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ABSTRACT 

 Methionine adenosyltransferase from Euglena gracilis (MATX) is a recently 

discovered member of the MAT family of proteins that synthesize S-adenosylmethionine. 

Heterologous overexpression of MATX in Escherichia coli rendered the protein mostly in 

inclusion bodies under all conditions tested. Therefore, a refolding and purification 

procedure from these aggregates was developed to characterize the enzyme. Maximal 

recovery was obtained using inclusion bodies devoid of extraneous proteins by washing 

under mild urea (2 M) and detergent (5%) concentrations. Refolding was achieved in two 

steps following solubilization in the presence of Mg2+; chaotrope dilution to <1 M and 

dialysis under reducing conditions. Purified MATX is a homodimer that exhibits Michaelis 

kinetics with a Vmax of 1.46 µmol/min/mg and Km values of approximately 85 and 260 µM 

for methionine and ATP, respectively. The activity is dependent on Mg2+ and K+ ions, but 

is not stimulated by dimethylsulfoxide. MATX exhibits tripolyphosphatase activity that is 

stimulated in the presence of S-adenosylmethionine. Far-UV circular dichroism revealed 

β-sheet and random coil as the main secondary structure elements of the protein. The high 

level of sequence conservation allowed construction of a structural model that preserved 

the main features of the MAT family, the major changes involving the N-terminal domain. 
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INTRODUCTION 

 Reactions using S-adenosylmethionine (AdoMet) are among the most abundant 

processes taking place in any cell [1,2]. The routes in which the AdoMet-consuming 

reactions are involved allow the synthesis of a large variety of compounds, as well as the 

control of cell function (i.e. epigenetic modifications). This wide use of AdoMet derives 

from the variety of groups that this molecule is able to donate, being methyl group 

donation the main consumer of the compound [2-5]. In contrast, methionine 

adenosyltransferases (MATs) are the only enzymes known to synthesize AdoMet in a 

rather unusual reaction that occurs in two steps [6,7]. First, the substrates methionine and 

ATP are combined to obtain AdoMet and triphosphate that is hydrolyzed in the second part 

of the reaction to render pyrophosphate and inorganic phosphate as side products. The 

catalytic mechanism followed is of the SN2 type and most of the inorganic phosphate 

obtained derives from the γ-phosphate of ATP [6,7]. MATs require divalent cations (Mg2+) 

for catalysis and are activated by monovalent ions (K+). In mammals, AdoMet has a dual 

behavior on MATs, inhibiting (MAT I and II) and activating (MAT III) its own synthesis, 

and enhancing the tripolyphosphatase activity [2,8,9].  

 MAT enzymes have been found in almost every organism from Mycoplasma 

genitalium to mammals with the exception of a few parasites that obtain AdoMet from 

their hosts [10]. For this purpose, AdoMet transporters are required and proteins exhibiting 

such function have been identified in some organisms, as well as in yeast and mammalian 

mitochondria [11-13]. Most organisms express several MAT isoenzymes that differ in their 

affinities for the substrates (30 µM to 1 mM for methionine in mammals), despite the high 

conservation of the sequences of their catalytic subunits [2,7,14]. Most members of the 

MAT family are homo-oligomers except for mammalian MAT II, and the majority are 

tetramers with the exception of a few dimers (i.e. mammalian MAT III and archaeal 
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MATs) [7,15]. All the crystal structures known to date (mammalian and E. coli MATs) 

show monomers organized in three domains formed by nonconsecutive stretches of the 

sequence, and the subunits interact through a large flat hydrophobic surface to form the 

dimers [7,16-18]. Active sites, two per dimer, locate between monomers with residues of 

both subunits contributing to them, thus the minimum association level of active MATs is 

the dimer. Sequence and structural restrictions to maintain the relative positions of the 

active site residues, and the unusual reaction mechanism, impose that the insertions and 

deletions observed in specific lineages take place mostly in the loops [10]. Moreover, these 

indels are conserved in the lineages in which they occur as observed in the analysis carried 

out in Bacteria and Eukarya. Recently, a different type of eukaryotic MAT (MATX) was 

identified in dinoflagellates, haptophytes, diatoms and euglenids [19,20]. This new MAT 

preserves the catalytic residues, its sequence contains insertions/deletions in loops and it is 

able to complement the corresponding Saccharomyces cerevisiae mutant, thus 

demonstrating its capacity to synthesize AdoMet [21]. Several species express both a 

canonical MAT and this new MATX, hence raising the possibility that the characteristics 

of each isoenzyme favor adaptation to the growth conditions or the diverse needs during 

the life cycle of the organism. The purpose of this article is to fully characterize MATX 

and compare its properties with those of other members of the MAT family. Differences in 

the active sites among MATs may provide the basis for the use/design of inhibitors for 

selective growth control of certain organisms, and hence the infections they produce that 

may have important pathological or commercial consequences. 
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MATERIALS AND METHODS 

 

Materials 

 Methinonine, ATP, S-adenosylmethionine (AdoMet) dithiothreitol (DTT), 

ampicillin, molecular mass standards for gel filtration chromatography and protease 

inhibitors were obtained from Sigma Chemical Company (St. Louis, MO). [2,8-3H]-ATP 

(28.7 Ci/mmol), Pfu DNA polymerase and restriction enzymes were products of Perkin 

Elmer (Boston, MA), Biotools (Madrid, Spain) and Invitrogen (Carlsbad, CA), 

respectively. Q-Sepharose HiTrap and Superose 12 10/300 GL columns were purchased 

from GE Healthcare (Uppsala, Sweden). Isopropyl β-D-thiogalactopyranoside (IPTG) and 

E. coli strains were products of Calbiochem (La Jolla, CA) and Stratagene (La Jolla, CA), 

respectively. Electrophoresis reagents and the BioRad protein assay kit were obtained from 

BioRad (Richmond, CA). YM-30 ultrafiltration membranes were purchased from Amicon 

Corp. (Beverly, MA). Urea, DMSO and Triton X-100 were products from Merck 

(Darmstadt, Germany). The rest of the buffers and reagent were from the best quality 

commercially available. 

 

Construction of MATX expression plasmids 

 The ORF of MATX was amplified by PCR from the pEXT5-MATX plasmid 

provided by Dr. A. Rogers’s laboratory. For this purpose, primers that include NdeI (5’-

GGAATTCCATATGGCTGAATCTGCTTCAAAG-3’) and EcoRI (5’-GCGAATTCCTA 

GTCCACCCACTTCTG-3’) restriction sites (underlined) were designed. Following an 

initial denaturation step at 95ºC for 2 min, amplification was performed for 30 cycles at 

95ºC for 30 s, 55ºC for 1 min and 72 ºC for 1 min using Pfu DNA polymerase. The PCR 

also included a final elongation step at 72ºC for 10 min. The PCR fragment was then 
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purified, digested and cloned into the pT7.7 vector [22] using the NdeI and EcoRI 

restriction sites. The resulting plasmid was designated pT7.7-MATX. The sequence was 

verified by automatic sequencing at the facilities of the Instituto de Investigaciones 

Biomédicas “Alberto Sols”. 

 

MATX overexpression in E. coli 

 The pT7.7-MATX plasmid was transformed into BL21(DE3) Codon Plus 

competent cells and single colonies were grown in LB medium (500 ml) containing 50 

µg/ml ampicillin at 20ºC, 30ºC and 37ºC. The cell density was measured and aliquots (25 

ml) taken and induced at A600=0-0.8 using 0.5 mM IPTG for 0-22 h. Cells were harvested 

by centrifugation and stored at -80ºC until processing. 

 

Analysis of soluble and insoluble fractions 

 Cell pellets (1 g wet wt) were lysed by sonication at 4ºC in a Soniprep 150 sonifier 

(15 cycles, 30 s on/off at an output power level of 8 microns) in 25 ml of 50 mM Tris/HCl 

pH 8, 10 mM MgSO4 (buffer A) containing 5 mM EDTA, 0.1 % 2-mercaptoethanol, 2 

µg/ml aprotinin, 1 µg/ml pepstatin A, 0.5 µg/ml leupeptin, 2.5 µg/ml antipain, 0.5 mM 

benzamidine, 0.1 mM phenylmethylsulfonyl fluoride (PMSF). Soluble and insoluble 

fractions were separated by centrifugation at 13000g for 15 min. The insoluble fraction, 

containing the inclusion bodies, was solubilized in 10 ml of 50 mM Tris/HCl pH 8, 75 mM 

MgSO4 containing 8 M urea and aliquots prepared for SDS-PAGE. In parallel, soluble 

fractions were used for both SDS-PAGE and activity measurements.   

 

MATX refolding from inclusion bodies 
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 The insoluble fraction obtained from 1 g of cells was resuspended in 25 ml of 

buffer A containing 1 mM EDTA and sonicated again 6 cycles (10 s on/off, output power 8 

microns) on ice. Pellets were recovered by centrifugation for 30 min at 48000g and 4ºC. 

These pellets were used to test washing conditions using 100 mM Tris/HCl pH 7 buffers 

including 5 mM EDTA, 0-4 M urea, 0-5 % Triton X-100 and 0.1 mM benzamidine. These 

washes were carried out twice, followed by a final wash with the same buffer devoid of 

urea and detergent.  

 One washed pellet was resuspended in 10 ml of 50 mM Tris/HCl pH 8 containing 8 

M urea and 75 mM MgSO4 and incubated for 2 hours at 10ºC. Thereafter the sample was 

diluted to reach 0.5-4 M urea by addition of buffer A. Each diluted sample was 

immediately dialyzed against buffer A containing 10 mM DTT (total volume 1.5 l). 

Refolded MATX was recovered by centrifugation of the dialyzed samples for 30 min at 

48000g and 4ºC, and checked for MAT activity and protein. 

 

Purification of refolded MATX  

 Refolded MATX was purified using Q-Sepharose HiTrap (5 ml) equilibrated in 

buffer A containing 0.1 % 2-mercaptoethanol and 0.1 mM benzamidine. The flow rate was 

1 ml/min and 5 ml fractions were collected. Following sample loading an extensive 

washing step (100 ml) was carried out using buffer A until A280=0. Elution was performed 

with a gradient from 0-0.5 M KCl in buffer A (150 ml) at the same flow rate. The presence 

of MATX was detected by activity measurements and the corresponding peak collected 

and dialyzed against buffer A to eliminate KCl excess or against 50 mM Tris/HCl pH 8 for 

Mg2+ kinetics. In some cases, the peak was concentrated by ultrafiltration using YM-30 

membranes until the desired protein concentration was reached. 
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Far and near UV circular dichroism 

MATX samples were prepared at 0.25 mg/ml and 1 mg/ml protein concentrations 

for far- and near-UV CD, respectively. Spectra were recorded on a Jasco J-720 

spectropolarimeter at 25ºC, using 0.1 cm (far-UV) or 1 cm (near-UV) pathlength cuvettes. 

After baseline subtraction the observed ellipticities were converted to mean residue 

ellipticities (θmrw) on the basis of a mean molecular mass per residue of 110 Da. A 

minimum of five spectra was taken for each sample. Analysis of secondary structure was 

performed using the deconvolution software CDNN (© G. Böhm). 

 

Sedimentation velocity 

MATX samples (0.3-0.5 mg/ml) were used for sedimentation velocity runs that 

were carried out at 48000 rpm and 4ºC in an XL-1 analytical ultracentrifuge (Beckman 

Coulter, Inc., Fullerton, CA) with a UV-Vis detection system, using an An50Ti rotor and 

12 mm double-sector centerpieces. Absorbance scans (0.003 cm step size) were taken at 

280 nm. Differential sedimentation-coefficient distributions, c(s), were calculated by least 

squares boundary modeling of sedimentation velocity data using the program SEDFIT 

[23,24]. The values obtained from this analysis were corrected for solvent composition and 

temperature to obtain s20,w using the public domain software SEDNTERP, retrieved from 

the RASMB server [25]. 

 

Analytical gel filtration chromatography 

 MATX samples (100 µl containing a minimum of 50 µg) were injected on a 

Superose 12 10/300 GL gel filtration column equilibrated in buffer A containing 150 mM 

KCl. The flow rate was 0.3 ml/min and 210 µl fractions were collected while A280 was 

recorded. Elution and MAT activity measurements (100 µl) were performed as previously 
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described [26]. The protein standards used and their elution volumes were as follows: 

Dextran Blue (2000 kDa), 8.69 ml; apoferritin (443 kDa), 9.87 ml; β-amylase (200 kDa), 

11.34 ml; alcohol dehydrogenase (150 kDa), 12.07 ml; carbonic anhydrase (29 kDa), 15.12 

ml; and ATP (0.551 kDa), 19.26 ml. 

 

Electrophoresis 

 Denaturing gel electrophoresis was performed on 10% SDS-PAGE gels under 

reduced conditions, using the Laemmli buffer system. Samples of soluble (150 µg), 

inclusion bodies (30 µg) and refolded MATX (6 µg) were loaded per lane and stained 

using Coomassie blue R250. Densitometric scanning of the bands was carried out using the 

ImageJ software 1.37v (http://rsb.info.nih.gov/ij/). 

 

MAT activity measurements and kinetics 

 Activity assays were carried out at 37ºC as previously described [27], using a 

protein concentration of 0.05 mg/ml and the standard MAT reaction mixture containing 5 

mM methionine and 5 mM ATP in a final volume of 250 µl. Kinetics were performed 

using standard MAT reaction mixtures containing: i) 1-600 µM of the amino acid and 5 

mM ATP, for methionine kinetics; ii) 1-1500 µM of the nucleotide and 5 mM methionine, 

for ATP kinetics; iii) 0-13 mM MgSO4, for Mg2+ kinetics; and iv) 0-85 mM KCl, for K+ 

kinetics. DMSO stimulation was tested using reaction mixtures containing 60 µM 

methionine and 10% (v/v) DMSO. 

 

Tripolyphosphatase activity measurements 

 MATX tripolyphosphatase activity was measured following absorption at 750 nm 

as previously described [17]. Tripolyphosphate kinetics were carried out using 0-5 mM 
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triphosphate in the presence or absence of 50 µM AdoMet and using 0.05 mg/ml protein 

samples. 

 

Theoretical calculations of the pI and extinction coefficient. 

 Information from the amino acid sequence was used for theoretical calculation of 

the pI using a method previously described by Ribeiro and Sillero [28]. In addition, the 

extinction coefficient was estimated from the number of tryptophan and tyrosine residues 

in the sequence, and using extinction coefficients for these amino acids of 5550 and 1490 

M-1cm-1, respectively. 

 

Protein concentration determinations 

The protein concentration of the samples was measured routinely using the BioRad 

protein assay kit and bovine serum albumin as the standard. On the other hand, for CD and 

sedimentation velocity experiments protein concentration was determined from the A280 of 

the sample after 30 min incubation in 8 M urea using a calculated extinction coefficient of 

48610 M-1cm-1.  

 

MATX structural model and sequence alignment. 

 A structural model of the MATX monomer was prepared using the Swiss-Model 

server (http://swissmodel.expasy.org/), the protein sequence and the 2.05 Å resolution 

structure of the human MATα1 protein (PDB ID: 2OBV) as template (49.5% sequence 

identity)[29-31]. The model extends from residue 13 to 444 of the sequence and preserves 

the three-domain organization of all the previously crystallized MATs [7,16,17]. Sequence 

alignment of the MATs mentioned in the text was performed using the COBALT Multiple 

Alignment Tool (http://www.ncbi.nlm.nih.gov/tools/cobalt). 
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RESULTS AND DISCUSSION 

 MATX from Euglena gracilis belongs to the MAT family of enzymes characterized 

by the high level of sequence identity exhibited by its members [10]. Its ORF encodes for a 

protein of 471 residues, which means a notable increase in length as compared to most 

MATs (∼400 amino acids long). MATX has a theoretical pI of 5.91, similar to the values 

obtained to date for most members of the family (i.e. 5.9 for rat MAT III) [7,32]. 

Heterologous expression of the protein was initially carried out in E. coli using the plasmid 

pEXT5-MATX, which includes a His-tag at the protein N-terminal. However, the 

expression levels obtained were very low under all the conditions tested (growth 

temperature, cell density for induction, etc.). Addition of tags to other MATs, both at the 

N- or C-terminal ends, was previously shown to decrease the amount of soluble protein 

obtained [33], and hence the pT7.7-MATX plasmid that contains the MATX ORF without 

the His-tag was constructed. Growth and induction conditions of E. coli cells transformed 

with pT7.7-MATX were studied and optimized. The protein appeared in 10% SDS-PAGE 

gels with a calculated Mr of 57600, according to the mobility of the standards (Fig. 1), 

which is slightly above the calculated size. MAT activity was higher in soluble fractions of 

cultures induced at A600= 0.8 (Fig. 2), although no significant changes in the protein band 

intensity were detected by densitometric scanning of the stained gels (Fig. 1A). 

Overexpression of MAT enzymes produces a large decrease in cellular ATP levels, as its 

consumption is increased to produce AdoMet. Thus, it is possible that only low levels of 

expression allow cell survival, and hence that a larger cell number may led to an apparent 

constant level of MATX once a certain density is achieved, whereas the activity levels 

increase due to a larger contribution of the endogenous cMAT. The activity was also 

increased in soluble fractions of cultures grown at 30ºC as compared to those grown at 

37ºC (Fig. 3). Maximum induction with IPTG was already detected after a 3 h induction 
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period at both temperatures. However, in all the conditions tested most of the protein 

(~90%) was accumulated in inclusion bodies (Fig. 1B). The use of lower temperatures 

(20ºC) and IPTG concentrations was reported to improve Bacillus subtilis MAT (BsMAT) 

heterologous expression [34]. In our hands none of these conditions improved the results 

obtained and in fact the soluble protein was almost undetectable (data not shown). 

Therefore, the standard grown conditions were established to obtain MATX from inclusion 

bodies using 3 h IPTG induction at A600=0.6-0.8 and 37ºC and refolding from inclusion 

bodies was attempted. 

 Several parameters were studied using the inclusion bodies, in order to obtain the 

maximum amount of protein for refolding. These included the protein concentration, pH of 

the buffer and the concentrations of the solubilization agents, as previously described for 

mammalian MAT I/III refolding [32]. Inclusion bodies contain not only the desired 

overexpressed protein, but also bacterial membrane and cell wall and therefore the need to 

eliminate these extraneous proteins. For this purpose, the inclusion bodies were subjected 

to several washing steps with buffers including variable concentrations of urea (0-4 M) and 

Triton X-100 (0-5%) at pH 7. In contrast to MAT I/III, with a similar pI [32], a large 

amount of MATX was solubilized when using washing buffers containing >2 M urea, 

whereas the percentages of detergent examined did not cause such protein loss. Therefore, 

the standard washing conditions were established as two washes in the presence of 2 M 

urea and 5% Triton X-100.  

 Refolding of MATX from the washed inclusion bodies was then attempted. For this 

purpose, the protein was solubilized using a buffer containing 8 M urea, and the refolding 

protocol previously developed for rat MAT I/III [32]. However, for this protocol to be 

adapted to MATX several requirements had to be tested. First, the range of protein 

concentration at the solubilization step that renders the largest amount of active refolded 
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MATX. According to the results obtained, this protein concentration was established 

between 1-3 mg/ml. Secondly, the intermediate urea concentration to be reached in the 

dilution step. This dilution was found to dramatically improve the yield of active-refolded 

MAT I/III [32], and hence expected to be crucial for MATX refolding. Our results indicate 

that achieving a urea concentration between 0.5-1 M before dialysis, and hence a protein 

concentration of 0.1-0.3 mg/ml, allowed the largest recovery of active protein (Fig. 4). 

Finally, the presence of 10 cysteine residues in the MATX sequence, and the crucial role 

that this type of amino acids have in all MATs studied to date [7,35,36], recommends the 

inclusion of a reducing agent in the dialysis buffer to avoid the production of off-pathway 

aggregates due to oxidation. Based on the data obtained, an intermediate dilution to 1 M 

urea followed by dialysis in the presence of 10 mM DTT was used as the standard 

procedure.  

 The refolded protein was further purified by ion exchange chromatography, and a 

single peak exhibiting MAT activity eluted in the presence of 100 mM KCl. The MATX 

content of this preparation was estimated to be >90% by densitometric scanning of the 

stained gels (Fig. 5). The purification results appear in Table 1, and show a remarkably 

lower yield at the dialysis step as compared to MAT I/III (25 vs. 88%) [32]. Given the high 

sequence identity level between MATs this result was unexpected, and demonstrated how 

highly homologous proteins can behave quite differently under similar conditions.  

 This highly purified MATX preparation was then used for characterization. The 

oligomeric state of the refolded protein was analyzed using gel filtration chromatography 

and sedimentation velocity. The elution volume of MATX (13.2 ml) was determined from 

MAT activity measurements of the fractions eluted from the gel filtration column (Fig. 6). 

According to the elution position of the markers on the Superose column, this elution 

volume corresponds to that expected for a globular protein of ∼70 kDa. However, the A280 
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profile indicates elution of the protein as two peaks in positions compatible with tetrameric 

and dimeric oligomers. In addition, sedimentation velocity experiments identify species 

with calculated s20,w values of 3.4 ± 0.1 and 6.4 ± 0.1 S. These hydrodynamic 

measurements are compatible with the presence in the sample of monomers (compact or 

globular) and compact dimers, according to the A280 measurements of sedimentation 

velocity experiments, from which only compact dimers were active as deduced from the 

gel filtration chromatography profile. Detection of tetrameric species could be ascribed to a 

partial association during sample concentration preceding gel filtration chromatography, 

whereas that of monomeric species could be due to partial denaturation of the sample 

during ultracentrifugation, phenomena described to occur with a variety of enzymes 

[37,38]. As deduced from these data, MATX is a new member of the growing group of 

homodimeric MATs that includes mammalian MAT III, archaeal MATs and 

Mycobacterium tuberculosis MAT [7,15,35,39,40]. The AdoMet synthesizing activity of 

some of these dimeric MATs is stimulated by DMSO at low methionine concentrations 

[7]. Therefore, we analyzed this stimulatory effect on MATX and found that this dimeric 

MAT is not stimulated under similar conditions (1.80 ± 0.15 vs. 1.67 ± 0.11 

µmol/min/mg). 

 MAT activity is dependent on divalent (Mg2+) cations and stimulated by 

monovalent (K+) ions [7], and MATX is not an exception to this rule. Its dependence on 

these essential cations was explored and the data obtained appear in Table 2. The affinity 

for the cations is in the millimolar range, similar values to those measured for refolded 

MAT III [32]. Kinetics for the substrates, methionine and ATP, showed Michaelis-Menten 

behavior, the calculated Km values being about half of those exhibited by MAT III (Table 

2)[32]. In addition, the Vmax is ∼18 fold higher than that of MAT III [32], and similar to 

that of E. coli MAT (cMAT)[6] or Methanococcus jannaschii MAT (Mj-MAT)[40]. The 
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tripolyphosphatase activity exhibited by the MAT family was also evaluated for MATX. 

Kinetics for PPPi showed a Vmax for this substrate similar to that shown by refolded-MAT 

III in the presence of 50 µM AdoMet [32]. MATX tripolyphosphatase activity was 

stimulated by AdoMet ∼23 fold, rendering a calculated Vmax  ∼2 fold larger than that of the 

AdoMet synthesis reaction as occurs for cMAT [6] (Table 2). However, this 2-fold 

increase in Vmax (1464.22 vs 2725.20 nmol/min/mg) is also observed when the AdoMet 

synthesis is measured as Pi using the colorimetric method (3349.33 ± 71.61 nmol/min/mg). 

This stimulation occurs without a significant change in affinity for the PPPi substrate 

(Table 2), in contrast to the decreased affinity shown by cMAT in the presence of AdoMet 

(∼4 fold)[6].  

 Structural characterization of refolded MATX was carried out using circular 

dichroism. Far-UV spectra were obtained (Fig. 7) and the overall secondary structure 

composition estimated by deconvolution (Table 3). The major elements were found to be 

the random coil and β-sheet as previously described for other members of the MAT family. 

Comparison of these data with the secondary structure composition published for other 

members of the MAT family showed an increase in the random coil component that is 

especially important when compared to archaeal or BsMAT [32,34,41]. The difference in 

subunit length between these MATs (471 vs. 400 residues)(Fig. 8C), and the fact that the 

insertions occur in loops [19], may account for such increased random coil content. In 

addition, some differences can also be expected from the diversity of programs used in this 

type of calculations by each laboratory. Near-UV spectra were also obtained (Fig. 7B), the 

main feature being the lack of signal at 265 and 295 nm. MATX contains five tryptophans 

(positions 181, 182, 314, 437 and 469) and fourteen tyrosines (positions 78, 148, 162, 195, 

232, 311, 336, 360, 375, 413, 419, 434, 446 and 449) per subunit, two types of residues 

with transitions in this area of the spectrum. Hence, a compensatory effect between signals 
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of both types of residues must occur to render this profile. Such a compensatory effect has 

been previously observed in near-UV CD spectra from Mj-MAT (containing 1 Trp and 13 

Tyr), despite the low degree of sequence conservation in archaeal MATs [41]. Moreover, 

the absence of a significant signal in the 250-270 nm range suggested the lack of 

disulphide bonds in the molecule, as expected from refolding being carried out under 

reducing conditions. 

 The sequence of MATX preserves the main blocks that characterize all the 

members of this family and that include the residues involved in substrate and cation 

binding (Fig. 8C) [10]. Residues involved in methionine binding locate to the N-terminal 

domain, the 27GHPDK31 stretch (block I), and to a loop connecting this domain with the 

central domain that includes F290. This phenylalanine is equivalent to F251 of rMATα1 that 

was shown to have its aromatic ring stacked against the methionine analogue used for 

crystallization [17]. D141 (block III), D186 and K188 (block IV) are equivalent to the residues 

involved in Mg2+ binding and catalysis. Moreover, residues involved in K+ coordination, 

G303 and R305, are also preserved  (block V). Overall the sequence presents a high level of 

conservation, the main difference being the ∼30 residue extension at the C-terminal end 

and an insertion comprising residues 218-248 according to the sequence alignment (Fig. 

8C). This high conservation allowed construction of a structural model using the MATX 

sequence and the structure of human MATα1 (PDB ID: 2OBV), its closest homologue. 

This model extended from residue 13 to 444 and preserved the three-domain organization 

of all MATs (Fig. 8). The main differences occur in the N-terminal domain, where the 

strands of the β-sheet seem longer, as well as the loop (residues 259-281) preceeding the 

last strand. In addition, one of the α-helixes in the outer side of this domain is also longer 

(residues 234-259), thus protruding to the environment. However, these changes do not 
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seem to affect positioning of the active site residues as compared with rMATα1 (Fig. 

8A)[17,41], and hence the high activity observed comparable to that of cMAT. 

 In summary, we have been able to produce and refold MATX using an 

heterologous system. The enzyme is a homodimer showing AdoMet synthesizing capacity, 

but its Vmax and the affinities displayed for ATP and methionine are closer to those of the 

cMAT homotetramer rather than to Mj-MAT or rMAT III dimers. MATX activity is also 

dependent on divalent and monovalent cations. Moreover, the enzyme exhibits the 

tripolyphosphatase activity typical of the MAT family that is stimulated in the presence of 

AdoMet. 
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FIGURE LEGENDS 
 
 Fig. 1. SDS-PAGE electrophoresis of soluble and insoluble fractions of MATX 

overexpressing cells. Cultures of E. coli cells transformed with pT7.7-MATX were grown 

at 37ºC to reach several cell densities (A600). At this point cultures were divided into two 

samples and grown for 3 additional hours in the absence (lanes 1, 2, 4 and 6) or presence 

(lanes 3, 5 and 7) of IPTG. The cells were harvested by centrifugation and lysed to obtain 

soluble and insoluble fractions. (A) Samples of the soluble (30 µl containing ∼150 µg) and 

(B) insoluble (20 µl containing ∼30 µg) fractions were loaded in SDS-PAGE gels. 

Induction was done at A600=0 (lane 1), 0.3, (lanes 2 and 3), 0.6 (lanes 4 and 5) and 0.8 

(lanes 6 and 7). The figure shows results of a typical experiment. 

 Fig. 2. MAT activity in soluble fractions of cultures induced at different cell 

densities at 37ºC. Cultures of E. coli cells transformed with pT7.7-MATX were grown at 

37ºC to reach several cell densities (A600). At this point cultures were divided into two 

samples and grown for 3 additional hours in the absence () or presence () of IPTG. The 

cells were harvested by centrifugation and lysed to obtain soluble and insoluble fractions. 

MAT activity was measured in the soluble fractions. The figure shows the mean ± SEM of 

a typical experiment carried out in triplicate. 

 Fig. 3. MAT activity in soluble fractions of cultures induced at 30ºC or 37ºC. 

Cultures of E. coli cells transformed with pT7.7-MATX were grown at 37ºC to reach 

A600= 0.8. At this point cultures were divided into two samples and grown for 3 additional 

hours in the absence () or presence () of IPTG at 30ºC (A) or 37ºC (B). The cells were 

harvested by centrifugation and lysed to obtain soluble and insoluble fractions. MAT 
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activity was measured in the soluble fractions. The figure shows the mean ± SEM of a 

typical experiment carried out in triplicate. 

 Fig. 4. Two step refolding of MATX from inclusion bodies. Washed inclusion 

bodies were solubilized in 8 M urea buffer and incubated for 2 h at 10ºC. The samples 

were then diluted to achieve final urea concentrations between 0.5-4M and immediately 

subjected to dialysis in the presence of 10 mM DTT. Samples were recovered and clarified 

by centrifugation and the soluble fraction assayed for MAT activity. The figure shows the 

mean ± SD of a typical experiment carried out in triplicate. 

 Fig. 5. SDS-PAGE of the MATX purification steps. The figure shows a scheme of 

the purification steps, where the number indicates the corresponding lane of the SDS-

PAGE gel. Samples (40 µl) of representative purification steps were prepared for SDS-

PAGE electrophoresis under reducing conditions and loaded on a 10% acrylamide gel. The 

samples correspond to: washed inclusion bodies solubilized in 8 M urea buffer (lane 1); 

refolded MATX (lane 2); the peak eluted from the Q-Sepharose cartridge (lane 3). MATX 

appear as the main band stained in all the fractions with an apparent Mr of 57600 

according to the standards: phosphorylase B (97400), bovine serum albumin (66200), 

ovalbumin (45000), carbonic anhydrase (31000) and soybean trypsin inhibitor (21500).  

 Fig. 6. Gel filtration chromatography of refolded MATX. MATX was refolded from 

inclusion bodies following the two-step protocol described under Materials and Methods, 

purified by ion exchange chromatography and dialyzed. A sample (100 µl containing ∼80 

µg) was injected on a Superose 12 10/300 GL column equilibrated in 50 mM Tris/HCl pH 

8, 10 mM MgSO4, 150 mM KCl. Elution was carried out at a flow rate of 0.3 ml/min, the 

A280 was recorded and 210 µl fractions were collected for MAT activity measurements. 

The elution volume of the markers was: Dextran Blue (8.69 ml); apoferritin (9.87 ml); β-
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amylase (11.34 ml); alcohol dehydrogenase (12.07 ml); carbonic anhydrase (15.12 ml); 

and ATP (19.26 ml). The figure shows results from a typical experiment. 

 Fig. 7. Far- and near-UV circular dichroism spectra of refolded MATX. Samples of 

purified refolded MATX were used to obtain (A) far- and (B) near-UV circular dichroism 

spectra. The protein concentration of the samples was 0.25 mg/ml and 1 mg/ml for far- and 

near-UV spectra, respectively. After baseline subtraction the observed ellipticities were 

converted to mean residue ellipticities using a mean molecular mass per residue of 110 Da. 

 Fig. 8. Comparison of monomer structures for rat MATα1 (crystal) and MATX 

(structural model) and alignment of MAT sequences. (A) The structural model constructed 

using the Swiss-Model server and human MATα1 (PDB ID: 2OBV) as template is shown. 

The arrows indicate extensions in the N-terminal domain that affect a loop and α-helix. 

The active site residues appear as sticks (greencyan) over which the sequences are 

indicated. (B) The structure of the rat MATα1 monomer (PDB ID: 1QM4) is depicted for 

comparison. The position of the N-terminal residue for each monomer is also indicated. 

(C) Alignment of the MAT sequence mentioned in the text, including that of human 

MATα1 the higher homologue used for construction of the structural model. 
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TABLE 1 

Refolding and purification of MATXa,f 

 Total protein 
(mg)d 

Total enzyme 
unitse 

Specific activity 
(nmol/min/mg) 

Yield 
(%) 

Urea solubilizationb 91.89 0 <0.0001 100 

Dialysis + DTTc 22.99 24.88 ± 3.98 1153.71 ± 208.02 25.02 

Q-Sepharose 9.08 1.12 ± 0.39 1553.04 ± 238.61 9.88 
aWashed inclusion bodies were used for refolding.  
bSolubilization in the presence of 8 M urea for 2 h at 10ºC . 
cThe diluted sample was dialyzed against buffer A containing 10 mM DTT. 
dProtein concentration was determined by Bradford protein assay. 
eOne unit is the amount of enzyme that catalyzed the production of 1 µmol AdoMet per 
minute. 
fThe table shows results of a typical purification. 
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TABLE 2 

Kinetic parameters of MATX activities 

  MATX 

Vmax (nmol/min/mg) 1464.22 ± 164.26 

Km methionine (µM) 85.35 ± 28.42 

Km ATP (µM) 260.36 ± 38.90 

Km K+ (µM) 591.31 ± 76.64 

 

 

MAT activitya 

Km Mg2+ (mM) 1.72 ± 0.27 

   

Vmax (nmol/min/mg) 117.28 ± 15.73 

Km PPPi (µM) 82.75  ± 22.24 

Vmax (nmol/min/mg) + 50 µM AdoMet 2725.20 ± 115.15 

 

Tripolyphosphatase 
activityb 

Km PPPi (µM) + 50 µM AdoMet 130.65 ± 25.95 
aMAT activity measurements were carried out using 0.05 mg/ml protein samples for 30 
min. 
bTripolyphosphatase activity determinations were performed using 0.05 mg/ml protein 
concentrations for 10 min. 
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TABLE 3 

Secondary structure composition of MATXa and comparison with other MATs 

 Secondary structure (%) 

 MATX MAT Ib MAT IIIb BsMATc 

α-helix  12.7 ± 0.5 23 ± 1.8 19 ± 1.1 81 

antiparallel 25.1 ± 0.5 β-sheet 

parallel 5.3 ± 0.5 

40 ± 1.2 34 ± 2.3 8 

β-turns  21.5 ± 0.5 18 ± 1.0 20 ± 0.8  

Random coil  35.9 ± 0.5 19 ± 1.8 27 ± 0.5 11 
aSecondary structure composition was calculated from the far-UV CD spectra using 
CDNN software (© G. Böhm) 
b Calculated using the Convex Constraint method, data from reference 32 
c Calculated using the CDpro software, data from reference 34 
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