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9 Abstract The introduction of alien ungulates is a

10 major threat for the survival of endangered plants,

11 especially in island ecosystems. However, very few

12 studies have investigated the potential damage of large

13 herbivores onplant diversity inMediterranean protected

14 areas. In this study, we describe the population structure

15 and the long-term dynamics of the main populations of

16 the Sardinian narrow endemic Centaurea horrida Bad.

17 (Asteraceae), by means of permanent plots where

18 individual plants were tagged and monitored through

19 6 years (2004–2009). We monitored this endangered

20 plant at three sites: two were protected areas where

21 introduced and feral ungulates are present, and the other

22 one was a non-protected site without introduced

23ungulates.We found that adults and saplings weremore

24abundant at the non-protected site. Through matrix

25models, we also highlighted that the non-protected

26population showed the highest population growth rate.

27Finally, by means of an exclusion experiment for

28ungulates at one protected site, we demonstrated that

29herbivores had a negative effect on the survival of

30seedlings and adult plants, and reduced the stochastic

31population growth rate. An LTRE analysis showed that

32differences in the survival, especially of adult individ-

33uals, had the highest responsibility in explaining the

34higher population growth rate when herbivores are

35excluded. Our study constitutes a clear example on how

36the protection of alien large herbivores can have

37opposite effects on the conservation of an endangered

38plant. Some management options are proposed, and the

39urgent need of manipulative experiments on species-

40specific interactions between protected plants and alien

41herbivore species is invoked.

42Keywords Centaurea horrida Bad., demography �

43LTRE � Mediterranean � Stochastic matrix models �

44Ungulates introduction
45

46Introduction

47Herbivory is one of the most dominant biotic interac-

48tions in nature. Plants form the basal resource of

49virtually all food webs, and herbivores consume

5010–15 % of the plant biomass produced annually in
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51 both natural and managed ecosystems (Cyr and Pace

52 1993). Herbivory effects on plant performance have

53 been widely recognized, both at the individual and

54 population level (Ehrlén 2002; Hawkes and Sullivan

55 2001; Maron and Crone 2006; Jenkins et al. 2007).

56 Interactions among plants and herbivores are increas-

57 ingly men-mediated in many biogeographical areas by

58 means of both shepherding activities (Farris and

59 Filigheddu 2008) and/or ungulates introduction (Dol-

60 man and Waber 2008). Actually, introduced ungulates

61 and feral domestic animals may constitute one of the

62 major threats to plant biodiversity (Spear and Chown

63 2009), in particular in insular ecosystems (Courchamp

64 et al. 2003). Island ecosystems (Whittaker and Fern-

65 ández-Palacios 2007), and particularly the Mediterra-

66 nean ones (Thompson 2005), are considered among

67 the most fragile from an ecological point of view.

68 Given the strong impacts of introduced ungulates on

69 vegetation structure and composition, and soil system

70 functioning (see for example Farris et al. 2010)

71 extensive controls of the introduced herbivores seem

72 to be necessary, especially in islands (Garzón-Mach-

73 ado et al. 2010).

74 Tyrrhenian islands (Balearic Archipelago, Corsica,

75 Sardinia and Sicily) are one of the Mediterranean

76 biodiversity hotspots (Médail and Quézel 1997, 1999;

77 Myers et al. 2000). Sardinia, for example, shows a

78 rough estimate of about 2,500 vascular plants (Conti

79 et al. 2005), of which 6.2 % are exclusive to the island

80 and are in need of conservation actions due to their

81 extinction risk (Pisanu et al. 2009; Fenu et al. 2011,

82 2012). A large fraction of endemic plants (42.3 %)

83 grow in coastal, halophytic, and rocky habitats (Bac-

84 chetta et al. 2012), often on harsh areas like many

85 Mediterranean endemics (Lavergne et al. 2004).

86 Although western Mediterranean islands had a variety

87 of endemic large herbivores due to migratory events

88 during the entire Cenozoic (Palombo 2009), the island

89 fauna is almost exclusively characterized by conti-

90 nental generalist mammals nowadays (Masseti 2009).

91 As a consequence, the local flora of these islands is

92 now suffering the impact of this foreign interaction.

93 In the last decades, the introduction of different kinds

94 of alien ungulates took place both for hunting purpose in

95 some areas (i.e., mouflon on the Asinara islet, Sardinia),

96 and for conservation purposes in many other areas like

97 protected spaces. The effect of alien herbivores (ungu-

98 lates) in Mediterranean protected areas has not been

99 evaluated at a large scale (Courchamp et al. 2003), and

100very few studies have shown the potential damage on

101overall diversity or particular plant species.

102In this paper, we focus on the demography of the

103Mediterranean narrow endemic Centaurea horrida

104Bad. (Asteraceae), a perennial, sea-cliff plant restricted

105to the North of Sardinia. Over 6 years, we individually

106monitored hundreds of plants in three out of the five

107populations this species occurs, located in two pro-

108tected and one non-protected areas. In protected areas,

109ungulates (wild boar, deer and mouflon) have been

110introduced in the last decades, and constitute now an

111important component of the ecosystems. Furthermore,

112domestic ungulates (goats, horses and donkeys) have

113become feral. Experiments to establish herbivores

114control and open habitats maintenance for the conser-

115vation of C. horrida populations have been recently

116invoked (Farris et al. 2012).

117We first describe the current population structure,

118the frequency of damage at each place, and the long-

119term population dynamics through matrix models.

120Then, we evaluate how herbivores affect multiple

121demographic vital rates into a population-projection

122model (Farrington et al. 2009; Abe et al. 2008; Knight

123et al. 2009; McEachern et al. 2009; Garcı́a et al. 2010),

124comparing the long-term dynamics of plants in/out

125two large mammal exclusions. Finally, we disentan-

126gled which vital rates and plant stages had the largest

127responsibility on differences between stochastic pop-

128ulation growth rates of plants in/out exclusions.

129The following specific questions were addressed:

130(1) Does the demographic structure of C. horrida

131populations in protected and non-protected areas

132differ? (2) Do populations differ in their current

133stochastic population growth rate? (3) To what extent

134are herbivores a threat for the future of this species?

135Results will be discussed with the aim to clarify which

136of the different current management regimes (a—

137protected space with introduced ungulates; b—pro-

138tection from ungulates by fencing; and c—non-

139protected space without ungulates) seems to be better

140for the persistence of this endangered plant.

141Materials and methods

142Study species

143The genus Centaurea L. (Asteraceae) includes

144roughly 400 species (Susanna and Garcia-Jacas
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145 2009), with many narrow endemics (Kose et al. 2010;

146 Kultur 2010; López-Alvarado et al. 2011). Centaurea

147 horrida is endemic of the North of Sardinia (Italy). It is

148 protected by the Berne Convention, listed with priority

149 status in Annexe II of the EU ‘‘Habitat’’ Directive, and

150 considered endangered (EN) on the basis of IUCN

151 criteria. This cushion-forming spiny dwarf plant is

152 self-incompatible and reproduces mainly sexually by

153 means of cross-pollination carried out by insects. The

154 capitula usually flower in the late spring (April–May)

155 and seeds are released in July–August. Seeds have an

156 elaiosome attractive for ants, and seedlings are usually

157 located near the mother plant (Pisanu et al. 2009).

158 Study sites

159 Centaurea horrida is restricted to five populations on

160 sea-cliffs, along the coasts of Northern Sardinia, where

161 it grows in both cliff face and cliff plateau (see map in

162 Farris et al. 2012). Because two of the five populations,

163 Piana and Tavolara Islets, are small (87 and 175

164 individuals respectively), this demographic study was

165 conducted in the other three populations, located in

166 Alghero (AHO), Asinara (ASI) and Stintino (STI;

167 Table 1). We believe that environmental conditions

168 and genetic differences among sites are not so high

169 except for herbivores density.

170 In fact, the bioclimate is always Thermomediterra-

171 nean dry euoceanic type, and the vegetation is also

172 very similar in the three sites (see Table 38 in Biondi

173 et al. 2001). ASI and STI have the same geological

174 substrate (schist) and AHO is limestone. On the other

175 hand, although all populations showed moderate

176levels of genetic differentiation, one of the five

177populations (AHO) was more strongly differentiated

178from the other four, suggesting certain barrier to

179regular gene exchange (Mameli et al. 2008).

180All the three sites are included in the Natura 2000

181network, but in Sardinia this does not mean effective

182protection or specific management. For a land to

183receive an active management, it is necessary to be

184included within a protected area as a National or

185Regional Park, or a Marine Protected Area. This is the

186case of ASI and AHO, located in the National Park of

187Asinara, established in 1997, and the Regional Park of

188Porto Conte, established in 1999, respectively.

189Between 1990 and 2010, a total density of 0.24

190ungulates ha-1was recorded at AHO: 42 %were deer,

19131 % wild boars (they were already present at this

192site), 17 % feral donkeys, and 10 % feral horses.

193Roughly, the population of each species increased

194around 30–40 % every 10 years. At ASI, in the same

195period, 300 donkeys, 1,000 wild boars, 600 mouflons,

196180 horses, and 7,000 feral goats were present on the

197island (5,200 ha). This means that at ASI the total

198density of herbivores reached 1.7 individuals ha-1

199because the ungulates do not have natural predators

200here, and hunting them is forbidden. No ungulates are

201present at STI, except wild boars.

202All the ungulates, except wild boars at AHO and

203STI, were introduced few decades ago (before the

204parks institution) for hunting purpose (ASI) or for

205reintroduction (deer at AHO), or simply were domes-

206tic animals that became feral (goats, donkeys, horses).

207Only recently some eradication programmes (carried

208out with the use of harmless traps) have been started to

Table 1 Characteristics of the study sites

Population Asinara Stintino Alghero

Code ASI STI AHO

Coordinates 41�000N–8�120E 40�560N–8�110E 40�360N–8�080E

Geology Schist Schist Limestone

Bioclimate Thermomediterranean dry
euoceanic

Thermomediterranean dry
euoceanic

Thermomediterranean dry
euoceanic

Inclusion in the
Natura 2000 network

ITB010001 ITB010043 ITB010042

Effective management Asinara National Park None Porto Conte Regional Park

Ungulates introduced in the last
century

Donkeys, horses, goats, mouflon,
wild boars

None Deer, donkeys, horses

Other ungulates None Wild boars Wild boars
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209 decrease feral goats and wild boars at ASI: from 2007

210 to 2011 wild boars diminished to 300 and goats to

211 3,000.

212 Sampling demographic data

213 In order to answer question one, four 10 9 10 m2

214 permanent plots were established at each site of study

215 in June 2004, and all the individuals of C. horrida

216 within plots were mapped, tagged, and monitored

217 yearly until 2009. We classified individuals of

218 C. horrida in three life stages: 1) seedlings (sdl), still

219 with cotyledons (often with one or two pairs of leaves

220 but without stalks); 2) saplings (sap), non-reproduc-

221 tive individuals, usually less than 30 cm of diameter);

222 and 3) adults, all reproductive individuals. Adults

223 were further assigned to three size-classes depending

224 on maximum diameter: R1 ([\ 30 cm); R2 (31 cm

225 \[\ 70 cm), and R3 ([[ 70 cm).

226 Over the 6 years of monitoring, each individual was

227 recorded as alive or dead, sapling, or adult, and the

228 maximum diameter of the cushion measured with a

229 calliper. Fecundity was calculated as the total seed

230 production, from the total number of capitula (esti-

231 mated using a grid on the bush surface), and counting

232 capitula in four quadrats and the average number of

233 fertile achenes per capitulum (estimated by collecting

234 at random 3 capitula from each adult plant). All the

235 seedlings found in the annual census after careful

236 inspection within plots were considered as new

237 recruits.

238 Because our research was limited by population

239 availability and population sizes (a common situation

240 for endangered plant species), site was used as a fixed

241 factor in comparative analyses carried out among

242 specific populations investigated. Two-ways ANO-

243 VAs were used to test differences in the relative

244 proportions of each stage of C. horrida individuals

245 among sites, and to test differences in seeds production

246 among sites and among adult classes.

247 For all the ANOVAs performed, the homogeneity

248 of variances was tested a priori using Cochran’sC-test,

249 and data were appropriately transformed, if necessary.

250 Whenever transformation did not produce homoge-

251 neous variances, ANOVA was applied after setting

252 a = 0.01 to compensate for the increased likelihood of

253 Type I errors (Underwood 1997). Student–Newman–

254 Keuls (SNK) tests were carried out to compare the

255 mean values of all significant factors (Underwood

2561997). ANOVAs were conducted using the GMAV5

257software package (University of Sydney).

258Matrix parameterization

259In order to answer question two, stage-based popula-

260tion-projection matrix models were used to explore the

261dynamics of populations under current conditions.

262Each plant was included in one of the five stages above

263mentioned (sdl, sap, R1, R2, R3), and transition rates

264between pairs of classes were calculated for each pair

265of consecutive years.

266Since experiments in the green house demonstrated

267that seeds germinate mostly within the year after being

268released (Pisanu unpublished), fertility of each class

269was set as the proportional part of seedlings in t ? 1,

270relative to the mean number of seeds released by plants

271in each class in t (anonymous reproduction, Caswell

2722001). A total of 15 annual Lefkovitch projection

273matrices were set for each combination of site (AHO,

274ASI, STI) and consecutive years (2004–2005,

2752005–2006, 2006–2007, 2007–2008, 2008–2009).

276They were constructed according to the standard

277procedure of transition probabilities of the life cycle

278graph (Caswell 2001), from estimates of fertility and

279transition probabilities among stage classes.

280Projection matrices were the basis for linear time-

281invariant matrix models of the form nt?1 = A*nt
282(Caswell 2001), where n t?1 is a vector with the

283abundances of stages in the population at time t, and

284A integrates all the probabilities (aij) for an average

285individual plant in class j at a moment t, to be in class

286i after one year. The dominant eigenvalue (k) of the

287projection matrix represents the deterministic popula-

288tion growth of the species at a particular site and time.

289To construct 95 % confidence intervals for the

290projected population growth rates, bootstrapping was

291applied by resampling 2,000 times the observed fates

292of monitored plants. The bias-corrected percentile

293method provided the lower and upper bounds (see e.g.,

294McPeek and Kalisz 1993; Caswell 2001). The sto-

295chastic growth rate (ks) and an approximate 95 %

296Confidence Interval (CI) was calculated for each

297population by simulation of 50,000 population growth

298increments, considering that each matrix had the same

299probability of occurrence. The arithmetic mean and

300variance of log(Nt?1/N t) over all pairs of adjacent

301years was calculated using the Stoch_log_lam routine

302of Morris and Doak (2002).
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303 Effects of herbivores

304 In order to answer question three, we first evaluated the

305 occurrence of damage on C. horrida populations: in

306 2006, we randomly established four 2 9 20 m2 tran-

307 sects at each site of study. Each plant included in

308 transects was assigned to one of the above-mentioned

309 stages, and to one of the following categories of injury:

310 (1) mechanical damage (MD, damage mainly caused

311 by trampling of horses, donkeys, deers, wild boars, and

312 goats); (2) browsing (BR); (3) unthreading (UN,

313 breaking of single branches caused by deers and goats:

314 this differs from browsing because the last implies only

315 a surface damage on the cushion plants; whereas the

316 unthreading means damage of a single branch that is

317 cut from the internal part of the plant); and (4) no

318 damage (ND). Differences in the frequency of dam-

319 aged plants among populations and classes were tested

320 by Generalized Linear Models (GLM; glm procedure

321 with logit link function; R statistical software version

322 2.11.1; R Development Core Team 2010).

323 Second, we tested the overall effect of herbivores

324 on C. horrida performance using a demographic

325 approach based on exclosures to ungulates at site

326 ASI. Two 10 9 10 m2 plots were fenced in December

327 2005 (thereafter ‘‘fenced plots’’), and two open

328 10 9 10 m2 control plots were established nearby

329 (thereafter ‘‘control plots’’). All plants in the four plots

330 were monitored as in permanent plots.

331 Two-way ANOVA was used to test differences in

332 seed production between treatments (Fenced vs Con-

333 trol) and adult size classes. Generalized LinearModels

334 (GLM; glm procedure with logit link function; R

335 statistical software version 2.11.1; R Development

336 Core Team 2010) were used to test the effect of

337 ‘‘fencing’’ on the survival of seedlings, saplings, and

338 adult plants, after pooling all the transition events

339 across years.

340 The long-term effect of herbivores was evaluated

341 by matrix models, and a total of 6 annual Lefkovitch

342 projection matrices were constructed from this exclu-

343 sion experiment: one for each combination of treat-

344 ment and year (control vs fenced, 2006–2007,

345 2007–2008, 2008–2009). The stochastic growth rate

346 (ks) and an approximate 95 % Confidence Interval

347 (CI) were calculated for each treatment following the

348 same procedure described above. In order to quantify

349 the contribution of each matrix element (aij) to the

350 observed variation in k between fenced and control

351plots (overall effect of herbivores), we used a one-way

352life table response experiment analysis (LTRE,

353Caswell 2001). This analysis takes into account

354differences in the values between pairs of the same

355matrix element (each one provided by the average

356matrix of each treatment), and its sensitivity evaluated

357at the average matrix.

358Results

359Population structure

360There were no significant differences between the

361three sites in the relative proportion of individuals in

362each stage (F2,8 = 8.84, P = 0.9991). Adults were the

363prevalent life stage in all three sites and during all the

364period of study (F2,8 = 15.88, P\ 0.0001): on aver-

365age, the density of seedlings was 3.8 ± 0.47 individ-

366uals 100 m-2, saplings were 12.9 ± 1.84 individuals

367100 m-2, R1 adults reached an average density of

36816.5 ± 2.65 individuals 100 m-2, R2 were 25.2 ±

3693.33 individuals 100 m-2, and R3 had a density of

37019.8 ± 2.37 individuals 100 m-2. On average STI

371showed densities 2–3 times higher than AHO and ASI.

372For the saplings, STI showed double density in

373comparison to the other two sites, whereas seedling

374variability among sites was very low (Fig. 1).

375The differences in seed production were highly

376significant among adult classes: R1 produced on

377average 65.6 ± 6.23 seeds, R2 produced 627.1 ±

37853.13, and R3 produced 2 915.1 ± 184.92 seeds (F2,4 =

37925.44, P\0.0001) (Fig. 2).

380Population trends

381None of the 15 yearly matrices produced deterministic

382lambdas significantly below one. On the contrary,

383some values were significantly above one (the CI did

384not intercept k = 1), indicating that some years some

385populations were growing up to a maximum of 2.4 %

386(AHO 2005–2006; Fig. 3). Temporal variability of

387deterministic lambdas was larger in AHO (r2 =

3880.038) and lower in STI (0.016; see also Fig. 3). The

389stochastic population growth showed that populations

390were growing over the study period at a rate of 0.17 %

391(AHO), 0.54 % (ASI), and 1.12 % (STI). Thus, STI

392showed the highest population growth rate and the less

393variable one through time.
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394 The effects of herbivores

395 All the three studied populations of C. horrida showed

396 signs of damage by herbivores, although the density of

397damaged individuals was highest in protected popu-

398lations (ASI: 26.7 ± 3.2 damaged individuals 40 m-2;

399AHO: 16.2 ± 2.7 damaged individuals 40 m-2) and

400only occasional in the non-protected population (STI:

Fig. 1 Mean densities ±SE
(individuals 100 m-2;
N = 4) of seedlings,
saplings, and adults of three
size classes at three study
sites monitored for 6 years

Fig. 2 Mean values (±SE)
of seeds per each adult class
evaluated on all the
individuals belonging to the
three size classes at the three
study sites monitored for
6 years

Fig. 3 Stochastic population growth rate (ks) in the three study sites. Empty dots correspond to the stochastic population growth rate
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401 0.7 ± 0.5 damaged individuals 40 m-2). Adults suf-

402 fered the highest incidence of damage, and mechanical

403 damage was the prevalent type. Seedlings and saplings

404 were affected only by MD (Fig. 4).

405 There were significant differences in the frequency

406 of individuals damaged by herbivores among popula-

407 tions, STI having a significant lower proportion than

408 AHO (Z = 6.796; P\ 0.001) and ASI (Z = 8.285,

409 P\ 0.001). Such difference was due to the lower

410 proportion of damaged adults in STI respect to AHO

411 (Z = 6.25; P\ 0.001) and ASI (Z = 8.43; P\0.001),

412 whereas the proportion of seedlings and saplings

413 damaged did not differ among populations.

414 Seed production in fenced plot was significantly

415 higher than in control plots (on average 664.4 ±

416 200.58 vs 370.6 ± 83.16 seeds per individual. F1,6 =

417 11.66, P = 0.0142). The R3 significantly produced

418 more seeds than the other two reproductive classes

419 (F1,6 = 62.53, P = 0.0001). The highest contribution

420 to the difference between fenced and control plots was

421due to class R3, which produced on average 1572.6 ±

42274.80 seeds within fenced plots and 717.1 ±

42322.16 seeds in the control plots (F2,6 = 10.26, P =

4240.00116).

425The survival of seedlings (Z = -3.303, P\0.001)

426and adults (Z = -3.475, P\0.001) was significantly

427lower in control plots than in the exclusions.Thepresence

428of herbivores, therefore, significantly increasedmortality

429of some classes in this plant.

430None of the ASI population growth rates was

431significantly different from k = 1 except 2007-fenced,

432that was significantly higher than one. Demographic

433models confirmed that herbivores had a negative effect,

434given that the stochastic growth rate in control plots was

4353.6 % lower than that in fenced plots: ks control =

4360.9490 [95 % CI = 0.9485–0.9495], ks fenced =

4370.9851 [95 % CI = 0.9849–0.9854] (Fig. 5). LTRE

438analysis showed that survival of the largest plants (R3),

439either in the form of stasis (48.4 %) or regression

440(13.4 %), and growth of the R2 plants (24.6 %), had the

Fig. 4 Percentage of
individuals damaged at each
study site and for each kind
of damage: AHO Alghero,
ASI Asinara, STI Stintino,
SEEDL seedlings, SAPL
saplings, MD mechanical
damage, UN unthreading,
BR browsing, and ND not
damaged

Fig. 5 Deterministic population growth rates and 95 %CI intervals, of fenced (F) and control (C) plots in ASI.Each dot corresponds to
a different combination of treatment (Fenced: black dots; Control: white dots) and transition years (2006, 2007 and 2008)
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441 highest responsibility for enhancing the population

442 growth rate of this species when herbivores are

443 excluded.

444 Discussion

445 This study provided, for the first time, information on

446 the current structure and long-term dynamics of a

447 narrow endemic plant exclusive to an island of the

448 Mediterranean basin, and evaluated the effect of an

449 anthropogenic threat present in two of the three

450 populations analyzed: the introduction of alien

451 ungulates.

452 Given the environmental and genetic differences

453 among populations we expected a pattern of response

454 variables like ASI = STI = AHO, whereas a pattern

455 like ASI = AHO = STI could result from differ-

456 ences in management because of the strong differ-

457 ences in the density of wild ungulates. Our results

458 better fit the second scenario. Although a number of

459 biotic and abiotic factors not considered in this study

460 could be involved in the remarkable among population

461 differences found for C. horrida in terms of density

462 and population structure (in particular the higher

463 density of adults and saplings at STI), these differ-

464 ences can at least partially be explained by three of our

465 findings: the higher population growth rate of the non-

466 protected population, the negative effect of herbivores

467 on the survival of adult plants and on the stochastic

468 long-term population growth rate.

469 Populations ofCentaurea horrida are dominated by

470 adults, who together with the slow growth of the plants

471 (frequency of stasis) suggest that C. horrida behaves

472 as a typical long-lived Mediterranean endemic plant:

473 low colonization ability (Colas et al. 1997) and high

474 local persistence (Lavergne et al. 2004; Thompson

475 2005). Although none of the studied population of this

476 endangered plant seems to be declining, and popula-

477 tion sizes are large enough as not to consider the

478 species under extreme concern in the short-term, the

479 detection of threats is of vital importance for narrow

480 endemics, in particular if migration of current popu-

481 lations or the foundation of new populations seems

482 quite unfeasible, as it is the case of old endemics

483 restricted to islands.

484 Many Mediterranean plants evolved a suite of

485 defences to oppose to natural herbivory (Carmona

486 et al. 2011), and show different defense mechanisms

487against large herbivores that influence plant palatabil-

488ity (see e.g., Vicari and Bazely 1993) and depend on

489plant functional traits (Papanikolaou et al. 2011).

490Although C. horrida is naturally defended from

491herbivores by spines, our study shows that it is

492affected by browsing and particularly mechanical

493damage from large herbivores that have been intro-

494duced only recently in the island where it occurs.

495Studies that have examined the effect of deer

496herbivory on population growth of perennial plants

497have found that it has a measurable impact on long-

498term population dynamics (Knight 2004; McGraw and

499Furedi 2005). Typically, effects of deer herbivory on

500understory plants have been examined experimentally

501using fenced exclosures (e.g., Alverson et al. 1988;

502Augustine and Frelich 1998; Augustine et al. 1998;

503Anderson et al. 2001; Townsend and Meyer 2002).

504These studies show large positive effects of herbivores

505exclusion on the growth, survival and reproduction of

506plants. Our results provide similar conclusions. Adult

507plants of C. horrida were the most affected class by

508ungulates in terms of frequency and survival, and

509demographic analysis demonstrated that fencing

510plants to protect them from herbivores enhanced by

511almost 4 % the long-term population dynamics in the

512last 5 years. Our analysis also demonstrated that such

513reduction was due to the probability of stasis and

514shrinkage (survival) of large adults, the class that most

515suffered damage by herbivores at that place, and the

516one releasing more seeds (Farris et al. 2012).

517To assess which of the different current manage-

518ment regimes could be better for the persistence of this

519endangered plant, it is noteworthy that, even if this

520study demonstrated the detrimental effects of herbi-

521vores on the long-term dynamics of C. horrida, other

522previous studies showed that its seed germination

523totally depends on the presence of bare soil, and

524therefore, on gaps and other open spaces created and

525maintained by disturbance (Farris et al. 2009).

526Furthermore, we have observed that browsing events

527on C. horrida were concentrated mainly during

528summer months, after pastures were completely

529grazed and before the germination period. This is

530congruent with the findings of Miranda et al. (2011),

531demonstrating that in season-dependent habitats, such

532as Mediterranean pasturelands, herbivores tend to

533occupy alternative patches (e.g., Scrubland) when

534pastures are not productive, i.e., during summer

535drought.
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536 We therefore argue that the complete disappearance

537 of herbivoresmight not be; however, a desirable option

538 for the conservation of C. horrida. In Mediterranean

539 areas, a crucial role in maintaining the spatial heter-

540 ogeneity of agro-pastoral systems has been tradition-

541 ally played by sheep livestock, now decreasing or

542 disappearing in many coastal areas, and replaced by

543 mass tourism. The abandonment of historical practices

544 is favouring the spreading of shrub and forest ever-

545 green vegetation (Farris et al. 2009), whereas pastures

546 and dwarf plant communities are dramatically decreas-

547 ing (Falcucci et al. 2007; Farris et al. 2010). Unlike

548 large ungulates, sheep are less able to browse on spiny

549 plants and cause mechanical injuries to single plant

550 individuals, contemporaneously maintaining open

551 spaces suitable for seeds germination and seedlings

552 establishment, as demonstrated also by some experi-

553 ments conducted on other plants asGentiana nivalis L.

554 (Miller et al. 1999). Consequently, a possible manage-

555 ment regime for C. horrida would be the complete

556 eradication of the most heavy browsers as goats

557 (Campbell and Donlan 2005; Simbaña and Tye

558 2009), the reduction of the other herbivores (deer,

559 mouflon, horses, and donkeys) to densities compatible

560 to the herb biomass grown each year at each site

561 (Donlan et al. 2002; Miranda et al. 2011), and the

562 maintenance of low densities of controlled sheep

563 (Miller et al. 1999).

564 Since protected areas are devoted to the conserva-

565 tion of all aspects of biodiversity, some conflicts can

566 emerge when trying to protect animals and plants

567 whosemanagement strategies are in contrast (Gangoso

568 et al. 2006; Fornara and du Toit 2008; White and

569 Goodman 2009). Our study constitutes a clear example

570 on how the protection of alien large mammals (more-

571 over, considered as flag species by protected areas

572 managers) has a negative effect on a singular plant,

573 paradoxically amplified by the lack of any attempt of

574 active conservation of the local plant biodiversity.

575 Overall, this study has shown that the presence of

576 alien ungulates may have negative effects on the long-

577 term population dynamics of endangered plant species

578 (Bastrenta 1991; Ehrlén 1995; Rydgren et al. 2001) in

579 a protected space designed to preserve overall biodi-

580 versity. Although the evaluation of the responses of

581 endangered plant populations to multi-specific assem-

582 blages of alien herbivores seems particularly helpful to

583 conservation biologists and land managers, we believe

584 that successful management schemes can only be

585projected on the basis of future manipulative disen-

586tangling species-specific interactions between a pro-

587tected plant and a single alien herbivore species.
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