Semi-intensive polyculture of seabream and sole in earth ponds

Hugo Ferreira, Ana Ramalho, Jorge Dias, Manuel Yúfera, Alberto Arias, Manuela Falcão, Dalila Serpa, António Vieira, Tiago Aires, Mª Emilia Cunha, Pedro Pousão-Ferreira, Mª Teresa Dinis, Luís Conceição

www.seacase.org
To develop effective tools for higher:
 - Competitiveness
 - Productivity
 - Profitability

SUSTAINABILITY of semi-intensive polyculture in Portugal and Spain

Minimizing environmental impacts

Improving quality & public image of products
Semi-intensive Polyculture

Test the production of seabream and sole, at different densities and using a eco-friendly feed

PORTUGAL AND SPAIN

SUSTAINABLE AQUACULTURE – Environmental | Socio-economic | Profitable
Semi-intensive Polyculture

Specific Objectives:

1. **Increasing revenue per ton of feed** supplied to the system, while **reducing its environmental impact**, through polyculture of species with different feeding niches: seabream (feed, macroalgae), and Senegalese sole (benthos, feed).

2. **Increasing production** per hectare within sound environmental conditions.

3. Launch basis for a **certification process** to increase added value to production.
Semi-intensive Polyculture

Farm Sites:

- Aqualvor (fish farm)
- EPPO facility (IPIMAR)
Farm site:
EPPO facility (IPIMAR)

Species stocked:
Gilthead seabream (95%)
Senegalese sole (5%)

Conditions to be tested:
Standard (1.5 Kg/m³)
higher density (3 Kg/m³)
eco-friendly feeds

Earth ponds:
6 of 765 m³
Farm site:
EPPO facility (IPIMAR)

Stocking:
April / May 2008
Eco feeds started to be supplied later than planned March 2009 (~180 g fish)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tanks</th>
<th>Initial Weight (g)</th>
<th>Fish (n)</th>
<th>Final Density (Kg/m³)</th>
<th>Production (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>11 & 14</td>
<td>24.2, 2.05</td>
<td>3384, 171</td>
<td>1.55</td>
<td>26.27</td>
</tr>
<tr>
<td>High</td>
<td>12 & 15</td>
<td>24.2, 2.05</td>
<td>6769, 342</td>
<td>3.09</td>
<td>52.54</td>
</tr>
<tr>
<td>Eco</td>
<td>13 & 16</td>
<td>24.2, 2.05</td>
<td>3384, 171</td>
<td>1.55</td>
<td>26.27</td>
</tr>
</tbody>
</table>
Species stocked:
Gilthead seabream (95%), Senegalese sole (5%)

Conditions to be tested:
- Final densities (1.5 to 3 Kg/m³)
- Eco-friendly feeds

Monitoring:
- Production (size and number)
- Water quality (pond & effluent)
- Macrobenthos communities
- Flesh quality (compare to “intensive” products)
Farm site: EPPO facility (IPIMAR)
Case study Polyculture

Farm site:
EPPO facility (IPIMAR)

Relative growth rate - May 2008 to July 2009

Tank

Eco Eco Low Low High High

(%/day)
Case study: Polyculture

Farm site: EPPO facility (IPIMAR)

Final Density

<table>
<thead>
<tr>
<th>Tank</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco</td>
<td>1.09</td>
</tr>
<tr>
<td>Eco</td>
<td>1.05</td>
</tr>
<tr>
<td>Low</td>
<td>1.22</td>
</tr>
<tr>
<td>Low</td>
<td>1.25</td>
</tr>
<tr>
<td>High</td>
<td>2.72</td>
</tr>
</tbody>
</table>
Case study Polyculture

Farm site:
EPPO facility (IPIMAR)

Final Production
(Ton/ha)

Tank

Eco 21,71
Eco 20,85
Low 24,14
Low 24,79
High 54,01
High 54,01
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

FCR

- Eco: 4.0
- Eco: 3.0
- Low: 2.0
- Low: 1.0
- High: 0.0
- High: 0.0
Fam site: EPPO facility (IPIMAR)

Sole final weight

<table>
<thead>
<tr>
<th>Eco</th>
<th>Eco</th>
<th>Low</th>
<th>Low</th>
<th>High</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>393</td>
<td>158</td>
<td>320</td>
<td>265</td>
<td>125</td>
<td>77</td>
</tr>
</tbody>
</table>

(g)
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

Sole recovered

<table>
<thead>
<tr>
<th></th>
<th>Eco</th>
<th>Eco</th>
<th>Low</th>
<th>Low</th>
<th>High</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>69%</td>
<td>43%</td>
<td>4%</td>
<td>99%</td>
<td>20%</td>
<td>99%</td>
</tr>
</tbody>
</table>
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

Sole production

(Ton/ha)

Eco: 1.2, Eco: 0.3, Low: 0.1, Low: 1.2, High: 0.2, High: 0.7
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

Macrobenthos Density ANELIDS Month 14 - June 2009

(nr/m²)

Eco Eco Low Low High High

NEMATODS
OLIGOCHAETS
Alkmaria romijni
Streblospio shrubsolii
Oriopsis metchnikowi
Capitella capitata
Diopatra neapolitana
Nereis diversicolor
POLICHAETS
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

Macrobenthos Density MOLLUSCS Month 14 - June 2009

- BIVALVS: Cerastoderma glaucum
- Gastropods: Abra ovata, Hydrobia ulvae, Hydrobia minorecensis, Limapontia depressa

(nr/m²)

1000000
100000
10000
1000
100
10
1

Eco Eco Low Low High High

BIVALVS

Hydrobia ventrosa
Hydrobia ulvae
GASTEROPODS
Abra ovata
Cerastoderma glaucum
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

Total N (μmol/L) Month 13 - May 2009

- Eco
- Eco
- Low
- Low
- High
- High
- Blank

Outlet Midpoint Inlet
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

<table>
<thead>
<tr>
<th>(Thousand € / ha)</th>
<th>Polyculture revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>Eco</td>
</tr>
<tr>
<td>3.6</td>
<td>Eco</td>
</tr>
<tr>
<td>0.7</td>
<td>Low</td>
</tr>
<tr>
<td>14.0</td>
<td>Low</td>
</tr>
<tr>
<td>2.7</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>
CONCLUSIONS:

1. Polyculture of seabream and sole is viable, but only at low sole and seabream densities. Bottom condition is a major determinant for sole success.

2. Higher densities (up to 3 Kg/m³) lead to macrobenthos depletion.

3. Higher densities (up to 3 Kg/m³) do not seem to have a negative impact on water effluent quality.

4. Eco-feeds do not affect growth performance, but benefits on effluent quality need to be better studied.
Thank You!

www.seacase.org
Eco-friendly feeds

Objectives:

Develop feed formulations to be used in semi-intensive fish farming systems with minimal environmental impact

- by reducing waste and nutrient loads to the environment
- by reducing the pressure on natural fish stocks exploited for fish meal and oil
Formulation used in Polyculture Case Study

Based on Lab-scale experiments
See presentation Dias et al.

- 60% of fish meal replaced by vegetable ingredients
- Soluble P excretion reduced to 1/4 of a conventional feed

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishmeal FAQ (CP 63%)</td>
<td>10.5</td>
</tr>
<tr>
<td>CPSP G</td>
<td>2.5</td>
</tr>
<tr>
<td>Haemoglobin powder</td>
<td>7.0</td>
</tr>
<tr>
<td>Soybean meal 48</td>
<td>12.5</td>
</tr>
<tr>
<td>Soy protein concentrate</td>
<td>6.0</td>
</tr>
<tr>
<td>Peas concentrate</td>
<td>8.0</td>
</tr>
<tr>
<td>Wheat gluten</td>
<td>5.0</td>
</tr>
<tr>
<td>Wheat meal</td>
<td>8.6</td>
</tr>
<tr>
<td>Wheat DDGS</td>
<td>9.7</td>
</tr>
<tr>
<td>Corn gluten</td>
<td>11.0</td>
</tr>
<tr>
<td>Fish oil</td>
<td>10.0</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>3.0</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>2.9</td>
</tr>
<tr>
<td>Vit & Min Premix</td>
<td>0.4</td>
</tr>
<tr>
<td>Ca propionate</td>
<td>0.2</td>
</tr>
<tr>
<td>Mono Ca-phosphate</td>
<td>1.7</td>
</tr>
<tr>
<td>L-Lysine</td>
<td>0.3</td>
</tr>
<tr>
<td>L-Arginine</td>
<td>0.4</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Case study: Polyculture

Farm site: EPPO facility (IPIMAR)

Daily Mean Dissolved Oxygen (%)
Case study: Polyculture

Farm site: EPPO facility (IPIMAR)

Relative growth rate - February to July 2009

Tank: Eco, Eco, Low, Low, High, High

(%/day)
Case study Polyculture

Farm site: EPPO facility (IPIMAR)

Mortality

Tank

<table>
<thead>
<tr>
<th>Eco</th>
<th>Eco</th>
<th>Low</th>
<th>Low</th>
<th>High</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>32%</td>
<td>22%</td>
<td>6%</td>
<td>11%</td>
<td>4%</td>
<td>97%</td>
</tr>
</tbody>
</table>
Case study: Polyculture

Farm site: EPPO facility (IPIMAR)

Total Susp. Solids (mg/L) Month 2 - June 2008

- Inlet
- Midpoint
- Outlet
- Blank

Eco, Eco, Low, Low, High, High
Fam site:
EPPO facility (IPIMAR)

Case study Polyculture

Total Susp. Solids (mg/L)
Month 13 - May 2009

Inlet
Midpoint
Outlet

Eco
Low
High
Blank
Case study: Polyculture

Farm site: EPPO facility (IPIMAR)

Total P (μmol/L) vs Month 13 - May 2009

- Eco
- Low
- High
- Blank

- Inlet
- Midpoint
- Outlet