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Abstract: The accuracy of the reconstruction of the Gradient Refractive 

Index (GRIN) of the crystalline lens from optimization methods was 

evaluated. Different input data, including direction cosines of deflected 

rays, ray impacts obtained from ray tracing and optical path differences 

from Optical Coherence Tomography (OCT) were studied. Three different 

GRIN models were analyzed. The experimental errors of the different 

experimental input data were estimated from comparisons of measurements 

and simulations using artificial lenses of known geometries. The 

experimental errors in the surfaces shape measurement and the influence of 

the number of rays were also considered. OCT-based input data produced 

the most accurate GRIN reconstructions. We found that optimization 

methods (combining global and local search algorithms) allow GRIN 

reconstructions with acceptable accuracies for moderate noise level. 
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1. Introduction 

It is well known that the crystalline lens of the eye in many species shows a gradient index 

(GRIN) distribution, providing the lens with advantageous optical properties, such as 

increasing its refractive power with relatively low indices, and reducing the ocular spherical 

aberration and the light losses generated by reflections on the optical surfaces. In the human 

eye, it is known that the GRIN distribution changes with accommodation [1] and age [2–4]. 

Several methods have been used to estimate the GRIN, in most cases based on in-vitro 

measurements. 

Early estimates of the GRIN structure were extracted from measurements on frozen slices 

of crystalline lenses with an Abbe refractometer [5,6]. Also, a reflectometric fiber optic 

sensor was used to measure the refractive index along the equatorial and sagittal planes [7]. 

These and other destructive methods, performed in human and non-human lenses, triggered 

discussions regarding the structure of the GRIN distribution and the actual values of the 

refractive index at the surface and at the nucleus. Destructive methods intrinsically may alter 

the GRIN structure under test. As an alternative, several non-destructive methods have been 

proposed: integral inversion methods, Magnetic Resonance Imaging (MRI)-based methods 

and optimization methods. 

Lateral view of rays traced through a lens allows measuring the deflection of each ray 

refracted by the lens. Using these experimental data, and under certain assumptions, it is 

possible to relate mathematically the deflection of the rays with the GRIN distribution. By 

means of an integral inversion, it is then possible to obtain an estimation of the GRIN. 

Campbell [8] reconstructed the GRIN of a rat lens from lateral ray tracing data, although the 

method required matching the external media and surface refractive indices, as well as using a 

GRIN model with iso-indicial concentric surfaces. Chan [9] and Beliakov [10] expanded the 

method to any possible rotationally symmetric GRIN, but the method required knowledge of 

the path of the rays inside the lens. With the aim of overcoming these drawbacks, Acosta and 

Vázquez [11,12] presented a new algorithm based on ray deflection after (but not inside) the 

lens, which allowed the reconstruction of mono or bi-polynomial GRIN profiles of crystalline 

lenses. The algorithm involved experimental ray tracing through the lens at several angles 

(tomographic method) and was applied to porcine lenses. 

The magnetic resonance imaging (MRI) technique, assumes a correlation between the 

transverse spin-spin relaxation time data and the refractive index [13], and requires careful 

calibrations. Although the technique has produced the first available data of age-related 

changes of the human crystalline lens profile [13], and has even been applied in-vivo [14], it 

has also been contested due to the relatively low-resolution and assumptions involved. 
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Optimization methods are based on finding the optimal parameters of a specific lens 

model to fit certain experimental data. The first optimization methods, proposed by 

Pomerantzeff [15], used as experimental data the focal length and the spherical aberration of 

the eye, and a shell model lens composed of a large number of layers. The high number of 

unknown variables (thickness, shapes, and refractive indices of the different layers of the 

crystalline) made the optimization problem ill-defined, as multiple solutions were possible 

[8]. Garner et al. [16] used optimization methods based on lateral ray tracing data to estimate 

the GRIN structure of a spherical fish lens. Barbero [17] studied the possibilities of using 

global search optimization for finding the optimal parameters in non-spherical lenses. 

The potential of using optical path differences (OPD) to extract information of the GRIN 

was studied by Ortiz et al. [18], and the first data on a simple spherical fish lens using OPD 

from OCT were provided by Verma et al. [19]. Local search algorithms were sufficient in this 

case, due to the simplicity and symmetric properties of the GRIN models used. Recently, we 

have presented a method for the three-dimensional reconstruction of the GRIN in a porcine 

lens in vitro from OCT images and a global search algorithm [20]. We have also applied the 

method to 2-D OCT images of human lenses of different ages [4]. 

In addition to the experimental input data and the reconstruction method itself, a critical 

aspect in the optimization method is the crystalline lens model assumed (function and number 

of variables). Several works described the crystalline lens using a shell model, where the 

different layers have different but homogeneous refractive indices [21–26]. However, such 

discontinuous structure of the refractive index distribution would produce a discontinuity in 

the wave aberration [23]. The first description of the crystalline lens (accommodated and 

unaccommodated) with a continuous function was proposed by Gullstrand [27], and later 

extended by Blaker [28] and by Smith et al. [29], who noted the need for higher order 

polynomials to describe experimental findings [30]. Exponential functions [2,13,31,32], 

parabolic [33] or other polynomial expressions [34,35] have been proposed to describe the 

decrease of refractive index from the center to the surface of the lens. Recently, Goncharov 

and Dainty [36] presented an eye model with a GRIN, which successfully fitted experimental 

aberration data both on and off-axis. This model was personalized for an individual eye in a 

later work [37]. 

In this study, we compared the accuracy and robustness of optimization methods to 

reconstruct the GRIN using different input experimental data. Three realizations of the 

Goncharov model, with increasing number of variables were tested. The evaluation was 

performed based on computer simulations, and the noise expected in each input data 

estimated from experimental data collected on artificial lenses with a ray tracing setup and 

OCT imaging system respectively. The effect of measurement errors and experimental 

limitations of each technique are addressed. 

2. Methods 

Experimental measurements on artificial lenses provided real error data of the input 

information to the reconstruction algorithms. The experimental data were collected using two 

different methods: a lateral/transverse ray tracing system (developed specifically for this 

study) and an OCT imaging system, described in an earlier publication [38]. 

The experimental data acquisition was simulated computationally on human crystalline 

lenses, assuming the Goncharov lens models. Ray tracing data (direction cosine of the 

deflected ray, intercept of the outgoing ray with the posterior lens surface and impact on a 

plane after the lens) and OCT imaging data (OPD) of the lenses were simulated. The merit 

functions and optimization tools were applied on the simulated data (using the errors obtained 

experimentally) to reconstruct the GRIN. To quantify the accuracy of the reconstruction, the 

root mean square (RMS) error of the difference between the reconstructed GRIN and the 

nominal GRIN was used (GRIN RMS difference). For the computation of GRIN RMS 

difference the refractive index was evaluated for both the reconstructed and nominal GRIN on 
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a grid of points (10-µm steps) over a 6-mm pupil. The metric is dimensionless and increases 

with increasing discrepancy of the reconstructed GRIN with respect to the nominal GRIN 

2.1. Estimation of experimental errors 

a. Experimental ray tracing system 

A Laser Ray Tracing system that allows collection of the rays’ deflections (on a lateral 

viewing camera) as well as rays’ impacts behind the lens (on a second transverse viewing 

camera) was developed. Figure 1 shows a schematic view of the system and examples of 

collected images. A He-Ne laser (633 nm) was used for illumination, and an x-y 

galvanometer scanner (Cambridge Technology) deflected the laser to scan the pupil at 

different locations. The ray beams were delivered sequentially, sampling the lens (in 100-µm 

steps) two dimensionally across an 8-mm pupil. Measurement time was around 2 minutes per 

full scan. 

He-Ne
633nm

He-Ne
594nm

collimating
lens

f = 75 mm

collimating
lens

f = 75 mm

CCD

150 mm

CCD

(a) (b)

(c) (d)

 

Fig. 1. (a) Experimental setup for lateral ray tracing system (b) Corresponding ray images 

(integrated image of five rays) (c) Single-pass ray tracing configuration to measure the spot 

diagram in a plane after the lens. (d). Corresponding spot images for five rays. 

In the first mode (lateral viewing, Fig. 1a), the lens was placed in a chamber and filled in 

with distilled water. A CCD camera (Toshiba Teli, 640x480 pixels, 7.4 µm pixel size) 

focused at the meridional plane of the lens, recorded images of the refracted rays (Fig. 1b). In 

the second mode (transverse viewing, Fig. 1c) the lens was placed in air and the impacts of 

the outgoing rays were captured on a plane after the lens, perpendicular to the optical axis of 

the set-up. The centroids of the spots were obtained from the spot images captured directly 

onto a bare CCD (Qimaging Retiga 1300, 6.7 µm pixel size, Fig. 1d). 

Data were collected on a homogeneous index lens (KPX088, Newport, f = 71 mm, D = 

25.4 mm) and a gradient index lens (GPX-30-60, LightPath, f = 75 mm, D = 30 mm) to 

estimate the error in the measurement of direction cosines and impacts. The GRIN lens had a 

continuous axial decreasing variation of refractive index from 1.74 (anterior surface) to 1.67 

(posterior surface), and a central thickness of 6 mm. The nominal GRIN profile was described 

by a 7
th

 order polynomial function. Data from 80 equally spaced rays sampling an 8-mm pupil 

were analyzed. 

Image processing algorithms were developed (MatLab, MathWorks, Inc.) to estimate the 

direction cosines (lateral viewing mode), and the ray impacts (transverse viewing mode) from 

the experimental measurements (Figs. 1b and 1c). To calculate the deflection of the rays, the 

image was thresholded and segmented, and the detected rays were fit by a first order 

polynomial. The position of impacts was estimated from the centroid of the spots. 
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The differences between the experimental results and simulated direction cosines (in the 

first mode) or impacts in a plane after the lens (in the second mode) were calculated. The 

error in the measurement was estimated in terms of standard deviation of these differences in 

five repeated measurements. 

b. Experimental optical coherence tomography system 

Optical Coherence Tomography images were obtained using a custom-developed high 

resolution spectral domain OCT which uses a SLD diode of 840 nm with a FWHM of 50nm. 

The system was developed in collaboration with Copernicus University and has been 

described in detail elsewhere [20,38–40]. The system allowed three-dimensional imaging of a 

transversal area of 15x15mm of the samples, and image quality range of 4 mm in depth, with 

a scanning pattern of 300x300 A-Scans. The axial resolution of the system was 3.42 um in 

air. 

Two homogeneous lenses (EO45-448 and EO45-705, Edmund Optics, focal length = 60 

and 72 mm, respectively, lens diameter = 12.5 mm) were imaged with the Optical Coherence 

Tomography System three dimensionally to estimate the error in the determination of OPD 

data through the lens. The OPD data were extracted in an 8-mm pupil range. 

Image processing algorithms were developed to segment the anterior and posterior 

surfaces of the lens images. Fan distortion [39] arising from the architecture of the scanning 

system was corrected. The optical distance between the estimated ray impacts on the first and 

second surface of the lens represents the OPD of each ray. 

The deviation in the measurement of the OPD of each ray was calculated. The 

experimental error was estimated as the standard deviation of these deviations in five repeated 

measurements. In addition, the same measurements were used to extract the error in the lens 

shape measurements with the OCT system. The error was estimated as the mean percent error 

of the radii of curvature from spherical fits to the segmented anterior surfaces in 5 repeated 

measurements on each lens. 

2.2. Ray tracing and GRIN-reconstruction algorithms 

a. Ray tracing procedure 

We implemented computationally a ray tracing procedure in Matlab (MathWorks, Natic MA) 

for ray propagation through homogeneous and GRIN media. Two major components of the 

algorithm include the computation of the intersections of the rays with the lens surfaces, and 

the calculation of the ray path inside the GRIN medium. 

The lens surfaces were described by conics. The intersection points of rays and conic 

surfaces were calculated using the equations derived by Stavroudis [41]. Our ray tracing 

algorithm through GRIN is based on Sharma algorithm [42]. This algorithm consists 

essentially of applying the Runge-Kutta method to solve numerically the ray equation. The 

algorithm estimates a series of points through which the ray passes, together with the ray 

direction at those points. These points define a set of intervals, the width of which is set by 

the step size. The step size can be adjusted for the desired trade-off between accuracy and 

computation time. Following Stone et al. [43], we introduced an improvement to the original 

Sharma algorithm for a better estimation of the intersection of the outgoing ray with the lens 

surface. 

The OPD of each ray was calculated by evaluating the optical path at each Sharma 

interval. The simplest case would involve assuming a linear trajectory inside each interval. 

However this approach implies reducing the step size, hence increasing the computation time. 

We observed that using Hermite polynomial interpolation to estimate the trajectories inside 

each intervals permits to increase the accuracy while reducing the computation time (see 

section 3.1). 
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b. Reconstruction algorithm 

The GRIN reconstruction algorithm is based on an optimization method where the variables 

to optimize are the parameters that define the lens GRIN distribution. A merit function (MF) 

was constructed to quantify the agreement between the experimental data (ray tracing data or 

OPD from OCT) and simulated ray tracing for a given set of parameters. The MF was defined 

as the RMS of this difference. The optimization procedure minimizes this merit function. 

The optimization procedure comprises two sequential optimization algorithms. First, a 

global search algorithm was used to find the global minimum avoiding local minimum 

trapping. Second, starting from the best solution found by the global search algorithm, a local 

search algorithm was used to descend to the minimum, because of its faster convergence 

compared to global search. 

For the global optimization we used a genetic algorithm implemented in MatLab which 

we had applied in previous studies [4,20]. Genetic algorithms are based on evolutionary 

strategies [44]. Evolutionary rules are applied to generations of solutions, elite percentage was 

set to 5%, and mutation ratio was 80%. 

For the local optimization, we implemented the Nelder-Mead [45] simplex algorithm. We 

applied the standard values [46] of reflection (ro = 1), expansion (X = 2), contraction (gamma 

= 1/2) and shrinkage (sigma = 1/2) to the simplex. The algorithm requires a starting simplex. 

While MatLab proposes to increase the variables a 5% we have used a smaller simplex to 

avoid missing the global minimum. 

c. Gradient index models 

The crystalline lens was described using three different GRIN models, proposed by 

Goncharov and Dainty [36,37], of increasing level of complexity (2, 3 and 4 variables). 

Specifically, we used the models for a 20 years old crystalline lens, including both the GRIN 

parameters and lens surfaces shapes as provided by the authors [36]. 

The first and second GRIN models are defined by two 4
th

 order polynomials in radial and 

axial direction describing the GRIN distribution in anterior and posterior regions of the lens 

respectively. In the first model (unbalanced model, G20U), the refractive index is constant 

over the lens surfaces and the GRIN distribution is determined only by two variables: surface 

and nucleus refractive index. In the second model (balanced model, G20B), the last posterior 

iso-indicial surface may not be coincident with the posterior lens surface and GRIN 

distribution is described by three variables: surface index, nucleus refractive index and radius 

of curvature of the posterior iso-indicial surface. The third model (symmetrical model, G20S) 

assumes a GRIN distribution with one polynomial described by four variables: surface and 

nucleus refractive indices, center position and a parameter setting the decay of the refractive 

index along the radial coordinate ─ this parameter could be related to the refractive index 3-

mm off the optical axis, at the meridional plane. In this model, the marginal iso-indicial 

surfaces are more curved than the external surfaces. 

As we observed that the merit function of the 2-variable model can be optimally 

minimized simply using the local search algorithm, we did not use the global search 

algorithm in this model. For the 3-variable and 4-variable models, the genetic algorithm was 

composed of 5 generations containing 200 individuals each, and 20 generations of 600 

individuals respectively. Constraints –needed in presence of large experimental errors– were 

applied to the range of refractive indices in the nucleus and surface, as well as the nucleus 

lens position, according to biologically plausible descriptions of the GRIN distribution. These 

constraints were included in the merit function using penalty terms [47]. For all models, the 

refractive index was constrained to have a value between 1.355 and 1.44, which fits most of 

refractive index values in human crystalline lenses found in the literature. For the 4-variable 

model, the position of the lens nucleus was constrained to range from 1.1 to 1.8 mm. This 

constraint is justified by the observation that values outside of this range can generate two 
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refractive GRIN maxima. Finally, the refractive index at 3 mm off the optical axis (radial 

coordinate) was constrained between 1.35 and the nucleus refractive index value. This 

constraint produces a decrease of the GRIN profile along the radial direction, which is in 

accordance to the morphology of the crystalline lens. 

2.3. Simulations 

In all the simulations we assumed that the experimental data are limited to rays parallel to the 

optical axis, and within a 6-mm pupil diameter. Unless otherwise noted, 120 rays were traced, 

i. e. one ray each 50 µm across the 6 mm pupil. 

The reconstruction algorithm was tested assuming simulated input data from five different 

configurations (three from Laser Ray Tracing, and the other two from OCT): (1) Ray 

deflections of rays outgoing the lens, as used in previous studies to reconstruct GRIN 

distributions [8,16]. (2) Ray deflections and the intercepts of the outgoing rays with the 

posterior lens surface, as was used in the tomography method proposed by Acosta and 

Vázquez [11,12]. (3) Ray impacts on a CCD placed after the lens, as shown in Fig. 1c. (4) 

OPD of each ray intercepting the posterior lens surface, as used in some OCT-based 

reconstruction methods [4,19], and (5) OPD of each ray that intercepts the posterior lens 

surface as well as the cuvette surface holding the lens (which can be imaged with the OCT in 

in-vitro measurements [48]), as used in a previous publication [20]. 

If a broad band source is used, as it is the case in configurations 4 & 5, the experimental 

data are associated to the group refractive index. However, as the ray tracing algorithm 

implicitly uses a phase refractive index, we assume that the refractive index reconstructed 

with the algorithm is equivalent to the group refractive index. For clarity purposes, in the 

simulations of this study we used the same refractive index for the five configurations. 

To explore the limits of the search algorithm in each configuration, we have reconstructed 

the GRIN distribution assuming no error in the experimental data, and low noise level (range 

of Gaussian errors ranging from 10
−6

 to 10
−3

) added to the data. The aim of this simulation 

was to evaluate the reconstruction accuracy of the algorithm itself. 

The reconstruction algorithm was then studied when expected experimental noise level 

was applied to the input data (direction cosines, impacts or OPDs). Noise was simulated 

introducing Gaussian error with a standard deviation calculated with the experimental ray 

tracing and OCT imaging described in section 2.1. 

As the lens geometry represents additional input information for the GRIN reconstruction 

algorithms, we also studied the influence of the experimental errors of the lens shape 

measurements. The simulation of the ray tracing data was performed on lens surfaces where 

Gaussian noise (standard deviation given by the error measurement estimated as described in 

section 2.1) was introduced to the surfaces radii of curvature. As before, the experimental 

error was also introduced to the input data (direction cosines, intercepts of the outgoing rays 

with posterior surface, impacts or OPDs). The GRIN reconstruction was evaluated using the 

nominal lens surface radii. 

Finally, we studied the influence of the number of rays (ranging from 6 to 1200) in the 

reconstruction. 

3. Results 

3.1. Ray tracing algorithm: validation and influence of the step-size 

The performance of the custom ray tracing routines was evaluated against a well established 

ray tracing software (ZEMAX, Bellevue WA) on a simulated lens with homogeneous 

refractive index and a simulated GRIN lens (polynomial distribution, Goncharov model 20S). 

For these examples, a bundle of rays was traced parallel to the optical axis through a 6-mm 

pupil. In the ray tracing, several data were computed: the outgoing ray intersection points 
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with the posterior lens surface and a plane surface located 10 mm behind the lens and the 

OPDs of each ray at the posterior surface of the lens. 

The differences between both procedures were within computer machine precision for the 

homogeneous lens. In the case of the GRIN lens the differences (step-size of 10 µm) were 

below 10
−4

 µm for ray intersections and OPDs at the posterior surface of the lens. These 

differences are probably due to differences in the ray tracing algorithm (although a more 

detailed comparison is not possible, as the ZEMAX algorithms are proprietary). 

We also studied the trade-off between the precision in the computation of the ray 

trajectories inside the GRIN and the computation time imposed by the Sharma step-size. 

Figure 2 shows the differences in the estimation of the ray tracing data (for all the 

experimental data under study) for different step-sizes compared to the smallest step size 

(10
−4

 µm). We found that a 10-µm step size appeared to be a good trade-off, as the estimated 

errors were less than 10
−9

 µm for intersections, 10
−14

 for cosine data, and less than 10
−6

 µm for 

OPD, with a computation time less than 0.2 seconds on an Intel Xeon processor at 3GHz. 

 

Fig. 2. (a) Estimated error in simulated data (lateral deviations, impacts or OPD) as a function 

of the step size in the Sharma algorithm. (b) Computational time to ray trace and to estimate 

the OPD as a function of the step size. The OPD was calculated either using straight segments 

or a Hermite polynomial interpolation. Simulations were performed with Goncharov 

crystalline lens model 20S. 

3.2. Limits of the reconstruction algorithm based on laser ray tracing and OCT input data 

Figure 3 shows the RMS of the difference between the nominal and reconstructed GRIN 

(GRIN RMS difference) for the three GRIN models studied and for the five proposed 

experimental configurations. The simulations were conducted assuming no input error and 

with added Gaussian errors (10
−6

 to 10
−3

) to the input data (for all conditions). In absence of 

experimental errors, the GRIN was reconstructed with high accuracy (GRIN RMS 

difference<10
−8

) indicating that the global minimum can be theoretically retrieved for all the 

GRIN models and all conditions under study. As expected, the presence of experimental 

errors increases the reconstruction error. Also the reconstruction accuracy decreases with the 

complexity (number of variables) of the lens model. 
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Fig. 3. Difference between nominal and reconstructed GRIN (GRIN RMS difference) as a 

function of the experimental error of the input data. Data are the mean across 50 repetitions, 

and the error bars represent standard deviations. 

3.3. Estimation of the experimental errors 

The experimental set-ups described in section 2.1 (Laser Ray Tracing system and OCT) were 

used with artificial lenses to obtain estimates of the experimental errors of the input data. 

Figure 4 shows the differences, for all rays, between the experimental and the simulated 

direction cosines of the rays deflected by the lens (a), impacts on a plane after the lens (b) and 

OPD (c) data for the artificial lenses under study. The standard deviation of the differences in 

each case was: 1.08 ± 0.49·10
−3

 for the homogeneous lens and 0.92 ± 0.14·10
−3

 for the GRIN 

lens (direction cosines); 6.0 ± −2.2 µm for the homogeneous and 6.9 ± −0.3 µm for the GRIN 

lens (ray impacts); and 2.40 ± 0.17 µm and 2.74 ± 0.18 µm (OPDs) for the two lenses under 

test. 

 

Fig. 4. Difference between experimental and simulated data: Mean and standard deviation for 

five repeated measurements. (a) Direction cosines of the outgoing rays, (b) Impacts on a plane 

after the lens and (c) OPD through the lens. 

3.4. Influence of experimental errors on the GRIN reconstruction 

The reconstruction algorithm was evaluated for different sets of simulated input data 

representing the 5 proposed experimental configurations (direction cosines of deflected rays, 

direction cosines and intercept of the outgoing rays with the posterior lens surface, impacts on 

a plane after the lens, optical path up to the posterior surface of the lens, and optical path up 
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to the posterior surface of the lens and to a plane after the lens) with three different levels of 

experimental error levels and for the three Goncharov models. 

For illustration purposes, we defined three different error levels: errors within the 

expected order of magnitude of the experimental measurements (error level R), lower (error 

level L) and higher (error level H) than the expected experimental error. 

The simulated errors of the ray direction cosines were 0.5, 1 and 2 ·  10
−3

 for the errors 

levels L, R and H respectively; the simulated errors of the intersection points (intercept of the 

outgoing ray with posterior lens surface and impact on a plane after the lens) were 3, 6 and 12 

µm for the errors levels L, R and H respectively; and the simulated errors of the OPD 1.5, 3 

and 6 µm for the errors levels L, R and H respectively 

Figure 5 shows the mean value and the standard deviation of the GRIN RMS difference of 

the nominal and the reconstructed GRIN for 50 realizations of the reconstruction algorithm. 

We found that, for many conditions, the reconstruction error increases with GRIN model 

complexity. For the three GRIN models, the best reconstructions were achieved using the 

input OPD data from OCT (with the lowest error occurring for the condition that uses OPD 

data of both the posterior lens surface and cuvette). Increasing the error of the input data (L, R 

and H) increases the reconstruction error. Whereas all configurations induced low 

reconstruction errors (GRIN RMS difference<0.005) for the two-variable Goncharov model, 

for three and four-variable Goncharov models the errors were higher when using the cosine 

and impacts as input data. 

 

Fig. 5. Difference between reconstructed and nominal GRIN (GRIN RMS difference) for the 5 

proposed experimental configurations and three different levels (L R and H) of added 

experimental error in the input data (L: lower than expected errors; R: realistic errors; H: 

higher than expected errors). Data are the average GRIN RMS difference and the error bars the 

standard deviation of 50 realizations of the GRIN reconstruction algorithm. (a), (b) and (c) are 

the results for three different Goncharov models with increasing complexity (20U, 20B and 

20S). 

Figure 6 shows the spatial distribution of the reconstruction error in the different 

conditions, across the axial and meridional axes for the 4-variable GRIN model and the error 

level R. 

The error of the reconstructed refractive index is of the same order of magnitude in both 

the axial and meridional planes, although the error is slightly higher along the axial 

coordinate. Also, the error tends to increase towards the surface for most configurations. 
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Fig. 6. Axial (a) and Meridional (b) deviation from the nominal GRIN profile for the proposed 

experimental configurations, for realistic input data error levels (R) and the 4-variable 

Goncharov model. Data represent the mean value and the error bars the standard deviations of 

50 realizations of the reconstruction algorithm. 

3.5. Influence of the surface shape measurement errors in the GRIN reconstruction 

We found discrepancies in the measured radius of curvature of 1.02 ± 1.16% and 1.05 ± 

0.54% for the two measured lenses. These results are in good agreement with a previous 

study [39], where the error was found to be around 1%. 

We estimated the relative contribution to the GRIN reconstruction induced by the surface 

shape measurement error (estimated 1%) and the experimental input data errors (level R). 

Comparisons were made between the results of the simulations with and without errors in the 

surface shape measurement. Figure 7 shows the GRIN RMS difference for a 4-variable GRIN 

model with error in both the surface and input data, relative to the reconstructed GRIN with 

only input data errors. We found that the relative contributions of the surface errors in the 

reconstructed GRIN were significant (p<0.01) in the configurations using direction cosines 

and intercept of the outgoing rays with posterior lens surface points (35%), OPD up to the 

posterior surface of the lens (20%) and OPD up to the posterior surface of the lens and 

cuvette (40%). 

 

Fig. 7. GRIN RMS difference of the reconstructed and the nominal GRIN data, with realistic 

error level (R) in the input data without error in the surface shape (solid colors), and with a 

random deviation of the surface geometry of 1% (light colors). The bars represent average data 

and the error bars, the standard deviation of 50 realizations of the reconstruction algorithm. 
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3.6. Influence of the ray sampling density on the reconstructed GRIN 

We studied the effects of changing the number of input data in the reconstruction algorithm, 

or equivalently, increasing the corresponding number of rays in the laser ray tracing sampling 

pattern or increasing the number of A-scans in a cross-section of the OCT images. 

While the pupil diameter was kept constant (6 mm), 7 different ray sampling densities 

were studied ranging from 6 to 1200 total rays, i.e. ray separation distance between 1 mm and 

5 µm respectively. All simulations were performed for an error level R, and for the 4-variable 

Goncharov model, for the 5 proposed experimental configurations. 

Figure 8 shows the GRIN RMS difference as a function of number of rays traced. The 

reconstruction improves as the number of rays increases, although beyond 100 rays the 

changes are minor. The impact of the number of rays on the accuracy of the reconstruction is 

lower for the OCT-based OPD input data than for the laser ray tracing-based input data. 

 

Fig. 8. GRIN RMS difference of the reconstruction for the 5 proposed experimental 

configurations and with realistic error level R, versus number of rays. Pupil radius was set to 6-

mm pupil. Data represents mean value, and the error bars, the standard deviation of 50 

repetitions of the reconstruction algorithm. 

4. Discussion 

We have presented a GRIN reconstruction method based on optimization techniques applied 

to laser ray tracing (ray direction cosines and impacts) and optical coherence tomography 

input data. We have studied the GRIN reconstruction accuracy and the influence of the 

experimental errors of the different input data. 

In the absence of experimental errors the algorithm has been proved to be sufficiently 

robust to reconstruct GRIN data for different GRIN models. In the presence of the estimated 

experimental errors (obtained using custom-developed laser ray tracing and OCT 

experimental devices), OCT-based data allowed highly accurate reconstructions (GRIN RMS 

difference<0.005) of the GRIN. Also, the use of OCT-based input data appears less 

susceptible to errors in the surface radii of curvature, and also on the number of rays. This 

indicates that OPD is a suitable method for retrieving the GRIN of the crystalline lens. The 

superiority of this method over the rest proposed in this study (using direction cosines, 

intercept of the outgoing rays with posterior lens surface or impacts in a plane after the lens), 

might result from the more direct information on the GRIN that the OPD accumulates at the 

end of the ray trace. The accuracy of the reconstruction increased when incorporating 

additional information –at least for the levels of error studied– to the input data: adding the 

intercept of the outgoing ray with the posterior lens surface in addition to the direction 

cosines in the ray tracing procedure (configuration 2 versus 1), and adding cuvette OPD in 

addition to the lens OPD in OCT (configuration 5 versus 4). 
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To test the flexibility of the reconstruction algorithm, we used three Goncharov models 

[36] with increasing number of variables. The accuracy of the reconstruction decreased 

slightly when increasing the complexity of the model. The reconstruction algorithm can be 

used with other GRIN models. In a previous work [20], using a different 4-variable 

exponential GRIN model [32] we found similar accuracy (GRIN RMS difference of 4·10
−3

) 

using OCT-based input data (posterior lens and cuvette distortions), as in configuration 5 of 

the current study, and an estimated error of 5 µm in the OPD. 

A common problem to all optimization techniques is local minimum trapping, and the 

possible existence of multiple solutions. Since the merit function used is not described 

analytically, the absence of local minima or the existence of multiple solutions cannot be 

proved mathematically. However, the use of a global instead of a local search algorithm 

prevents local minimum trapping. The large set of multiple experimental input data and 

relatively low number of unknown variables reduces the possibility for several solutions with 

the same Merit Function value. 

The reconstruction algorithm and the error analysis for the various experimental 

approaches presented can be compared to those of previous studies. Acosta and Vazquez [12] 

proposed a reconstruction algorithm based on laser ray tracing at different orientations to 

reconstruct a non-spherical GRIN. They simulated a Gaussian error of less than 1 µm. With 

data from orientations up to 80°, the RMS of the GRIN reconstructed was below 10
−4

 for a 

GRIN described by a 9-variable single polynomial and around 10
−3

 for a GRIN described by 

two polynomial expressions (strong GRIN). The RMS reconstruction error, if only 

orientations up to 10° were available, was >10
−3

 in both cases. In comparison, our 

reconstruction method, when using the same simulated input error, achieved a reconstruction 

error <5·10
−3

 for the 4-variable GRIN model, which is comparable to the results by Vazquez 

et al (with input data up to 10°). It is worth noting that our reconstruction algorithm could be 

extended for laser ray tracing data at different orientations. Although we did not explore that 

possibility in this work, it is likely that the accuracy would increase further by incorporating 

input data obtained at different orientations. Verma et al. [19] used OCT-based input data and 

an optimization algorithm (nonlinear least squares fitting) to reconstruct a spherical GRIN 

lens. Simulating a Gaussian noise of 11 µm they obtained a maximum error of around 0.013. 

We reproduced their simulations with our local search algorithm finding similar results 

(maximum error 0.010 and GRIN RMS difference of 5·10
−3

). 

There are other possible sources of experimental error, not addressed here, such as 

decentration or tilt of the lens, or inaccurate positioning of the ray entrance, which would 

affect the outcomes. However, several of these errors can be minimized when obtaining three-

dimensional input data (particularly in the OCT based technique, where the surfaces of the 

lens are visualized directly). As it was mentioned in section 2.3, the refractive index retrieved 

from the reconstruction algorithm in configurations 4 & 5 is assumed to be equivalent to the 

group refractive index. The resulting index can be converted from the group to the phase 

refractive index at the central wavelength of the OCT light source and subsequently to a 

different wavelength using available data of the chromatic dispersion of the crystalline lens 

[48,49]. 

The techniques described here are designed for estimations of the GRIN of the crystalline 

lens in vitro. However, the estimation of the GRIN distribution of the lens in vivo would be of 

major interest to understand the contributions of GRIN to the optical properties of the eye, 

and its influence in the optical changes with accommodation and aging, particularly 

considering that the shape of the isolated crystalline lens differs from its unaccommodated 

state in vivo. To date, all the laser ray tracing GRIN reconstruction methods have proposed 

imaging the lateral ray deflections, which are unavailable in vivo. In contrast, we have 

demonstrated that relatively good reconstruction performances (GRIN RMS difference<0.01) 

can be obtained when using transverse imaging of the impacts after the lens. These impacts 

can actually be available in vivo (with additional contributions of the cornea) in a double-pass 
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configuration as routinely shown in laser ray tracing (LRT) measurements of the wave 

aberrations in the eye [50,51], although the algorithm also requires knowledge of the posterior 

shape of the crystalline lens. Nevertheless, while the OCT-imaging-based technique described 

here works with in vitro samples, it is likely that this technique, in combination with an in 
vivo LRT-based technique, operating at wide angles if possible, would provide sufficient 

information for attempting a reconstruction of the GRIN in vivo through optimization 

techniques. 
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