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We investigate the nature of the ordered phase and the orientational correlations between adjacent
layers of the confined three-dimensional self-assembled rigid rod model, on the cubic lattice. We find
that the ordered phase at finite temperatures becomes uniaxial in the thermodynamic limit, by contrast
to the ground state (partial) order where the orientation of the uncorrelated layers is perpendicular to
one of the three lattice directions. The increase of the orientational correlation between layers as the
number of layers increases suggests that the unconfined model may also exhibit uniaxial ordering at
finite temperatures. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745196]

I. INTRODUCTION

State of the art techniques for synthesizing colloids
monodisperse in shape and size allow their collective be-
havior to be investigated.1 The new particles may become
the “molecules” of new materials if they can be tailored
and assembled into useful structures.2 In fact, the possibility
of particle decoration (through, e.g., glancing angle deposi-
tion, templating, or lithography) produces colloids with pre-
determined surface patterns (patches). Patches yield new fea-
tures such as anisotropic interactions, control of the valence,
and the formation of permanent electrical dipoles, paving the
way for the rational development of novel self-assembled ma-
terials (e.g., super-molecules) with highly tunable mechani-
cal, optical, and thermal properties.1, 3

Self-assembly has been exploited theoretically for a
primitive model of patchy colloids and state of the art sim-
ulation studies revealed how the number, type, and distribu-
tion of the patches determine the self-assembled structures.
In systems with two bonding sites per particle, only (polydis-
perse) linear chains form and there is no liquid-vapor phase
transition.3 If the linear chains are stiff they will undergo
an ordering transition, at fixed concentration, as the temper-
ature decreases. The minimal model of this transition con-
siders the effects of the equilibrium polydispersity and the
polymerization process of the rods. In this context, we pro-
posed a model of self-assembled rigid rods (SARR), com-
posed of monomers with two bonding sites that polymerize
reversibly into polydisperse chains4 and carried out extensive
Monte Carlo simulations to investigate the nature of the or-
dering transition on the square and triangular lattices.5, 6 The
polydisperse rods undergo a continuous ordering transition
that was found to be in the two-dimensional (2D) Potts
q = 2 (Ising) and q = 3 universality classes, respectively, as in
similar models where the rods are monodisperse.7 These find-
ings refute previous claims, based on canonical Monte Carlo

simulations, that equilibrium polydispersity and the statisti-
cal ensemble change the criticality of these models to random
percolation.8–10

The nature of the ordering transition of the three-
dimensional (3D) SARR model on the simple cubic lattice
is much more difficult to establish. The model consists of par-
ticles with two patches aligned along ±α̂, where α̂ represents
one of the three lattice directions (x̂, ŷ, ẑ). Particles on nearest
neighbor (NN) lattice sites ri and ri + α̂ interact attractively
with energy −ε if their patches are aligned along α̂. Monte
Carlo simulations using efficient algorithms suggest that the
ordered phase (below the transition temperature) exhibits a
bias towards uniaxial behavior (i.e., the system exhibits a ten-
dency to align different layers, by contrast to the ground state
partial order). This tendency is observed only when the sys-
tem size, defined by L with L3 the number of sites considered
in the simulation, is sufficiently large at temperatures that are
not too low, T � 0. Despite the use of efficient cluster algo-
rithms we have not been able to establish the nature of the
ordered phase as the system sizes required to observe uniax-
ial behavior increase rapidly as the temperature decreases, as
discussed below.

Here, we consider the confined 3D SARR model as a first
step towards elucidating the nature of the ordered transition
on the cubic lattice. We investigate the nature of the ordered
phase and the orientational correlations between adjacent lay-
ers of the confined model, on the cubic lattice, and find that
the ordered phase at finite temperatures becomes uniaxial in
the thermodynamic limit, by contrast to the ground state order
where the orientation of the uncorrelated layers is perpendic-
ular to one of the three lattice directions. In addition, we find
that the orientational correlation between layers increases as
the number of layers increases from two to three suggesting
that the unconfined model may also exhibit uniaxial order at
finite temperatures.
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The paper is arranged as follows: In Sec. II, we describe
the ground state and the simulation methods used to analyze
the 3D SARR model at finite temperatures, while in Sec. III,
we present the simulation results for the ordering transition
and the order parameters. In Sec. IV, we introduce the con-
fined SARR model. In Sec. V, we present the simulation re-
sults for the order parameters and the correlations between
adjacent layers, for models with two and three layers. We con-
clude in Sec. VI with a discussion of the results.

II. THREE-DIMENSIONAL SARR MODEL

A. Ground state

In the full-lattice limit every site is occupied by one
particle aligned in one of the three lattice directions. In the
ground state, the SARR model exhibits partial order: One lat-
tice direction (say, z) is suppressed, with the uncoupled layers
aligned in one of the remaining lattice directions (x or y). The
ground state potential energy is then U = −Nε, where N is the
number of lattice sites, with degeneracy,

ωGS = 3 × (2L − 1). (1)

The entropy per site vanishes in the thermodynamic limit.

B. Simulation procedures

It has been shown that the full-lattice 2D SARR model on
the square lattice can be mapped on the 2D Ising model.5 This
mapping allows the use of cluster algorithms developed for
Potts models11, 12 to enhance the efficiency of the Monte Carlo
simulations. In what follows, we describe how the Swendsen-
Wang algorithm may be adapted to the SARR model on lat-
tices where the mapping does not exist. We recall that the 3D
SARR model on the cubic lattice or the 2D SARR model
on the triangular lattice cannot be mapped on Ising or Potts
models.6 We can, however, develop cluster algorithms based
on the layer structure of the ground state of the 3D SARR
model and the mapping of the 2D SARR model on the square
lattice.

1. Cluster sampling

The cluster algorithm samples at each MC step a sub-
set of all sites as described next. One of the three lattice di-
rections is chosen at random, say ẑ. Then the sites oriented
along ẑ are blocked, i.e., their state is frozen during the MC
step. Sites with orientations x̂ or ŷ are active, and their states
may change during the MC step. Given the NN character of
the Hamiltonian the procedure may be (and it is) applied to
all active sites in one MC step. For simplicity, however, we
consider one layer, i.e., all sites, i, with zi = z0. The proce-
dure starts by checking the links between pairs of NN active
sites (not to be confused with bonds of the original model).
Two NN active sites with the same orientation are linked with
probability B = 1 − exp (− βε/2), where β ≡ (kBT)−1. Links
cannot be formed between pairs of NN active sites with dif-
ferent orientations. We define clusters of active sites based on
the links generated in the previous step. The new configura-

tion is obtained by choosing, independently, for each cluster
a new in-plane orientation. The probability of the new cluster
orientation, (x̂ and ŷ), is given by

Ak(α̂) ∝ exp

[
−βε

2
nk(α̂)

]
, (2)

where nk(α̂) is the number of patches of the cluster k that point
to blocked sites when the active sites are oriented along α̂.

The procedure is validated using the plaquette
formalism5 that maps the model with blocked sites oriented
along ẑ to a Potts model13 in an external field. For a system
with L layers (z = 1, 2, ···, L) the intralayer potential energy
can be written as

U = −ε
∑
〈ij〉

δ(α̂i , α̂j )δ(α̂i , r̂ij ), (3)

where 〈ij〉 runs over the NN active sites in one layer, α̂i is
the orientation of site i, and δ(α̂, α̂′) is one if |α̂ · α̂′| = 1, and
zero otherwise. This intralayer Hamiltonian can be mapped to
a q = 2 Potts model13 with blocked sites on the square lattice.
Using the plaquette formalism5 we find

U = −K
∑
〈ij〉

δ(α̂i , α̂j ) −
∑
〈ik]

[K0 + K1δ(α̂i , r̂ik)] , (4)

where the subindex 〈ik] runs over pairs of NN sites on the
layer with i an active site and k a passive one. In Eq. (4) K
is the coupling constant, while K0 and K1 describe the inter-
actions between active sites and the blocked ones (this may
be viewed as the interaction of an external field with the ac-
tive sites). K, K0, and K1 are given in terms of the energy of
the patchy model by: K = ε/2, K0 = ε/4, and K1 = −ε/2. As
expected the interaction energy of the active sites pointing to
blocked ones is unfavorable. It is now straightforward to im-
plement the cluster algorithm described above. The Potts cou-
pling defines the linking criterion between active sites accord-
ing to the Swendsen-Wang rules11 while the single-particle
interactions are taken into account by considering the effect
of an external field.12

2. Sublattice sampling

In addition to the cluster moves we implemented sublat-
tice single-particle moves. We consider systems with L even,
and divide the sites into two sublattices: those with xi + yi + zi

odd (sublattice 1) and those with xi + yi + zi even (sublattice
2). Notice that two NN sites belong to different sublattices.
In one sublattice sampling move, we choose one of the sub-
lattices at random and then update the state of each site by
computing the interaction with its NNs, ui(α̂), for the three
orientations: α̂ = x̂, ŷ, ẑ. The new configuration is obtained
by choosing, for each particle, a new orientation with proba-
bility: pi(α̂) ∝ exp[−βui(α̂)].

In order to check the cluster algorithm and its implemen-
tation we have run pairs of simulations using either cluster
moves or sublattices moves only. The results were found to
be the same within error bars. The cluster algorithm is much
more efficient than the sublattice algorithm and the relative
efficiency increases as the system size L increases. Never-
theless, as we will discuss later, its performance is far from
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FIG. 1. (a) Excess heat capacities as a function of the temperature for differ-
ent system sizes (three-dimensional SARR model). (b) Scaling of the peaks
of the excess heat capacities with the system size.

optimal for very large systems and temperatures slightly be-
low the order-disorder transition.

The Monte Carlo simulations of the 3D model are run in
cycles. We choose at random, with equal probability, one of
the five cycles to be run, namely, (two) sublattice and (three)
cluster samplings and then proceed as described above.

III. SIMULATION RESULTS FOR THE 3D SARR MODEL

The order of the transition can be inferred from the scal-
ing with the system size, of the peak of the excess heat ca-
pacity: cex

v = (∂u/∂T ), where u ≡ U/L3 is the potential en-
ergy per site. At first order transitions the peak is expected to
scale as12

cmax
v (L) = c0 + (�U )2

4kBT 2
c

L3, (5)

where Tc is the transition temperature. In Fig. 1, we plot the
excess heat capacities in the transition region, and the scaling
behavior of their peaks, cmax

v (L). The scaling of cmax
v (L) with

L3 indicates that the transition is first order. A least-squares
fit yields the latent heat of the transition: �U/(Nε) = 0.024
± 0.001.

We consider two order parameters to characterize the
transition. The first: O is based on the partial ground state
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FIG. 2. (a) Order parameter O, and (b) order parameter S for the three-
dimensional SARR model as a function of the temperature for several system
sizes, L (see the legends).

order,

O = 1 − 3 min[Nx,Ny,Nz]/N, (6)

where Nα is the number of sites with orientation α, and N
= L3 is the total number of sites. The second: S measures the
uniaxial order,

S = 1

2

[
3
N2

x + N2
y + N2

z

N2
− 1

]
. (7)

In the ground state O = 1 (one direction suppressed), while
〈S〉 = 1/4. Values of S greater than 1/4 below the order-
disorder transition temperature signal the tendency for uni-
axial order. In Fig. 2, we plot the two order parameters as
a function of the temperature for several system sizes. Both
sets of curves O(T, L) and S(T, L) show, as L increases, an
abrupt change at (or close to) the temperature where the heat
capacity peaks. In small systems, S(T) varies monotonically
with the temperature. However, for the largest systems S(T)
peaks at temperatures slightly below the transition tempera-
ture, and saturates at values larger than the ground state value
at low temperatures. This finding suggests a surprising ten-
dency for uniaxial order, i.e., at finite subcritical temperatures
and large system sizes the particles prefer to align in one di-
rection rather than aligning in two directions as expected from
the ground state analysis. Notice that as L increases the results
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for S(T) below T ∗
c = kBTc/ε 	 0.483 have large error bars.

This is a signature of the loss of efficiency of the cluster algo-
rithm to sample S(T, L) slightly below Tc as the system size
grows.

With the current algorithms and computational resources,
we cannot establish the nature of the ordered phase at finite
temperatures in the thermodynamic limit.

IV. CONFINED SARR MODEL

In order to investigate the mechanism that may drive uni-
axial order in the 3D SARR model, and to quantify it, we
have considered a simpler model where the system consists
of a number of layers (h) with L2 sites. These layers are taken
perpendicular to the ẑ direction. Periodic boundary conditions
are only considered in directions x and y. The ground state of
the confined SARR model is 2h-degenerate with all the par-
ticles in a given layer aligned along the x̂ or the ŷ direction.
We note that geometrical confinement is also used to assist
the self-assembly process of 3D systems and thus the study of
confinement is also of some practical relevance.14

The confined systems are simulated using the algorithms
described in Sec. II B, with minor adaptations: namely, the
cluster moves are carried out only for layers perpendicular
to ẑ.

The confined SARR model exhibits an order-disorder
transition as the models in 2D and 3D. Note that the limit
of confinement (single layer) of the 3D model is not equiva-
lent to the 2D SARR model as the patches can be aligned in
three distinct directions. Given the nature of the ground state,
where each layer is ordered in an arbitrary direction (x̂ or ŷ)
we consider the single-layer order parameters Si, defined as

Si = 1

L2
[Nx(i) − Ny(i)], (8)

where the index i refers to one layer. Nx(i) and Ny(i) are the
number of sites on layer i with patches in the x̂ and ŷ di-
rections, respectively. Due to the symmetry of the model, the
average single-layer order parameters vanish, 〈Si〉 = 0. In the
thermodynamic limit, at low temperatures, we expect an or-
dering transition described by

〈
S2

i

〉 {= 0; T ≥ Tc,

> 0; T < Tc.
(9)

We anticipate a discontinuous transition for systems with a
large number of layers (as in 3D), and a continuous one for
thin slabs (as in 2D). The continuous transition is expected to
be in the 2D Ising class as in single layer systems.

V. SIMULATION RESULTS FOR THE
CONFINED SYSTEMS

In order to proceed we consider the scaling behavior of
the heat capacity, or the related quantity u′

β ≡ (∂u/∂β), with
u the potential energy per site. For systems in the 2D Ising
universality class, the scaling behavior at criticality is

u′
β(βc) ∼ ln L. (10)
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FIG. 3. (a) Scaling behavior of g4(T), and (b) scaling behavior of the order
parameter, S2 for one-layer systems (h = 1) and different system sizes. The
dashed line in (a) marks the universal value g

(c)
4 for 2D Ising critical behavior.

The crossings of the curves g4(T) and 〈S2(L, T)〉 L1/4 for different system sizes
confirm the expected 2D-Ising criticality.

In addition, we investigate the scaling behavior of the ratios
g4i = 〈S4

i 〉/〈S2
i 〉2, related to the Binder cummulants.12 For 2D

Ising critical behavior g4(L, β) for different L cross at the uni-
versal value g

(c)
4 	 1.168.15

The results for one layer, h = 1, comply with the ex-
pected 2D Ising critical behavior. The critical temperature,
Tc, is estimated from the Binder cummulant following stan-
dard procedures.5 Considering system sizes in the range 12
≤ L ≤ 96 we find T ∗

c = kBTc/ε = 0.5196 ± 0.0001. This re-
sult is consistent with the behavior of the pseudocritical tem-
peratures Tc(L) defined by the peaks of the heat capacity as a
function of L (results not shown). In addition, at the estimated
Tc the scaling of the average order parameter exhibits the ex-
pected Ising behavior: S2(L, Tc) ∝ L−2β ′

(where β ′ = 1/8 is
the critical exponent for the magnetization). The results for
g4(L, T) and the scaling of S2(L, T) are shown in Fig. 3.

For h = 2 and h = 3, the curves for different system sizes
(12 ≤ L ≤ 48) cross at a value of g4i close to that of the Ising
universality class (See Fig. 4). Somewhat surprisingly, for h
= 3, the crossing of g4i(L, T) of the inner layer occurs at a
temperature slightly below that of the outer layers (plot not
shown). This is likely to be a finite-size effect. A possible ex-
planation is that, for these values of L, the different layers
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FIG. 4. (a) g4i(T, L) for different system sizes, and (b) scaling of (∂u/∂β) for
the confined model with h = 2. The system size dependence of the results
suggests 2D Ising criticality (see the text).

are almost independent; within this assumption the pseudo-
critical temperature of each layer depends on the density of
defects (number of sites with orientation ẑ). The inner layer is
expected to have a larger number of defects since these sites
oriented along ẑ can establish two bonds; by contrast, in the
outer layers the sites oriented along z can form at most one
bond. The larger density of defects reduces the stability of the
ordered layer and thus its local pseudocritical temperature is
lower.

At finite temperatures, some particles will be aligned in
the ẑ direction. An interaction between adjacent layers results
from bond formation between particles in different layers (z-
bonds) and a correlation between Si and Si+1 may appear. If
present, these correlations may drive the bias to uniaxial be-
havior observed in the simulations of the 3D model. Let us
define a global order parameter S as

S = 1

h

h∑
i=1

Si, (11)

where h is the number of layers of the confined model. Again
symmetry implies 〈S〉 = 0. The average value of S2 may be
written as

〈S2〉 = 1

h2

⎡
⎣ h∑

i

〈
S2

i

〉 + 2
h−1∑
i=1

h∑
j=i+1

〈SiSj 〉
⎤
⎦ . (12)
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FIG. 5. (a) Single layer order parameter for the confined model with h = 2.
(b) Global order parameter for the confined model with h = 2.

The correlation between two layers is defined as

cij = 〈SiSj 〉[〈
S2

i

〉〈
S2

j

〉]1/2 . (13)

The correlation depends both on L and T, cij(L, T), and it
is expected to vanish at low and high temperatures. Inspec-
tion of Eq. (12) reveals that 〈S2〉 behaves in the limit of low
temperatures as

lim
T →0

〈S2(L, T )〉 = 1

h
. (14)

We located the order-disorder transition of the model
with h = 2 in the full lattice limit by considering the behavior
of (∂u/∂β). In Fig. 4 we plot the results for different system
sizes. In the region around the maximum we observe the scal-
ing (∂u/∂β) ∼ ln L in line with 2D Ising criticality. In Fig. 5
we plot the results for the single-layer, S2

1 (L, T), and the
global, S2(L, T), order parameters for the same model. The
single-layer order parameter exhibits the usual dependence
on T and L. The global order parameter, however, exhibits a
different behavior: the curves for different system sizes cross
around Tc, and then merge as the temperature decreases. The
same qualitative behavior is observed for the confined model
with h = 3 in Fig. 6. While the scaling of (∂u/∂β) and g4i

suggests a continuous transition, the crossing of the curves
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FIG. 6. (a) Single layer (z = 2), and (b) global order parameters for the con-
fined model with h = 3.

〈S2〉 (L, T) at criticality suggests a (weak) first-order transi-
tion, as the order parameter, |S|, in the thermodynamic limit,
may exhibit a discontinuity at the transition jumping from
zero (T > Tc) to a finite value |Sc| > 0.

In Fig. 7(a), we plot the correlation function c12 between
the layers of the h = 2 system. As expected the correlation de-
creases and appears to vanish at low and high temperatures.
The most relevant feature, however, is that the correlation
between layers increases markedly with the system size, L.
Figure 7(b) reveals that the correlation increases as L2 (in
the range of sizes considered). These results suggest that for
T > 0, in the thermodynamic limit L → ∞, the confined
model becomes uniaxial (i.e., the layers will align along a
unique direction).

Now, we consider the effect of the number of layers on
the correlation between adjacent layers. In Fig. 8, we plot the
layer-layer correlation cij for h = 2 and h = 3, for systems
with L = 32. Note that the correlation functions c12 and c23

are equal (except for statistical errors) due to the symmetry
of the model. The main conclusion from the results of Fig. 8
is that for a fixed value of L the correlation between adjacent
layers increases with the number of layers. This suggests that
the ordered phase of the three-dimensional SARR model may
become uniaxial, in the thermodynamic limit, at finite tem-
peratures 0 < T < Tc. Note, however, that as the temperature
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FIG. 7. (a) Correlation function, c12 between the order parameters of adja-
cent layers, h = 2. (b) Dependence of c12 on the lateral size of the systems
with h = 2 at two temperatures.

decreases the system size required to observe uniaxial order-
ing increases very rapidly.

It is clear that the simulation algorithms used in this work
loose efficiency as L increases at temperatures slightly below
the critical temperature. In order to confirm the trend to uni-
axiality suggested by the results presented so far, we return to
the two layer system, and use an indirect method to compute
the free energy difference �A = Axy − Axx, where the sub-
scripts indicate configurations where the layers are oriented
preferentially in the same (xx) and in different (xy) directions.
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FIG. 8. Correlation functions between the order parameters of adjacent lay-
ers for h = 2 and h = 3 (with lateral system size L = 32).
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FIG. 9. Free energy difference of the configurations of two layer systems
with layers oriented in distinct and in the same directions.

�A is computed for large L using thermodynamic integration
from low temperature (where the free energy of the two con-
figurations is the same: �A(T0) = 0, as T0 → 0). The free
energy difference is then

�A(T )

T
= �A(T0)

T0
+

∫ T

T0

�U (T ′)d
1

T ′ , (15)

where �U(T) = Uxy(T) − Uxx(T). The potential energies
Uαβ (T) are computed using Monte Carlo simulation of rel-
atively large systems, L = 64, L = 128 and L = 256, without
cluster moves to avoid interconversion between the two types
of configurations. The results are plotted in Fig. 9. �A in-
creases with temperature and is proportional to L2. Thus, for
large systems and moderate temperatures, the confined SARR
model is expected to exhibit uniaxial order.

VI. DISCUSSION

These surprising results may be interpreted as follows:
Consider a two-layer system at low temperature with most
particles aligned along the x or y directions. At T > 0, how-
ever, a number of particles will align along ẑ. A z-bond lowers
the energy by −ε with respect to two independent z-sites, one
in each layer, but isolated z-bonds do not contribute to the ori-
entational correlation between layers. Now, suppose that two
z-bonds occur in NN positions (for instance one between sites
ra1 = (i, j, 1) and ra2 = (i, j, 2), and the second between sites
rb1 = (i + 1, j, 1) and rb2 = (i + 1, j, 2)) (see Fig. 10). At
(low) subcritical temperatures this pair of NN z-bonds pro-
motes the alignment of both layers in the direction defined by
the pair (the x̂ direction in this example as shown in Fig. 10.
In practice, configurations with a different number of pairs of
NN z-bonds along the x̂ and ŷ directions favor the alignment
of the layers. A bond counting argument gives the probabil-
ity of aligning one layer along the easy x̂ direction over the
probability of aligning it along ŷ, when a single pair of NN
z-bonds, along x̂, is present,

px

py

= eβε. (16)

(a) (b)

FIG. 10. Sketch of the effect of NN pairs of z-sites (or z-bonds) in the orien-
tational correlation of the layers. Segments represent particles with patches
aligned in the plane of the layer, circles represent sites with patches aligned in
the ẑ direction. Crosses mark the in-plane bonds suppressed by the presence
of z-sites. Note that the number of such bonds depends on the alignment of
the pair of z-sites with respect to the alignment within the layer. Therefore,
the configuration (a) has a lower energy than the configuration (b).

The ratio of the probabilities of aligning the layers over the
probability of not doing so is then

pxx + pyy

pxy + pyx

= cosh(βε). (17)

An estimate of the density of NN z-bonds, α(T) is

α(β) ≈ e−4βε. (18)

Note that only configurations where the number of NN z-
bonds in the x̂ and ŷ directions are different contribute to
the orientational correlation of the layers. Let us, however,
consider the rough estimates given above. At T* = 0.40, βε

= 2.5, and α(T) ≈ 4.5 × 10−5. For a system with L = 64
most configurations will not have NN z-bonds, and about one
in five (0.186) will have one. An estimate of c12 is then,

c12 	 0.186 × cosh(2.5) − 1

cosh(2.5) + 1
	 0.134, (19)

which is close to the value obtained from the simulation c12

= 0.125 ± 0.007. This estimate supports the hypothesis that
the uniaxial behavior results from the orientational correla-
tion between adjacent layers driven by the presence of NN
z-bonds.

The characterization of the ordering transition of the con-
fined SARR model with h > 2 requires the development
of more efficient cluster simulation algorithms and thus the
behavior of the 3D SARR model cannot be investigated at
present. The problem is related, but not identical, to the
model for crystallization and vitrification of semiflexible liv-
ing polymers investigated by Menon and co-workers in 2D
and 3D.16, 17
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