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Abstract 

The aim of this study was to evaluate the friction and wear behavior of ultra high 

molecular weight polyethylene (UHMWPE) against 3Y-TZP and a novel 3Y-TZP/niobium 

(Nb) biocomposite. The ceramic and the biocomposite materials were subjected to an 

accelerated aging process to evaluate the changes in the tribological behavior after 

this treatment. To carry out the tribological tests, a reciprocating pin-on-flat contact 

configuration was used. The results show a lower friction coefficient and wear rate for 
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biocomposite/UHMWPE couples than for 3Y-TZP/UHMWPE couples. The present study 

demonstrates that the excellent wear properties of this new biocomposite should 

never be influenced by aging. Based on these data, the potential of zirconia-Nb as an 

alternative bearing biomaterial is discussed. 

 

1. Introduction 

 The wear of ultra high molecular weight polyethylene (UHMWPE) in acetabular 

cups is one of the main causes of long-term loosening and failure of artificial hip joints, 

due to the wear debris generated at the articulating surface of the cup1. Wear debris 

promotes osteoclastogenesis, which interferes with osteogenesis, causing 

periprosthetic inflammatory bone loss and resorption2. In addition, for 22 mm 

diameter head prostheses, wear and penetration of the femoral head into the 

UHMWPE cup may lead to impingement of the neck of the femoral component on the 

rim of the cup, causing its loosening3. 

 

  Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is a very attractive 

material for hip joint prosthesis bearings because of the high wear resistance of the 

ceramic-UHMWPE combination without adverse tissue reactions4. Compared with 

alumina, Y-TZP ceramics have better fracture toughness, higher flexural strength5; 6 

(which allows the design of more extreme shapes), and lower wear rates against 

polyethylene in vitro7. The excellent wear and mechanical properties of zirconia are 

considered very promising; however, problems still remain concerning the low-

temperature aging degradation (LTD) caused by phase transformation, which may 

cause deterioration on the surface quality of zirconia bearing components8. This 
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deterioration is believed to cause increased wear rates and has been observed in many 

clinical reports9; 10; 11. 

 

 The degradation of Y-TZP is caused by a tetragonal to monoclinic (t-m) phase 

transformation accompanied by microcracking. This degradation is time dependent 

and enhanced by water or water vapor. Increasing the Y2O3 content and decreasing the 

average grain size of the zirconia may reduce the transformation rate; however, it does 

not make sense to reduce the grain size too much, because the grains can lose their 

metastability12. In addition, increasing the concentration of stabilizing oxide above 3.5 

mol% can allow the nucleation of significant amounts of the stable cubic phase. 

Consequently, these solutions lead to a decrease in fracture toughness as a result of 

lack of the stress-induced t-m phase transformation. Doping Y-TZP with pentavalent 

oxides such as Nb2O5, is a promising way to improve resistance to LTD without any 

consequential loss in toughness13. Niobium ions reside as substitutional defects in the 

zirconium lattice, annihilating the oxygen vacancies generated by yttria doping14. As 

described in a previous article, a new synergic 3Y-TZP/Nb composite with both high 

flexural strength and extremely high fracture toughness was engineered by the 

interactions between transformation toughening and crack bridging15. Niobium was 

chosen because of its high melting temperature (~2477 °C), the stability and adhesion 

of ZrO2–Nb interfaces16, its ductile constitutive behavior and proven biocompatibility17; 

18, which keeps the use of these composites as biomaterials. In addition, it was shown 

in a previous publication that this composite is unaffected by low-temperature 

degradation due to the presence of a solid solution of Nb2O5 in the 3Y-TZP matrix, 
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which may eliminate the deterioration of the surface quality of zirconia-based 

components19. 

 The aim of this work was to evaluate the wear behavior of UHMWPE against 

zirconia and zirconia/Niobium systems when exposed to an accelerated aging process 

and compare the results with those for the non-aged materials. 

 

2. Experimental Procedure 

 The following commercially available powders have been used as raw 

materials: (1) Tetragonal zirconia polycrystals (3Y-TZP, 3 mol% Y2O3; TZ-3YE, Tosoh 

Corp., Tokyo, Japan), with an average particle size of d50 = 0.26 µm. (2) Niobium 

(Goodfellow, Huntingdon, U.K., 99.85% purity) with an average particle size of d50 = 35 

µm. 

 

2.1. Materials Processing 

 Niobium powder was attrition milled with zirconia balls in a Teflon container for 

4 h using isopropyl alcohol as the liquid medium. Due to this process, niobium particles 

with a lamellar-flaky shape (LFS) with a high aspect ratio and a d50 = 41 µm were 

obtained. 

 

 Zirconia/milled niobium suspension of 80 wt% solid content was prepared using 

distilled water as liquid media and a 3 wt% addition of an alkali-free organic 

polyelectrolyte as surfactant. The relative proportion of Nb was 20 vol%. The mixture 

was homogenized by milling with zirconia balls in polyethylene containers at 150 rpm 

during 24 h and then dried at 90:C during 12 h. The resulting powder was ground in an 
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agate mortar and subsequently passed through a 75 µm sieve and hot pressed for 1h 

at 1400 °C and 45 MPa. For comparison purposes, monolithic 3Y-TZP material was 

prepared under the same conditions. The produced materials were machined carefully 

in order to obtain prismatic bars with 15 x 3 x 4 mm3 dimensions. 

 

2.2. Aging Experiments 

 Aging experiments were performed in a steam autoclave (Microclave 4001404, 

J.P. Selecta, Barcelona, Spain) at 134 °C and 2 bar. Polished bars were placed into the 

autoclave and left in a steam atmosphere for 10 h (ISO standard 6474-2). The 

experimental procedure is explained in a previous work19.  

 

 X-ray diffraction method, using a Philips X’Pert (Eindhoven, Netherlands) 

equipment with a Ge (111) incident beam monochromator (Johansson type) and the 

CuKα1 (λ = 1.5405981 Å) radiation, was used to evaluate the crystallographic 

composition. The scan conditions and calculations for estimating the ratio of 

monoclinic to tetragonal zirconia are explained elsewhere19. 

 

2.3. Wear Experiments 

 Wear experiments were carried out in a tribometer (Model MT/60/NI, 

Microtest, Spain) with a reciprocating motion, in which the stationary pin is loaded 

with a dead weight on the horizontal UHMWPE reciprocating plate. The rectangular 

pin contact surface (3 x 4 mm2) was polished with diamond paste down to 1 µm and 

then with a colloidal silica suspension to avoid geometrical discontinuities in the 

contact region, providing a relatively constant contact pressure between the pin and 
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the UHMWPE plate (40 x 30 mm) during the test. Previous to the wear test, the 

samples were washed ultrasonically in an acetone bath for 5 min and then dried at 90 

°C for 30 min. 

The tangential friction force between the pin and the plate was measured by the strain 

gauges fixed on leaf springs attached to the transverse bar holding the wear pin. The 

strain-gauge output voltage was passed through an amplifier and plotted on a chart 

recorder. Subsequently, by converting this voltage to friction force, friction coefficient 

data were collected. A constant force of 30 N was applied, resulting in an apparent 

contact pressure of about 2.5 MPa, a value similar to those borne by the femoral 

heads20.  

A sliding velocity of 0.06 m/s was applied. The test duration was associated with a 

traveling distance (S) of 10 Km. After each sliding test, the worn surfaces were cleared 

by blowing pressurized air before post-mortem observations. All tests were performed 

under the same conditions.  

The wear rate (W) was calculated by using Eq. (1): 

 

SF

V
W

N

        (1) 

 

∆V being the volume loss after the tests (mm3), FN the applied load (N), and S 

the sliding distance (m). In order to estimate the volume losses correctly, the track 

profiles were measured with a surface profilometer (Talysurf CLI 500, Taylor Hobson, 

Leicester, UK) that maps the surface morphology by putting a stylus in mechanical 

contact with the sample, with a step of 0.01 µm and a scanning speed of 0.1 mm/s. 
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The profilometer was used to determine the three-dimensional UHMWPE surface 

topographic map. The average surface roughness (Ra) of the surfaces of the different 

materials before and after aging was obtained using the same apparatus. The 

UHMWPE worn surfaces were observed with a field emission – scanning electron 

microscopy (FE-SEM) (Model DSM-950, Carl Zeiss, Germany). 

 

3. Results and Discussion 

Figure 1 represents the friction coefficient as a function of the sliding distance 

registered during the wear test for the ceramic and ceramic-metal composite before 

and after aging, when worn against UHMWPE. As can be observed, the friction 

coefficient has different values before and after aging, but no significant differences 

were found in the case of the ceramic-metal composite. The friction coefficient 

increases rapidly throughout the first meters of sliding and then stabilizes. This 

behavior can be attributed to a wear process of the UHMWPE during the first 100 m. 

As the wear proceeds further, the wear track becomes smoother and the friction 

coefficient settles to a steady level.   

 

The 3D UHMWPE wear track surface topographies, after sliding against both aged 

ceramic and ceramic-metal composite, are presented in Figure 2(A) and 2(C) 

respectively. From the 3D surface topographies, the corresponding wear track 

dimensions (i.e., depth and width), as well as the volume of wear scars were extracted 

and summarized in Table1. Under identical test conditions, sliding speed and contact 

load, the smallest depth of the wear tracks was measured for the 3Y-TZP/Nb 

composite before aging. According to the equation 1, the UHMWPE wear rate (W) 
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against 3Y-TZP rises from 5.45 x 10-5 to 7.25 x 10-5 mm3/Nm when the ceramic pin is 

subjected to the aging process.   In the case of UHMWPE against 3Y-TZP/Nb, there is 

no such increment on the wear rate (from 3.62 x 10-5 to 4.08 x 10-5 mm3/Nm).  

In Table 1, the Ra values for UHMWPE before and after wear tests are compared for all 

the sliding combinations. After the wear tests, it was observed that average surface 

roughness of UHMWPE against aged 3Y-TZP increased notably, while the Ra values 

measured on UHMWPE against aged and non-aged 3Y-TZP/Nb materials were similar 

to the pre-test ones. In order to study the effect of roughness changes on the 

UHMWPE plates, SEM observations were performed on these worn surfaces. Figure 2 

shows the results. It can be observed that the worn surface (B) shows multiple 

scratches parallel to the slide direction when compared to (D).  

X-ray measurements performed on the surface of the pins before the aging 

experiment showed a similar concentration of monoclinic zirconia in both samples (0.4 

% for the 3Y-TZP and 1.7 % for the 3Y-TZP-Nb). After an accelerated aging period of 10 

hours, these values rose to 17 % for the 3Y-TZP and 2.5 % for the 3Y-TZP-Nb, showing 

the important role that the Nb2O5 solid solution plays in zirconia aging behavior, which 

has been discussed elsewhere19.  The zirconia martensitic transformation is associated 

with a volume expansion of about 4%, which may lead to a substantial roughness 

increase.  This fact is responsible for the larger number of protuberances produced in 

the 3Y-TZP pin surface as compared with the 3Y-TZP/Nb pin. The Ra values of the pins, 

measured with the profilometer, were 11.8 and 11.2 nm for immediate readings and 

20.4 and 12 nm after 10 h aging for 3Y-TZP and 3Y-TZP/Nb, respectively. The Ra values 

of the 3Y-TZP/Nb pins before and after aging are similar. Consequently, roughness 

increase on the surface of this composite is almost negligible, explaining the low 
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increment in the UHMWPE wear rate after the aging process, which remains almost 

equal to that of the non-aged material. On the other hand, the scratches observed on 

the UHMWPE against aged 3Y-TZP and therefore the higher wear rate, are a 

consequence of the increase of pin surface roughness after aging because of the phase 

transformation of zirconia. Moreover, these microcraks produce pull out of the 

material during the wear test, caused for the large stress concentration towards the 

edge of the contact region, and generate a pin with chamfered edges. This is the 

reason for the different morphology of the wear tracks of figure 2(A) and 2(C).   

 

In summary, the present study suggests that the 3Y-TZP/Nb composite has much 

greater phase stability than 3Y-TZP, and that its wear properties are not influenced by 

aging. 

 

4. Conclusions 

The influence of phase stability on wear properties of UHMWPE after accelerated 

aging of 3Y-TZP and a novel 3Y-TZP/niobium biocomposite was investigated. According 

to the results of pin on flat wear test using ceramic pins with or without autoclave 

aging, the wear rate of UHMWPE was almost the same against 3Y-TZP/niobium 

samples (3.62 x 10-5 mm3/Nm, 4.08 x 10-5 mm3/Nm, respectively). In contrast, the 

effect of 3Y-TZP aging on the wear behavior of UHMWPE was clear (50% greater wear 

than non-aged 3Y-TZP). The results indicate that the surface roughness of the ceramic-

metal composite remain undamaged during the aging test; the wear rates of the 

UHMWPE counterface are therefore likely to be similar before and after aging of the 

biocermet pin. Consequently, this new biocermet is a more reliable bearing material 
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against UHMWPE than 3Y-TZP because of its resistance to accelerated aging.
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TABLES 
 

 
Ra (µm) Friction 

coefficient 
(µ) 

Width 
(mm) 

Depth 
(µm) 

Volume of 
wear scar 

(mm3) 

W 
(mm3/Nm) 

S (km) 0 10      

3Y-TZP 0.67 3.62 0.35 3.8 301 16.35 5.45 x 10-5 

aged 3Y-TZP  0.65 5.53 0.42 3.8 403 21.75 7.25 x 10-5 

3Y-TZP/Nb 0.66 1.23 0.27 3.8 200 10.86 3.62 x 10-5 

aged 3Y-
TZP/Nb  

0.67 1.89 0.30 3.8 225 12.24 4.08 x 10-5 

 
Table 1. Friction coefficient, average wear track dimensions, volume of wear scars, 

wear rates (W) and average surface roughness (Ra) of UHWMPE against ceramic and 

ceramic-metal composite before and after aging. 
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FIGURE CAPTIONS 
 
 

 

Fig.1. Friction coefficient as a function of sliding distance corresponding to UHMWPE 

plate against ceramic and ceramic-metal composite before and after aging 

 

Figure 2. (A) Three-dimensional topographic map of the wear track made by the aged 

3Y-TZP pin and the corresponding SEM observation (B). (C) and (D) are the equivalent 

images for the wear track made by the aged 3Y-TZP/Nb pin on the UHMWPE 

counterpart.  

 

  

 

 


