Genomics, immunology and diseases in non salmonid fish
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Abstract

The enormous development of aquaculture has increased the interest in infectious diseases of cultured fish, due to the economic losses caused by them. Although at present there are successful vaccines against bacteria, therapeutic treatments for viral diseases have yet to be established, in part due to the lack of information regarding the defense mechanisms triggered during infections. 

Fish have an innate and an acquired immune system, the former is the first line of defense and therefore an important protection against pathogens. The reason is the relatively inefficiency of the acquired immune response of fish in comparison with the unspecific response, given the evolutionary status and poikilothermic nature of these animals. In spite of this, not many genes related to the innate immune system in fish have been cloned. However, this number has increased lately owing to the recent advances in the study of simultaneously gene expression (Expression Sequence Tags, ESTs, and microarrays). The use of these techniques (genomic and proteomic) together with functional studies of gene expression in vivo and in vitro will favour future aquaculture development. In this sense, many genes and regulatory pathways of biological processes in general and defense mechanisms in particular could be identified and characterized. This knowledge will allow not only to determine the molecular basis of these responses, but can also be used in the improvement of cultured species via effective fight strategies against pathogens, new vaccine design and genetic selection of disease resistant species.
In this chapter we review the application of these genomic techniques used to study immune response and disease resistance of mainly non salmonid fish.
1. Introduction

Considering that 70% of the international fishing grounds are overexploited and that the current volume of captures by fishing efforts has practically reached a maximum level, the increased consumption of fishery related products must be sustained by aquaculture. Indeed, it has recently been estimated that approximately 30% of the fisheries products that are consumed in the world are provided by aquaculture and this aquatic production will increase in the near future.

However, mortalities due to disease can occasionally be high in fish farms. Although there are several commercial vaccines that help in the prevention of numerous diseases, further studies are needed for the improvement of existing vaccines and for the development of new vaccines and vaccination strategies. Aquaculture can greatly benefit from the use of molecular and biotechnological tools to identify and characterize genes and regulatory genetic networks of potential use. In this sense, molecular biology can be applied in aquaculture in the diagnosis of diseases, in the design of new vaccines, in the control of growth and reproduction, and in increasing disease resistance of cultivated species. Moreover the availability of genetic maps of the appropriate density is of high interest for the identification of genomic regions with characters of interest in production by means of assisted marker selection programs.

This knowledge acquired in fish can be used not only to improve aquaculture production but can also be applied in other industries. In fact, for a long time now, fish have had an impact in Genomics development. Approximately 30 years ago, a popular tropical fish named Danio rerio (zebrafish) was chosen as a great candidate for the genetic analysis due to numerous interesting features such as its short life cycle (3 months to reach sexual maturity), relatively high egg clutches throughout all the year, easy culture and external development with transparent embryos (Streisinger et al., 1981). All this combined with large scale mutagenesis experiments conducted at the beginning of the 90s (Streisinger et al., 1981) allowed zebrafish studies to fill a gap in the vertebrate development biology because of the ability to help in the study of genes through mutant phenotypes, as in Drosophila melanogaster o Caenorrhabditis elegans. Since then great advances on the knowledge and understanding of vertebrate development and human disease have been accrued using this model fish. Fish became an important actor in genomic studies (DNA sequencing and data mining) in 1993, when Sydney Brenner suggested the “pufferfish”, Takifugu rubripes (fugu) (Brenner et al., 1993) as a genome model. On top of its attraction to gourmets in Japan and China fugu has one of the smallest vertebrate genomes. This characteristic already known from its freshwater relative Tetraodon nigroviridis in 1968 (Hinegardner, 1968), constitutes a great advantage to access a gene catalogue for a modest cost compared to higher vertebrates.

It is important to point out that in recent years available fish genomic resources have increased dramatically, especially for salmonids (Table 1).

2. Cloning of immune related genes

A hypothesis that is becoming quite popular among comparative immunologists is that innate immunity of lower vertebrates constitutes an important protection against pathogens for this group of animals. The reason is the relative inefficiency of their acquired immune response due to the evolutionary status and their poikilothermic nature (Magnadóttir, 2006). In fact, innate parameters are considered as relatively independent of temperature and more active at the lower range temperatures at which fish live. However, acquired immunity parameters such as antibody production and lymphocytic activity are more effective at higher temperatures (Miller and Clem, 1984; Bly and Clem, 1992; Lillehaug et al., 1993; Alcorn et al., 2002). This translates into a limited antibody repertoire and lower memory and a very slow lymphocyte proliferation in contrast with the almost instantaneous innate response (Du Pasquier, 1982; Alexander and Ingram, 1992; Ellis, 2001).

Despite of all this, a few non specific immune genes have been cloned in fish (Bayne et al., 2001), although this group has grown significantly in the last years. What follows is a review of the “innate and specific” genes characterized up to now in fish (model and commercial species). Most of these studies are based on the cloning and characterization of individual genes, complete sequencing, phylogeny, expression analysis, etc., and recently also the profile expression analysis (Goetz et al., 2004; MacKenzie et al., 2006; Martin et al., 2006).

2.1 Salmonid fish

Salmonids, especially rainbow trout (Oncorhynchus mykiss), are the group in which the molecular basis of the immune response has been more extensively studied. Among other genes, there have been sequencing and expression studies on interleukins (IL): IL-1(, IL-6, IL-11 and IL-18 (Koussounadis et al., 2004; Zou et al., 2004a; Wang et al., 2005; Benedetti et al., 2006; Iliev et al., 2007; Roca et al., 2007) and Tumor Necrosis Factor-alpha (TNF-() (Roca et al., 2007). Interferon (IFN) and related genes such as Mx have been also studied because of the importance of viral aetiology in diseases and the lack of treatments. In rainbow trout the following genes have been characterized: two Toll Like Receptors (TLRs) (Rebl et al., 2007); IFN regulatory factors (IRFs) (Collet et al., 2003); Mx proteins (Trobridge and Leong, 1995; Trobridge et al., 1997; Collet et al., 2007); a macrophage activating factor (MAF) similar to IFN-( (Graham and Secombes, 1988; Graham and Secombes, 1990), expression and gene structure of Inducible Nitric Oxide Synthase (iNOS) (Wang et al., 2001). Both in rainbow trout and Atlantic salmon (Salmo salar) the guanylate binding protein (GBP) induced by IFN-( in mammals has been characterized (Robertsen et al., 2006). Several antimicrobial peptides (AMPs) have been sequenced and their expression characterized (Zhang et al., 2004; Chang et al., 2005, 2006; Zou et al., 2007), the same was done with complement factors such as C4 and molecules type C1 (Boshra et al., 2004), anaphylatoxins C3a (Rotllant et al., 2004), C3a receptor (Boshra et al., 2005) and several chemokines (Laing and Secombes, 2004; MacKenzie et al., 2004). Transforming Growth Factor-beta (TGF-ß) has also been characterized (Hardie et al., 1998) and an Immunoglobulin T (IgT) has been described as well (Hansen et al., 2005). Concerning IFN-( inducible chemokines a CXC, CXCL8 type (Laing et al., 2002a) and another with homology with the subgroup CXCL9, CXCL10, CXCL11, apparently with two forms and inducible by viral infections (Laing et al., 2002b; O’Farrell et al., 2002) have been identified. Two chemokines, CK1 (Dixon et al., 1998) and CK2 (Liu et al., 2002a) have been characterized. (1,3-glucan receptors in macrophages have been found in Atlantic salmon (Engstat and Robertsen, 1994). A type C lectin receptor has been sequenced and its expression characterized (Soanes et al., 2004) and a lectin associated to pathogens recognition has been detected in serum (Ewart et al., 1999). A protein associated to IL-1 receptor has been cloned (Stansberg et al., 2005). Two IgM isotypes and an IgD isotype have been cloned (Hordvik et al., 1992, 1999). IFN type I genes and some of the inducible proteins have been cloned and their expression studied (Robertsen et al., 1997; Robertsen et al., 2003; McBeath et al., 2007), some IFN-( have been identified (Robertsen, 2006). A lectin has been partially characterized in Chinook salmon (Oncorhynchus tshawytscha) embryos (Voss et al., 1978).
2.2 Non salmonid European fish
In comparison with those reported in salmonids there are not many characterized genes in non salmonid fish species. Table 2 summarizes non salmonid cloned genes up to date. In sea bream (Sparus aurata) several genes induced by interferon (( or () such as Mx or IRF-1 (Tafalla et al., 2004; Ordás et al., 2006) have been characterized. Viral infections are able to induce the expression of these factors suggesting an anti-viral function. Sunyer et al. (1997a, b) have underlined the diversity of functional forms of complement factor 3, as already described in trout. A type F lectin has been characterized (Cammarata et al., 2007). Several factors involved in the immune and inflammatory response have been studied such as TNF (Garcia-Castillo et al., 2002; Roca et al., 2007), IL-1 or its receptors (Pelegrin et al., 2001; Lopez-Castejon et al., 2007; Roca et al., 2007) or TGF (Tafalla et al., 2003). All of these factors are expressed constitutively. In contrary to what is expected with the mammalian perspective, TNF does not increase its expression level after a lipopolysaccharide (LPS) treatment, whilst IL-1 does (Garcia-Castillo et al., 2002). However, TNF shows pro-inflammatory and proliferatory functions when administered in vivo, suggesting a similar role as in mammals (Garcia-Castillo et al., 2004). There is also evidence of other roles not directly immune such as the regulation of fat tissue in this species (Saera-Vila et al., 2007). TLR-9 has high expression levels in the immune organs (spleen, head kidney) and in the mucosal and epithelial barriers. However, its expression did not change in the spleen when fish were infected with bacteria. A second form was found, generated by alternative splicing, although its biological meaning has to be further studied (Franch et al., 2006). Recently Major Histocompatibility Complex (MHC) class II alpha chain has been characterized and is constitutively expressed in several tissues and the expression was increased in kidney cells when incubated with bacteria and yeast cells (Cuesta et al., 2006). In addition the CD8a co-receptor has recently been cloned and characterized in sea bream (Randelli et al., 2006). As in sea bream several genes modulated by interferon (, ( and ( have been characterized in turbot (Psetta maxima) such as Mx and IRF-1 (Abollo et al., 2005; Ordás et al., 2006). Recently, class II ( and ( MHC (Zhang y Chen, 2006) and TNF (Ordás et al., 2007) have been cloned. The expression profile in the life cycle has also been studied for hepcidin (Chen et al., 2007) and T cell receptors (Taylor et al., 2005). In sole (Solea senegalensis), only the Mx gene has been characterized so far (Fernandez-Trujillo et al., 2006). In sea bass (Dicentrarchus labrax) there has been a growing effort in the characterization of immune genes. Caspase genes such as caspase 3 and 9 (Reis et al., 2007a, b), cyclooxygenase-2 (COX-2) (Buonocore et al., 2005b), T cell receptor- (Scapigliati et al., 2000), MHC class II (Buonocore et al., 2007), CD8 (Buonocore et al., 2006; Pinto et al., 2006), hepcidin (Rodrigues et al., 2006) and interleukins such as IL-1, IL-10 and IL-12 (Benedetti et al., 2006; Nascimento et al., 2007; Pinto et al., 2007) have all been characterized recently. The light chain of IgM has also been cloned (Dos Santos et al., 2001). It is interesting to point out the study on the biological function of IL-1 that has been proposed as an immunostimulant or adjuvant to be used in aquaculture (Buonocore et al., 2004, 2005a).
2.3 Non salmonid fish out of Europe 

(1,3-glucan  receptors have been characterized in catfish (Ictalurus punctatus) neutrophils  (Ainsworth, 1994). Also in this species an IgD (Wilson et al., 1997), Mx (Plant and Thune, 2004) and IFN-( similar sequences have been recently described (Milev-Milovanovic et al., 2006). In the carp (Cyprinus carpio) the (1-anti-protease (Aranishi, 1999) has been purified and characterized. Two Mannose Binding Protein (MBP) homologues (Nakao et al., 2006) and an MBP associated serine protease (Nagai et al., 2000) have been characterized. Among the different characterized molecules we can quote the following: a chimerical immunoglobulin IgM-IgZ (Savan et al., 2005a);  the protein Nitric Oxide Synthase-2 NOS2 (Saeij et al., 2000); a factor similar to TGF-ß-2 (Sumathy et al., 1997); a chemokine CXC similar to subgroup CXCL9, CXCL10, CXCL11 (Savan et al., 2003), a chemokine CC similar to C4-CC, a chemokine receptor CXC (Fujiki et al., 1999) and two IL-11 paralogues (Huising et al., 2005). In the herbivorous carp (Ctenopharyngodon idellus) the (2-macroglobulin has been purified and characterized (Li and Lu, 2006). In the Japanese flounder (Paralichthys olivaceous) the following immune genes have been cloned: an IgD cDNA (Hirono et al., 2003); IL-6 (Nam et al., 2007); IFN receptor factors (Yabu et al., 1998); Mx (Lee et al., 2000) and the chemokines CXC type CXCL8 (Lee et al., 2001) and two CC chemokines, C6-CC (Nam et al., 2003) and C4-CC (Kono and Sakai, 2001), with a high homology with mammalian CCL11. Three isoforms with homology with mammalian TGF-(-1/4/5, (-2 and (-3 have been described in plaice (Pleuronectes platessa) (Laing et al., 2000). In halibut (Hippoglossus hippoglossus) the Mx proteins have also been characterized (Jensen and Robertsen, 2000). In cod (Gadus morhua) a soluble and membrane associated IgM form with an unusual alternative splicing (Bengten et al., 1991) and an IgD (Stenvik and Jorgensen, 2000) have been described. In the stripped sea bass (Morone saxatilis)a type F lectin has been characterized (Odom and Vasta, 2006). In the cobia (Rachycentron canadum), the most important cultured fish in Taiwan, a mannose specific lectin has been cloned and characterized that exhibited a bactericidal and mitogenic activity (Ngai and Ng, 2007). The primary structure of a Japanese eel (Anguilla japonica) lectin from the epithelial mucus has been characterized (Tasumi et al., 2002). The gene and promoter of viperine (an antiviral protein) from Chinese perch (Siniperca chuatsi) have been cloned (Sun and Nie, 2004).

2.4 Model species 

The lamprey (Lampetra fluviatilis), belonging to the most primitive fish, the agnathans, have been used as a model to study the evolutionary relations with other model fish: fugu, Tetraodon, zebrafish, goldfish (Carassius auratus) and other species. Although the studies of the immune system are not very abundant, the first fish chemokine is a lamprey CXC that codes a mammal type CXCL8 peptide (Najakshin et al., 1999). A MBP has also been cloned and characterized (Takahashi et al., 2006). Although structurally similar sequences can be found between groups this does not necessarily indicates a functional similarity but rather how conserved the defense related mechanisms can be throughout evolution. An immunoglobulin isotype has been identified in fugu (Takifugu rubripes, fugu), whose structure and expression analysis suggest differences from the IgH locus isotypes previously described (Savan et al., 2005b); IFN-( (Zou et al., 2004b), TLRs (Oshiumi et al., 2003), IRFs (Richardson et al., 2001) phagocytic oxidase subunits (oxidase NADPH) (Inoue et al., 2004) and Macrophage Colony-Stimulating Factor (M-CSF) receptor sequences (How et al., 1996) have been also identified. In Tetraodon nigroviridis, freshwater fugu, comparative genomics shows an independent expansion in vertebrates of type I IFN receptors and their ligands (Lutfalla et al., 2003). Janus kinases (JAKs)-Signal Transducers and Activators of Transcription (STATs) pathway (JAK-STAT pathway) genes have also been characterized (Leu et al., 1998, 2000). Several IgZ isotypes have been recently described in zebrafish (Sakai and Savan, 2004; Danilova et al., 2005; Flajnik, 2005). A molecular and functional analysis of the following genes have been conducted in zebrafish: IFN (Altmann et al., 2003), TLRs (Jault et al., 2004), several JAK-STAT genes (Oates et al., 1999) and Mx proteins and their promoters (Altmann et al., 2004). Sequences of the M-CSF (Parichy et al., 2000) and two chemokines, a CXC similar to mammalian CXCL14 (Long et al., 2000) and CXCL12 type (David et al., 2002) have been identified. In goldfish studies have been mostly focused in interferon and associated proteins. TLRs, whose expression increases in activated macrophages (Stafford et al., 2003), IFN regulatory factors (Zhang et al., 2003), JAK-STAT genes (Zhang and Gui, 2004) and antiviral proteins such as Mx (Zhang et al., 2004), Interferon Stimulated Gene (ISG) (Liu et al., 2002b; Zhang and Gui, 2004) and dsRNA Protein Kinase (PKR) (Hu et al., 2004) have been characterized.
3. Expressed Sequence Tags (ESTs) libraries. Suppression Subtractive Hybridization (SSH) 

Immune response understanding is crucial for minimising losses in aquaculture. The use of immunostimulants, vaccines and genetic selection programmes has helped to attain this goal. The use of genomic tools such as ESTs libraries, subtractive hybridizations (SSH) and microarrays have given essential information to identify homologous genes, new genetic functions, expression profiles, routes, candidate genes (Rise et al., 2004a; Krasnov et al., 2005a; Kurobe et al., 2005). EST production, directly from organs related with the function under study or by SSH (Bayne et al., 2001; Alonso and Leong, 2002; Blum et al., 2004; Tsoi et al., 2004), has generated multiple databases with hundreds or thousand of genes, which constitute the platform needed for microarray construction (Savan and Sakai, 2002; Clark et al., 2003; Kimura et al., 2004; Kono et al., 2004).

The developing and application of bioinformatics tools in parallel has permitted an accurate management of a large number of sequences for expression profiles and gene annotation (Boguski et al., 1993; Huang and Madan, 1999; Paschall et al., 2004; Rise et al., 2004b). The developing of microarrays for the simultaneous analysis of the expression of hundreds to thousands of genes is a basic tool for the identification of signatures and candidate genes (Krasnov et al., 2005a; Rise et al., 2004b; Kurobe et al., 2005). The main advantage of the modern techniques in genomics is the large quantity of results produced but this also implies two different risks: the massive production of data in few individuals leads to the choice of models with too high parameters (overparameterization) and obtaining of false positives. Obtaining consistent results by this strategy demands an appropriate experimental design, a correct application of statistics in data analysis (Yang and Speed, 2002), and recently, the convenience of results modelling using genetic nets has been demonstrated in order to correctly interpret gene expression patterns (Segal et al., 2003; Schadt et al., 2005).

The increase of EST databases has been dramatic in recent years. Salmonids are the group in which this is more apparent. More than 175 cDNA libraries have been constructed from a wide variety of tissues and different developmental stages and more than 300.000 salmonid cDNA sequence reads have been combined from a consortium comprising groups from Canada (Ben Koop and Willie Davidson and the Genomics Research on Atlantic Salmon Project, GRASP; Susan Douglas et al. and the Institute for Marine Biosciences, IMB-NRC); France (Yann Guiguen et al. and INRA-SCRIBE); Norway (Bjorn Hoyheim et al. and the Norwegian School of Veterinary Science, NSVS) and the U.S.A. (Caird Rexroad III and the USDA/ARS National Center for Cool and Cold Water Aquaculture). These sequences have been assembled into over 40.000 unique contigs. A preliminary microarray of 3.557 cDNAs has been constructed and assessed for its ability to provide new data in the study of cellular and tissue responses to pollutants, diseases and stress, as well as for reproduction and development. On the basis of these results, a larger array of 16.006 genes has been constructed and initial results have shown sensitivity of gene expression patterns to disease challenge, and to small environmental and physiological changes (Rise et al., 2004b; von Schalburg et al., 2005).

BASSMAP, an EU funded project, is focused on sea bass genomics. A Bacterial Artificial Chromosome (BAC) library was constructed with an insert mean of 164 kb and a final cover equivalent to 7 times of total genome.  The BAC clones are being used to generate ESTs in order to detect genetic markers such as Single Nucleotide Polymorphisms (SNPs) and microsatellites. BRIDGEMAP is another EU funded project focused on sea bream genomics, where 1.500 ESTs have been generated with the aim of improving the knowledge of several aspects of the biology of this species. EU has funded and is supporting several research projects that have the common goal of increasing the knowledge of genomics in aspects such as health (AVINSI, AQUAFIRST, IMAQUANIM), welfare (WEALTH, STRESSGENE), reproduction (PROBASS, CRYOCITE, PUBERTIMING), growth and nutrition (FISHCAL, fPPARS). Moreover the network “Marine Genomics Europe” (MGE) has a major goal for the development, use and dissemination of genomic approaches to the study of marine organism biology and marine ecosystems. One of the goals of the fish and shellfish node has been the production of genomic tools, including cDNA libraries, molecular markers (macro and microsatellites, SNPs), microarrays, etc., integrated in a bioinformatics platform. These tools will dramatically improve the available genomic resources that will help solving numerous scientific questions. Despite of all these efforts there is a long way in front of us. As an objective data, while the GeneBank number of sequences for rainbow trout is 244.984 and 236.009 for Atlantic salmon, there are only 200 for turbot, 2.448 for sea bream and 24.452 for sea bass. As a comparison there are 833.880 zebrafish ESTs.
Another approach that is being used to characterize genes related with immune response and disease resistance if the study of differential expression of genes using Suppression Subtractive Hybridization (SSH) (Diatchenko et al., 1996). SSH is a powerful technique that allows the comparison of two mRNA populations, cloning genes that express in one but not in the other. Two pioneer SSH examples are the identification of T cell receptors (Hedrick et al., 1984) and the identification of activated genes in Xenopus laevis gastrulation (Sargent and Dawid, 1983). Since then several modifications of the technique have been described (Duguid et al., 1988; Rubenstein et al., 1990; Swaroop et al., 1991). Alonso and Leong (2002) used SSH Chinook salmon and staghorn sculpin (Hemilepdotus spinosus) to determine differentially expressed genes against Poly I:C, a potent IFN inducer, finding that the overexpressed genes were quite similar to those described as IFN inducible in mammals. Bayne et al. (2001) identified rainbow trout immune genes constructing a subtracted library with livers from fish injected with Vibrio bacterine. The resulting library consisted in 300-600 bp fragments with 25 genes related with the immune system, of which 15 had not been previously described in salmonid fish and 12 not in any fish at all. The library included acute phase genes such as amyloid A protein, transferrine and precerebeline type protein, complement proteins and lectins, a putative antimicrobial peptide, several membrane receptors, such as TLRs and IL-1 receptor. O’Farrell et al. (2002) also used SSH to identify changes in host cells against viral infections (rainbow trout/Viral Hemorrhagic Septicemia, VHS). 24 genes were identified as induced by the virus, most of them were IFN inducible. Zhang et al. (2003) used SSH to study the model grass carp/Grass Carp Hemorrhagic Virus (GCHV) to conclude that IFN and IFN induced genes are the main tool against virus. Also, with a viral infection model using Chinese perch and Infectious Spleen and Kidney Necrosis Virus (ISKNV), He et al. (2006) found genes related with the immune response and apoptosis and with the proteasome degradation pathway of ubiquinated protein that was found also in the SSH library generated by O’Farrell et al. (2002) and also by Dios et al. (2007). Another approach was cDNA libraries generation from primed organs and randomly sequencing of a group of clones (Nam et al., 2000). These were successful approaches but with high cost and low efficacy. The same approach was used by Fernandez-Gonzalez et al. (2007) to detect immune genes in carp experimentally infected with Icthyophthirius multifilis sampled at 3 and 72 hours post-infection. In a total of 3.500 ESTs, 82 ortologues with immune relevance, previously described in other organisms, were found. 61 of them have not been previously described in carp. Among them the complete Prostaglandin D2 Synthetase (PGDS), the chemokine SCYA103 and a second (m2 macroglobulin gene were found. The expression modulation by this parasite was determined by RealTime-PCR (RT-PCR). Tsoi et al. (2004) used SSH to determine the differential expression of Atlantic salmon genes against the furunculosis etiological agent Aeromonas salmonicida. Subtracted cDNA libraries were prepared from three immune organs at two times after infection. A forward and a reverse library were constructed and 200 clones of each library were sequenced, giving a total of 1.778 ESTs that were annotated according functional categories and deposited in GenBank. Numerous genes involved in signalling, innate immunity and other processes were identified. They include genes that are involved in acute phase and other more novel genes such as tachylectin, hepcidin, genes similar to precerebeline or methyltransferase, a putative protein that binds saxitoxine, etc. A subgroup of genes was studied with more detail by virtual Northern or RT-PCR to verify the differential expression as a result of the infection. Matejusova et al. (2006) used SSH to determine Gyrodactylus salaris infected Atlantic salmon gene expression profiles. Dios et al. (2007) used this technique to determine gene profile expression in sea bream brain after nodavirus infection that has the CNS as target. Forward and reverse libraries were generated one day post-infection and the ESTs expressed in infected tissues were catalogued as belonging to stress an immune response. In the reverse library (ESTs expressed in controls when compared with infected tissues) the most expressed genes were ribosomal and mitochondrial.
4. Microarrays

Microarrays are physical platforms or chips (usually glass slides) with genes or gene sequences printed, which allow for the simultaneous analysis of the expression of hundred or thousands of genes. The study of these expression profiles in tissues or cell pools constitute the basis for functional genomics. Microarrays can be prepared by printing ESTs, generated from cDNA libraries (subtracted or not) or by short oligos (25-70 bp), designed from the ESTs specific regions such as 3’ Untranslated Regions (3’UTRs) or code regions, if alternative splicing studies are the goal (Blanchette et al., 2005; Srinivasan et al., 2005; Shai et al., 2006). Sometimes cDNA microarrays are prone to the ambiguous EST identification, as they can produce cross-hybridizations among homologous genes and they are not able to distinguish different products of the same gene resulting from differential splicing (Draghici et al., 2006). In contrast, oligo microarrays avoid some of these problems, but are more expensive. Thus, its application in projects of species involving an important research using arrays could be justified. Comparative studies between different platforms do not permit a definitive conclusion in this matter. In fact, controversial results between oligo and cDNA platforms have been described (Hardiman, 2004; Lee et al., 2004; Draghici et al., 2006). The use of microarrays allows the detection of gene expression profile changes under different experimental conditions such as pathogens, probiotics, developmental stages, contaminants, etc. (Yang and Speed, 2002; Eberhard et al., 2006). 

One of the first reports of the use of microarrays in fish diseases studies was based on human cDNA microarrays (Tsoi et al., 2003). Commercially available human cDNA microarrays were used to compare differential expression in the livers of Atlantic salmon infected with A. salmonicida compared to healthy fish. cDNA probes were prepared from total RNA isolated from livers of control salmon and infected salmon by reverse transcription in the presence of 33P-dCTP and independently hybridized to human GENEFILTERS GF211 microarrays. Of the 4.131 known genes on the microarray, 241 spots gave clearly detectable signals using labelled RNA from the control salmon liver. Of these, 4 spots were consistently found to have a greater than 2-fold increase in infected salmon compared with controls when using the same pair of filters to generate hybridization data from triplicates. These up-regulated genes were ADP/ATP Translocase (AAT2), Na+/K+ ATPase, Acyloxyacyl Hydrolase (AOAH), and Platelet-Derived Growth Factor (PDGF-A). A BlastN search revealed an AAT2 homolog from Atlantic salmon, and a reverse transcriptase polymerase chain reaction assay using primers based on this sequence confirmed its up-regulation (approx. 1.8-fold) during early infection. This work demonstrates the feasibility of using human microarrays to facilitate the discovery of differentially expressed genes in Atlantic salmon. This was corroborated by Renn et al. (2004), which used a microarray prepared with 4.500 genes from a specific cichlid Astalotilapia burtoni brain cDNA library. This microarray was used with different fish species and the degree of concordance in expression profiles (number of genes and changes in the levels of expression) was consistent. Rise et al. (2004a) used microarrays constructed with ESTs previously described to study macrophage and haematopoietic kidney gene expression modulated by Piscirickettsia salmonis infection. Results were validated by RT-PCR. In infected salmon macrophages, 71 different transcripts were up-regulated and 31 different transcripts were down-regulated.  In infected haematopoietic kidney, 30 different transcripts were up-regulated and 39 different transcripts were down-regulated. Ten antioxidant genes, including glutathione S-transferase, glutathione reductase, glutathione peroxidase, and cytochrome b558 and subunits, were up-regulated in infected macrophages but not in infected haematopoietic kidney. Changes in redox status of infected macrophages may allow these cells to tolerate P. salmonis infection raising the possibility that the treatment with antioxidants may reduce haematopoietic tissue damage caused by this rickettsial infection. The down-regulation of transcripts involved in adaptive immune responses (e.g., T cell receptor chain and C-C chemokine receptor 7) in infected haematopoietic kidney but not in infected macrophages may contribute to infection-induced kidney tissue damage. Molecular biomarkers of P. salmonis infection, characterized by immune-relevant functional annotations and high fold differences in expression between infected and non infected samples, may aid in the development of anti-piscirickettsial vaccines and therapeutics. Purcell et al. (2006) also used this microarray to study Atlantic salmon gene profile against a DNA vector or an Infectious Haematopoietic Necrosis Virus (IHNV) DNA vaccine. Eighty different genes were significantly modulated in the DNA vector group while 910 genes were modulated in the IHNV DNA vaccinated group relative to control group. RT-PCR was used to examine expression of selected immune genes at the Intra Muscular (I.M.) site and in other secondary tissues. In the localized response (I.M. site), the magnitude of gene expression changes was much greater in the vaccinate group relative to the DNA vector group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity. In a similar way Martin et al. (2006) used this microarray to study the response of Atlantic salmon against an A. salmonicida vaccine and found that the greatest increase in expression identified in the array analysis was a liver antibacterial peptide, hepcidin, which was increased 11-fold following the challenge. Roberge et al. (2007) also used this microarray to determine the levels for gene expression in Saprolegnia infected salmon, confirming the importance of non specific immune response in the resistance against this disease.

MacKenzie et al. (2006) used another microarray developed by Krasnov et al. (2005b) including 1.380 genes printed in six replicates. They studied the ability of cortisol to directly modulate the transcriptional response of rainbow trout macrophages to the cellular activator LPS. The results indicate that cortisol significantly inhibits the well-described LPS-dependent induction of the expression of TNF-alpha2, a pro-inflammatory cytokine through a complex network of interactions. Gerwick et al. (2007) used an oligo microarray to study gene profile in the inflammatory process of de Listonella (Vibrio) anguillarum bacterine injected to rainbow trout livers with Freund adjuvant. Microarray analysis determined that individual variability was high probably due to variable resistance to the disease. Li and Waldbieser (2006) have also reported the construction and use of a microarray for catfish aimed to the study of innate immune response. The high density microarray was prepared from oligos based on catfish ESTs. This platform was used to study the gene profile in catfish spleens 2, 4, 8 and 24 hours post-LPS injection. 38 genes were modulated by LPS treatment. The expression of 9 genes determined by RT-PCR was positively correlated with microarray data. Byon et al. (2005) determined the antiviral response in Japanese flounder using a microarray. Non-specific immune response genes such as Macrophage Inflammatory Protein 1-a (MIP 1-a) receptor of Natural Killer (NK) and Kupffer cells and Mx1 protein gene were observed to be up-regulated by the VHSV G-protein DNA vaccine at 1 and 3 days post-immunization. Also, specific immune-related genes including the CD20 receptor, CD8 alpha chain, CD40 and B lymphocyte cell adhesion molecule were also up-regulated during that time. In a later work Byon et al. (2006) determined that humoral defense-related genes such as complement component C3, complement regulatory plasma proteins, IgM, IgD, MHC class II-associated invariant chain and CD20 receptor were observed to be up-regulated by the VHSg recombinant protein vaccine at 1 or 21 days post-vaccination. On the other hand, cellular defense-related genes such as CD8 alpha chain, T-cell immune regulator, MIP 1-a and apoptosis-associated protein were not detected. With a second version of this microarray Matsuyama et al. (2007) determined the immune response of Japanese flounder against Edwardsiella tarda. Among the 1.187 analyzed genes, 42 genes were up-regulated during the course of infection either in vaccinated or non-vaccinated fish. These genes included immune-related genes, such as Matrix Metalloproteinases (MMP) MMP-9, MMP-13, CXC chemokine, CD20 receptor and hepcidin. Some immune-related genes were down-regulated after the E. tarda challenge, i.e. interferon inducible Mx protein, MHC class II-associated invariant chain, MHC class II alpha and MHC class II beta encoding genes, immunoglobulin light chain precursor, immunoglobulin light chain and IgM. Kurobe et al. (2005) using cDNA microarray containing 871 unique cDNAs including 91 putative immune-related genes studied the gene expression of in vitro grown kidney cells stimulated with mitogens such as Concanavalin A (ConA), Phorbol Myristate Acetate (PMA), LPS or infected with hirame rhabdovirus (HRV). The number of genes whose expression was increased or decreased by these factors was: 17 by Con A, 139 by PMA, 76 by LPS and 182 by HRV infection. The treatment of ConA for 1 and 6 h affected the expression of only a few of the immune-related genes. PMA down-regulated much more genes from the ones it up-regulated. Apoptosis-related factors such as c-fos, NGF induced protein IB and NR13 genes were among the genes whose expression was induced by PMA. LPS induced the expression of inflammation-related genes, such as IL-1(, monocyte chemotactic protein 1 and collagenase. The expression of many genes was induced after 3 h HRV infection but some of them were decreased to the basal level after 6 h HRV infection. The expression of some genes of unknown function was induced or reduced by Con A, PMA or LPS or by HRV infection in different time periods. Dios et al. (2007) studied gene profile expression of nodavirus infected sea bream. cDNA SSH libraries were generated 1 day post-infection. Some of the genes were included in functional categories of stress and immune system. To check the modulation of expression profiles, samples were taken 1, 3 and 7 days post-infection and hybridized with a macroarray with 765 genes constructed from PCR products with more than 300 bp from the SSH forward (385 genes) and reverse (380) libraries. Significant changes of antiviral genes were detected. Table 3 shows available fish microarrays. 
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Table 1. Available gene sequences databases of different species of both model and commercial fish.

	Species
	Project
	Size (Mb)
	Covered Assembly seq.
	Readings Shotgun
	ESTs or cDNAs

	Zebrafish
	http://www.sanger.ac.uk/Projects/D_rerio/
	1.700
	6,5-7
	24.535,919
	673.078

	Tetraodon
	http/www.genoscope.cns.fr/tetraodon
	350
	8,3
	2.975,798
	99.204a

	Fugu
	http://genome.jgi-psf.org/Takru4/Takru4.home.html
	380
	8,7
	3.638,510
	25.860

	Medaka
	http://dolphin.lab.nig.ac.jp/medaka/
	800
	9,0
	15.171,833
	-

	Salmon
	http://www.salmongenome.no
	3.100
	-
	22.677
	114.911

	Stickleback
	http://www.genome.gov/
	675
	-
	6.959,213
	171.001

	Trout
	Not available
	2.700
	-
	47.051
	231.820


a cDNA sequences from Tetraodon are complete sequences; sequences from other species are ESTs.

Table 2. Immune genes cloned up to date in the most important commercial non salmonid fish.

	Gene
	Turbot
	Sea bream
	Sea bass
	Sole
	Reference

	IFN-(
	-
	-
	-
	-
	

	IFN-(
	-
	-
	-
	-
	

	IFN-(
	-
	-
	-
	-
	

	Mx
	+
	+
	-
	+
	Abollo et al., 2005; Tafalla et al., 2004; Fernandez-Trujillo et al., 2006

	COX-2
	-
	-
	+
	-
	Buonocore et al., 2005b

	IRF-1
	+
	+
	-
	-
	Ordás et al., 2006

	TLR-9
	
	+
	-
	-
	Franch et al., 2006

	TGF
	
	+
	-
	-
	Tafalla et al., 2003

	TNF-(
	+
	+
	-
	-
	Ordás et al., 2007; Garcia-Castillo et al., 2002

	IL-1
	-
	+
	+
	-
	Pelegrin et al., 2001; Benedetti et al., 2006

	IL-10
	-
	-
	+
	-
	Pinto et al., 2007

	IL-12
	-
	-
	+
	-
	Nascimento et al., 2007

	C3
	-
	+
	-
	-
	Sunyer et al., 1997a and b

	Lectin type F
	-
	+
	-
	-
	Cammarata et al., 2007

	MHC II-(
	+
	+
	+
	-
	Zhang and Chen, 2006; Cuesta et al., 2006 ; Buonocore et al., 2007

	MHC II-(
	+
	-
	-
	-
	Zhang and Chen, 2006

	Hepcidin
	+
	-
	+
	-
	Chen et al., 2007; Rodrigues et al., 2006

	T cell receptor
	+
	-
	+
	-
	Taylor et al., 2005, Scapigliati et al., 2000

	Caspase 3
	-
	-
	+
	-
	Reis et al., 2007a

	Caspase 9
	-
	-
	+
	-
	Reis et al., 2007b

	CD8
	-
	+
	+
	-
	Buonocore et al., 2006; Pinto et al., 2006; Randelli et al., 2006


Table 3. Available macro- and microarrays in different species of fish.

	Species
	Nº genes
	Probe
	Study
	Authors

	Atlantic salmon
	16.006
	cDNA
	Multiple
	GRASP

	Atlantic salmon
	1.380
	cDNA
	LPS response
	Krasnov et al., 2005b

	Rainbow trout
	> 50.000
	Oligomer
	Vibrio response
	Gerwick et al., 2007

	Catfish
	18.989
	Oligos
	LPS response
	Li and Waldbieser, 2006

	Astalotilapia burtoni
	4.500
	cDNA
	Brain
	Ren et al., 2004

	Japanese flounder
	779
	cDNA
	VHS vaccination
	Byon et al., 2005

	Japanese flounder
	871
	cDNA
	Kidney cells
	Kurobe et al., 2005

	Japanese flounder
	1.187
	cDNA
	Edwardsiella tarda 

experimental infection
	Matsuyama et al., 2007

	Sea bream (macroarray) 
	765
	cDNA
	Nodavirus
	Dios et al., 2007


PAGE  
1

