2k+1)π
2 , and

then we have to study the following limit:

lim
ω→

(2k+1)π
2

α̂(ω) = lim
ω→

(2k+1)π
2

−ω

eρ(ω)d
[

ω cos(ω)± |ω|
√

cos(ω)
1−cos(ω) · sin(ω)

]

= lim
ω→ (2k+1)π

2

−ω

eρ(ω)d
[

ω cos(ω)± |ω|
| sin(ω)|

√

cos(ω) · (1 + cos(ω)) · sin(ω)
]

if k is even then ± otherwise ∓; let’s assume k even, then

lim
ω→

(2k+1)π
2

α̂(ω) = lim
ω→

(2k+1)π
2

−1

cos(ω)±
√

cos(ω)(1 + cos(ω))

= lim
ω→ (2k+1)π

2

1
√

cos(ω)
· lim
ω→ (2k+1)π

2

1
√

cos(ω)±
√

1 + cos(ω)
= ∓∞

On the other hand if k is odd then ±∞.

Each curve separating two regions is obtained by studying the values that the two parameters

can have in each of the intervals of v. It is also clear that the D1 region changes as shown in

Figure 2 because ∂ρ(ω)
∂d

< 0, while ∂α̂(ω)
∂d

= 0.

Proof of Proposition 3. Given our assumptions, the only positive root to be ruled out in

order to have convergence to the balanced growth path is λ0. To do that we have to specify

c̃0 as in (27) so that p0 = 0. Uniqueness of the equilibrium path is a direct consequence of

the fact that (27) is the only choice of the initial condition of consumption which rules out λ0.

Oscillatory convergence follows from the properties of the spectrum of roots as discussed in the

previous proposition.

Proof of Proposition 4. We refer the interested reader to the proof of Theorem 4 in Bambi

et al [5].

Proof of Proposition 5. Let’s assume g = ge. Combining (16) and (29) to solve for α gives

α as defined above. Notice that from (29), g does not depend on α, meaning that α in (35) only

depends on the other three parameters A, d, ρ. It is straightforward to observe that α is always

smaller than 1/2. Finally ge < g iff α > α, since from (16)

dge
dα

= −

(ge+ρ)eρd

(1−α)2

1 + dAe−ged + α
1−α

eρd
< 0,

and g in (29) does not depend on α.
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