STRUCTURAL ALTERATIONS OF SOLUBLE AND COLLOIDAL HUMIC-LIKE FRACTIONS DURING INCUBATION OF 15N LABELLED SOIL-COMPOST MIXTURE

F.J. González-Vila*, G. Almendros**, P. Tinoco**, J. Rodríguez*

* Instituto de Recursos Naturales y Agrobiología, CSIC, P.O. Box 1052, 41080-Sevilla, Spain
** Centro de Ciencias Medioambientales, CSIC, Serrano 115B, 28006-Madrid, Spain

A 15N-labelled compost was prepared during 80-day laboratory incubation of a mixture of urban waste, wheat straw and K15NO$_3$. Curie-point pyrolysis and analysis of stable isotope ratios were used to monitor the changes during composting in the qualitative and quantitative speciation patterns of the N compounds in the different compost fractions i.e., water-soluble fraction, colloidal fractions (humic acid-like and fulvic acid-like), and particulate organic fractions. This compost was added to a mineral soil and subjected to further incubation for 80 days. After the incubation, up to 15% of total soil N corresponds to 15N-compounds. The stable isotope ratios (14N/15N) of the labelled compost fractions (incorporating 21.4% N as 15N) and soil fractions were compared to monitor the distribution of the N compounds in the different soil organo-mineral compartments. Finally, a preliminary identification of the molecular composition of the major C and N forms in soil and compost fractions was carried out by Curie-point pyrolysis.

It was found that most of the newly-formed N-compounds tend to concentrate in the water-soluble (> 95% 15N richness) and in the alkali-insoluble, particulate residue (> 25% 15N richness) but about 28% of the N remains in colloidal, humic-like fractions. The fulvic acid-like fraction released upon pyrolysis typical anhydrosugar and furan compounds suggesting that the most soluble compost fractions originate mainly from carbohydrate material. The 15N in this soil fraction amounts to 0.7 % total N (up to 9 % of the N from the nitrate added). The humic acid fraction (1.4 % of the total N) released typical methoxyphenols and some nitrogen-containing compounds, pointing to the presence of a microbially-reworked lignin with a substantial peptidic domain. The particulate fractions yielded significant amounts of alkyl molecules suggesting a moiety of recalcitrant, insoluble, lipid polymer material. The water soluble fraction showed the most heterogeneous composition yielding upon pyrolysis a series of methoxyphenols and carbohydrate-derived products in addition to significant yields of fatty acids. It showed the greatest yields of N-containing pyrolysis compounds (mainly pyrroles) and accounts for 1.7 % of the total N, with up to 96 % as 15N, which suggest that most of the N added are in soluble reactive forms.

Keywords: 15N-labelling of compost, 15N/14N ratios, incubation experiments, flash pyrolysis, humic fractions, water-soluble material.