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SUMMARY

The reliability of model predictions is affected by mulépsources of uncertainty, therefore most of the
efforts for modeling biological systems include a sengitianalysis step aiming to identify the key
contributors to uncertainty. This generates insight alibet robustness of the model to variations in
environmental conditions, kinetic parameters, initiahoentration of the species or any other source of
uncertainty. Local sensitivities measure the robustnétkeomodel to small perturbations on the inputs
around their nominal value. There are several numericahoakst for the calculation of local sensitivities,
but the calculated values should be identical within the erical accuracy of the method used. In contrast,
as will be shown in this contribution, the results of diffierglobal sensitivity analysis (GSA) methods can
be very different and highly dependent on the distributionsidered for the inputs under evaluation. In this
work, derivative based global sensitivities are extenddzbtable to consider an accurate probability density
function for the parameters based on the likelihood fumctitnis strategy enforces the areas of the parameter
space most likely to reproduce the desired behavior minimgithe importance of parameter sets with low
probability of being optimal to dominate the sensitivitwkang. A model of a biochemical pathway with
three enzymatic steps is used here to illustrate the pegiocenof several relevant GSA methods considering
different probability density functions for the paramstand revealing important hints about which method
and distribution to choose for each type of model and purpbsee analysis.
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1. INTRODUCTION

Pareto’s law (also known as the law of the “vital few and &ivhany”) states that, for many events,
roughly 80% of the effects come from 20% of the causes. THis@er has also been recorded in
the field of modeling where the input factors’ importance besn found to be unevenly distributed,
with a few factors creating almost all the uncertainty anel ithajority making only a negligible
contribution [L]. This property motivates the determination of the mosgeveht inputs that can
ultimately lead to model simplification if negligible factoare found.

Sensitivity analysis (SA) and uncertainty analysis aratesl methods that ideally should be run
in tandem. While uncertainty analysis focuses on quamigfyincertainty in the model output, SA
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2 RODRIGUEZ-FERNANDEZ ET AL.

could be defined as “the study of how uncertainty in the outffi model can be apportioned to
different sources of uncertainty in the model inp&].[

In most of the available systems biology literature, sérngés are understood as derivatives
of a particular state with respect to a particular input, #mel influence of factors on states is
assessed by looking at a single point in the input space. HHaywglobal sensitivity analysis (GSA)
methods that investigate the sensitivity over the entipeiirspace have been recently studied with
application to biochemical model8][and several tools facilitating the computation of the most
known sensitivity measures have been developed, nametgr8g®8iology Toolbox 24], COPASI
[5], SBML-SAT [6], PottersWheelT] and SensSB{]. Nevertheless, a SA method can fail if its
underlying purpose is vaguely defined; diverse tests andsunes may be thrown at a problem,
producing a range of different input rankings but leaving tbsearcher none the wiser as to which
ranking to believe or favorl]. Several studies on biological systems have shown thatathidng
of the parameter sensitivity may largely depend on the amamethod9, 10, 11] but the reasons
for these discrepancies have not been widely examined.dergthe distribution of input factors
has a large impact on the result of any GSA method and in the @Bbiological systems these
distributions are not always easy to assess.

In this work, we review several local and global sensitiatalysis techniques (Morris method,
Sobol’ indices and derivative based global sensitivitees)] we study their adequacy for different
applications. The crucial influence of the input factorgribstion is analyzed and illustrated with
a benchmark case study regarding a biochemical pathwaylmddesover, we introduce a novel
GSA methodology that is able to account for the crucial rdléne distribution of input parameters
when experimental data are available.

2. METHODOLOGY

In order to be able to make use of the different sensitivitglgsis techniques as defined above,
we first have to identify the type of models under investigatind the input and output factors of
interest.

2.1. Mathematical models

Many dynamic models of biological processes together wighimput-output experiment designed
for their identification can be described by a general n@alimmodel. Lete be the vector ofV,
state variables ang the vector ofN,, model parameters:

ﬂ'f(Pat) = f[m(p,t),U(t),p], m(0>:$0 (1)
y(p,t) = glz(p,t),ulp,t),p] 73

Note thatf specifies the modeky specifies the vector aoiv, control variables for a particular
experiment andy the vector ofV, measured states (output variables). An experiment is fipeci
by the initial conditionse(0), the control variables and the observationg

2.2. Input and output variables

Once the model has been defined, the next elements to befiel@mtiior to sensitivity analysis
are the input and output variables of interest. In mathezahthodels of biological systems the
output variables are usually the concentration (or a fomatif them) of the measurable biological
components (proteins, metabolites, transcriptions fagtetc.). Depending on the target of the
analysis, a certain behavior of a set of states is under tigegi®n, such as the agreement with
available experimental data or certain qualitative dyma(steady states, monotonicity, oscillations,
etc.).

Given a nonlinear dynamic model representing several comes, the set of states under
analysis and the time points where the sensitivities aréuated will affect the results of the
importance ranking. Often, the sensitivity of each outmatdr with respect to each input factor
is evaluated at the given sampling points but when the proldize increases, this information
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GLOBAL SENSITIVITY ANALYSIS FOR SYSTEMS BIOLOGY 3

has to be summarized for the sake of clarity. The way of comguhese metrics (averaging the
sensitivities over time or focusing on other regions as maxn values or values at the steady state;
using relative or absolute values with respect to the owpdior input factors, etc.) will strongly
influence the results so particular attention should be ghaye

Most of the sensitivity analyses performed on biologicateyns are focused on the model
parameterp. In the case of an ordinary differential equation (ODE) mat#gived by the principle
of mass action from a network of biochemical reactions, grameters are typically rate constants
(e.g.association rates, disassociation rates, catalytic)ratesnodels are not always deduced from
mass action, and other parameters such as Hill coefficieriahaelis-Menten constants can be
found. Another common source of uncertainty are the iniééies of the state variableg0). Other
variables affecting the model, including environmentaérperimental conditions, can be treated
as control variables.

2.3. Input factors distribution

One of the most important stages in GSA is to determine thegilslion of input factors 12].
Making reasonable assumptions about #priori distribution of the initial values of the state
variables or the uncertainty in the control variables iwoffeasible since most of the time they
can be measured directly. On the contrary, evaluating ttelition of the model parameters that
can rarely be determined experimentally is much more chgiifey. Ideally, the distribution of the
parameters can be inferred by estimation from the avaikakperimental data and it can be stated
that the parameters present a certain distribution with@vpend standard deviation. However,
this is not always possible either because we want to pertbersensitivity analysis prior the
parameter estimation, the distribution cannot be easidyattterized with the available data, or we
want to analyze the sensitivity of the model in broader patamspaces. In these cases, a common
practice is to select wide bounds and assume that the paesrage uniformly distributed among
these values. The selection of the lower bounds is usuadly leecause of the physical or biological
meaning €.g.a kinetic constant cannot be negative). However, the uppends are often chosen
arbitrarily to contain all the potential values for eachgraeter and, therefore, it is expected that
good solutions may lie closer to the lower bounds than to gpeubounds3]. In this situation, a
uniform distribution will not intensively explore the ragis with small values whereas a logarithmic
distribution will do. Moreover, a logarithmic distributids also helpful in the case of variables that
can intrinsically have values in different orders of magdé (for instance, pre-exponential factors in
kinetic equations or degradation constants of differeatis) or with variables without physical or
biological meaning, for which selecting bounds is a difficakk. Figurel illustrates this situation
for a variable spanning from0—3 to 103. If we generate a number of sampling points between

a)

| | | I | | |
103 =1.7102 =3.3-102 =502 =6.7-102 =8.3102 103

b)
| | | | | | |
10% 102 10 100 101 102 103

Figure 1. Intervals within a variable range:
a) Uniform distribution. b) Logarithmic distribution.

these bounds using a uniform distribution, we will approaiely obtain the same number of points
in every interval depicted in Figurga. Alternatively, if a logarithmic distribution is seledtethe
points will have equal probability across the sub-rangesvshin Figurelb. In other words, with

a uniform distribution, roughly 90% of the sampling pointil \Wwave values between0? and103
with approximately only 0.1% of the sampling points covgrihe area betweer)—2 and1.
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4 RODRIGUEZ-FERNANDEZ ET AL.

2.4. Review of available sensitivity analysis methods

Local sensitivity indices are computed at the nominal valused for the parameters and the
behavior of the response function is described only logaltiie input space. Moreover, preliminary
experiments and model calibration tests should be caraédtharder to obtain a first guess for the
parameter values and an iterative scheme involving bopis $¢éeequired in order to study the model
sensitivity. In addition, these methods are linear thug #re not sufficient for dealing with complex

models, especially those in which there are nonlinearacténs between parameters.

In contrast, global sensitivity analysis methods evalubage effect of a parameter while all
other parameters are varied simultaneously, accountirigtieractions between parameters without
depending on the stipulation of a nominal point (they explive entire range of each parameter).
Among the most widely used GSA methods are the ones studibd ollowing: the Morris method
[14] mostly used as a screening method, the Sobol’ methét donsidered as one of the most
powerful despite its high computational cost and the dévigebased global sensitivity measures
(DGSM) [16] based on averaging the local sensitivities over the patemnspace.

2.4.1. Local sensitivity method#lost of the sensitivity analysis described in the literatare
based on derivatives. Indeed the partial derivadlyg/dp; of an outputy; with respect to an input
p; can be thought of as a mathematical definition of the seiftgitif y; versusp; (for the sake of
simplicity, in the rest of this paper we will denote all th@ir variables by no matter whether they
are parameters, initial values or control variables).

Local sensitivity coefficients are the partial derivatiedshe model state variables to the model
inputs evaluated at the normal operating point where allitipat variables have their nominal
values,p. Considering the model described by Hg2, the sensitivity coefficients that form the
sensitivity matrix are:
0yi

9p; > y=y(t,p),p=p

These sensitivities are denoted absolute sensitivitytfoms and are useful for calculating errors due
to input factors variations and for assessing the times attwan input has its greatest or least effect.
However, absolute sensitivity functions are not normaliaed they are not useful for comparing the
effects of different input factors for what relative seivity functions, computed by multiplying the
partial derivative (the absolute sensitivity function) thye nominal value of the input and dividing
by the output value, should be used. The relative sensitdfithe functiony; to variations in the
parametep, is given by:

Supess(p) = ( ®3)

Srel,ij (p)

% changeinp; — 9yi/yi _ pj <% 4)

~ % changeiny;  Opj/p; i 8pj)y=y(t7m7p=i)

Relative sensitivities are ideal for comparing parametdrscause they are dimensionless,
normalized functions. However, they present division bgozeroblems wheny; is equal to zero
and gives undue weight to the response if it is small. Thathg, & threshold valuey(,,;,,) should

be defined to be used in the premultiplicator factor in Ey.when the latter is smaller than the
Ymin value [17]

There are several numerical methods for the calculationoctll sensitivities €.g. finite
differences 19|, iterative approximation with directional derivativeld], direct decoupled method
[20Q]) but the calculated values should be identical within thienerical accuracy of the method
used.

2.4.2. Morris method.The Morris method is traditionally used as a screening §eitgitechnique
for problems with large number of variables (100s, 1000s¥@nfor CPU intensive models. It
is composed of individually randomized “one-factor-dirae” experiments. Each input factor is
assumed to be uniformly distributed in the interval [0,14 amay take a discrete number of values,
called levels. The range of each input is divided ihtievels then the region of experimentatiQn

is a N,-dimensional k-level grid.
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GLOBAL SENSITIVITY ANALYSIS FOR SYSTEMS BIOLOGY 5

The sensitivity measures proposed in the original work ofii$q14] are based on what is called
an elementary effect (EE). The EE of the j-th input factortomitth input factor is defined as:

~ [y’i(ﬁh "'7]5"—1715" + Aaﬁ 1, 7]3Np) - yL(zA))]
EEU (p) — J J A I+ (5)

whereA is a predetermined multiple af/ (k — 1) and pointp € Q2 is such thap + A is still in €.

The distribution of elementary effects; is obtained by randomly sampling points from¢2.
Two sensitivity measures are evaluated for each fapgtpan estimate of the mean of the distribution
F,;, ando;; an estimate of the standard deviation/f. A high value ofy,; indicates a parameter
with an important overall influence on the output. A high wadiio;; indicates a parameter involved
in interactions with other parameters or whose effect idinear. Non-monotonic functions have
regions of positive and negative values of partial denestiE E;; (p), hence due to the effect of
averaging,u;; can be very small or even zero. To avoid such situations Camgo et al. 1]
considered another sensitivity measyrg, which is an estimate of the mean of the distribution of
the absolute values of the elementary effects and showed thgives a better estimate of the order
of importance tham;;.

The total computational cost for the simplest form of thistimoe for each distributiorF;; is
Nr = 2NN, (each elementary effect requires the computatiog; dfvice). Morris [L4] suggested
a more economical algorithm by using already computed gabdiéunctions in the calculation of
more than one elementary effect that has a codiet= N (N, + 1). Previous experiment§] have
demonstrated that the choike= 4 and N = 10 produces valuable results.

Due to the frequent dispersity of biochemical parametegsiraented before, in this work the
factors are assumed to be uniformly distributed in [0,1] &@nen transformed from the unit
hypercube to a logarithmic distribution. This strategy satmexplore the parameter space in a more
effective way when it spans over several orders of magnitude

2.4.3. Variance based methodBhe most widely used variance based methods are the extended
FAST [22] and the Sobol’ methodlf considered as one of the most powerful despite its high
computational cost. The basis of the Sobol’ method is themgosition of the variance of the
model output function (D) into summands of variances of cimrations of input parameters in
increasing dimensionality. The variances of the terms mANOVA decomposition add up to the
total variance of the function:
p NP
D=3 > Dj.j (©)

s=171<...<Js

whereD,, ;. are called partial variances. Sobol’ defined the globaliseitg indices as the ratios:
SI;, ., =Dj,. ;. /D (7)

Therefore, allSI;, .. ;, are nonnegative and add up to one. Ther@8reterms in this summation and
the calculation of all of them is sometimes not practicat.thts reason Sobol’ introduced sensitivity
indices for subsets of variables and the total sensitivigides accounting for the interaction
between parameters defined as:

NP
SIf = SI;+» SLis+...+Shys ., 8)
s=1

The first-order sensitivity indicesS(;) account only for the effect of the paramejerand the
total sensitivity indicesSIjT) account for the effect that; and its interactions with the rest of the
parameters have on the model output. Soldi] found an elegant way of computing these indices
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6 RODRIGUEZ-FERNANDEZ ET AL.

directly from the modef (p). This method was improved later by Saltelf] leading to:

I T [f(p)f(pj,p’ ) — f(p')] dpdp’
SI] - fHNp dp f()(p) (9)
1y, [F(0) - p], 1* dpdp’

=)
2 fHNp f2 02(p)

wherep andp’ are two independent random pointsAi'» and(p;, p’ ;) is the result of taking the
elementp; from p and replacing it intg’. However, variance based methods generally require a
large number of function evaluations to achieve reasoraieergence and can become impractical
for large systems biology problems.

T
SI;

(10)

2.4.4. Global derivative based methodss already mentioned, local sensitivity indices are
guestionable when the model input is uncertain and when tdeiris of unknown linearity. To
circumvent this limitation, different authors suggestedise the average of the local sensitivities
over the parameter space. This approach was formalized blgdtenko et al.1]6] who called the
resulting set of measures derivative based global seigitheasures (DGSM), using an analogy
with variance based global sensitivity measures. A linkMeein DGSM and Sobol’ indices was
established inZ4].

DGSM are based on averaging the local sensitivity meastireg®) over the parameter space
HN». As explained for the Morris method, non-monotonic funetionay have positive and negative
partial derivatives, thus, averaging the values can leadisteading results so measures based on
the absolute value d8;;(p)| should be used. Such measures can be defined as:

M;; = / p)|dp (11)

Nonlinear and interaction effects can be captured by thewee of)/;;:

LJ \// |SL_] - LJ dp (12)
HNp

¥;; can also be presented as:

52 = / 1S, (p) 2 dp — M2 (13)
HNp

Note that in this technique the individual effects are eatdd as strict local derivatives with small
increments unlike the incremental ratios of the Morris rodth

2.5. DGSM in a Bayesian framework

In addition to the increasing use of well established glatehsitivity analysis, several novel
methodologies have been developed for assessing inputigénes in systems biology models.
Cho et al. 5] evaluated the global sensitivities by comparing the ifigtions of the parameters
associated to acceptable and unacceptable sets with raspeacthreshold objective function
value. By checking the correlation coefficients of the cgpmnding cumulative frequencies each
parameter is classified as insensitive if the two distrimgiare not similar or sensitive otherwise.
Bentele et al. 26] calculated a measure of the global sensitivity from a widdhaverage of the
absolute value of the relative local sensitivities overgheameter space (the weighting factor aims
to amplify the statistical impact of sensitivities for tieoparameter sets that are more consistent
with the experimental observations and therefore moreabigf). Zheng et al9 proposed a GSA
method embedded within a random-search-based parametsifichtion routine (PID-embedded
method) that calculates the sensitivity indices directhnf the parameter sets generated by a
Genetic Algorithm during parameter optimization.
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GLOBAL SENSITIVITY ANALYSIS FOR SYSTEMS BIOLOGY 7

All these methods make use of the information available ifof experimental data to focus
the sensitivity analysis on regions of the parameter sgzateare more plausible to fit the data. In
this work, we suggest a method that enhances the benefitploftaxg the available information by
computing the prior distribution of the parameters andgraéng the derivative based sensitivity
measures (DGSM) taking it into account. The derived metfi€s ;; andX% ,;, can be considered
as probabilistic or Bayesian sensitivity analysis indisesve will call them Bayesian DGSM.

Sensitivity analysis is often related to parameter estonahrough the identification of crucial
parameters and the reduction of the model by fixing noneissemntes. Several estimator functions
have been suggested as metrics for parameter estimatidre ifield of systems biology, most
notably the maximum likelihood estimator introduced byheisin 1912 P7], for being the one
that maximizes the probability of the observed event. The afsthis estimator requires several
assumptions including no modeling errors and Gaussian @vkrvariance for the measurements
(see 8] for details). Moreover, the maximum likelihood functiosi, represents the probability
density function (PDF) of a model for the occurrence of thesueements for given parameters.
This function depends on the probability of the measuremand is given as:

NE NV; NM;;

. (G — yijk(p))” 14
HH H \/—271-0-1]]6 pl 2ULJk ] ( )

1=1j=1 k=1

wherep is set of parameters under analysig; k are indices for the experiments, variables, and time
points, respectivelylN E is the number of experimentd]V; is the number of measured variables
in experiment; N M, is the number of measures of the variapléuring experiment; o7, is the
variance of the measufeof the variablej in experiment; g;, is the measuré of the variablej
in experiment; v, is the model predicted valueof the variablej in experiment.

In this work we suggest the computation of the maximum Iiedid function for a discrete
number (V) of parameter sets, therefore, the PDF is a representatitieeoprobability of the
available measurements to be generated by a particulém setler to generate a discrete probability

distribution:
N

> plp) =1 (15)

q=1

wherep, is theg" realization ofp defined as a discrete-value random variable. Thus the pifitjpab
of p, can be defined as:

J(p,)
Zflv=1 J(pq>

and it can be used in the evaluation of the Bayesian DGSM adlelkin the following section.

p(py) = (16)

2.6. Evaluation of the integrals

The computation of Bayesian DGSM, as well as Sobol’ indicesragular DGSM is based on the
evaluation of a series of integrals that can be presentdeeifotlowing generic form:

I[f] = f(p)dp (17)

HNp

It is assumed that the functigi{p) is integrable in theV,-dimensional unit hypercub& .

Classical grid methods for evaluating integrals becomgiaient in high-dimensions because of
the “curse of dimensionality” (exponential grows of theuigd integrand evaluations)9]. Monte
Carlo (MC) methods do not depend on the dimensionality aede#fective in high dimensional
integrations. However, the efficiency of MC methods is deieed by the properties of random
numbers that are known to be prone to clustering. A higher oattonvergence can be obtained
by using deterministic uniformly distributed sequence®&nown as low-discrepancy sequences
(LDS) instead of random numbers. Methods based on the udagiecb sequences are known
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8 RODRIGUEZ-FERNANDEZ ET AL.

as Quasi Monte Carlo (QMC) methods. LDS are specificallygiesi to place sample points as
uniformly as possible. Unlike random numbers, successi¥8 points “know” about the position
of previously sampled points and “fill” the gaps between th&imere are a few well-known and
commonly used LDS, also known as quasi random numbers, fadedit principles were used for
their construction by Holton, Faure, Sobol’, Niederrei@d others. Many practical studies have
proven that Sobol’ LDS are in many aspects superior to ot [29].

For a random variable that is uniformly distributedAir'»

I[f]=E[f(p)] (18)
whereE|[f(p)] is the mathematical expectation. An approximation of thjseetation is

N

In[f1 =) f(p)r(p,) (19)

q=1

wherep, is a sequence of LDS points of lengthuniformly distributed in a unit hypercubig"».

Assuming equiprobable sampling pointgp,) = 1/N. Therefore, from Eq.9-10) and applying
the QMC algorithm for the evaluation of the integrals to eadkput variabley; instead off, the
Sobol’ indices can be calculated in a straightforward maaceording to the formulae:

Slij _ N Z [yt yz(pJ,P_J) yi( I)] (20)

NZyz( Zyt(p )?
1 N v > [vi@) = vi(pj,p

T Dk
5y = + v (p) — (% Zyzp)Q @)

Thus, each Quasi Monte Carlo sample point requires thre@uotations of the mode); (p), v:(p’)
andy;(p;, p’_;). For the computation of the Sobol’ indices of an entire seVpparameters, using
N sample points, the number of function evaluation¥js= N (N,, + 2).

In the same way, applying the QMC algorithm to Efjl{L3) and assuming that all the sampling
points have equal probability, the DGSM can be easily coeghas:

N
1
Mi; = N;|Sﬁ'j(pq)’ (22)
1 & 2
So= oy 2 ISue)l - M (23)
qg=1

The computation of the DGSM usingy sample points requires the evaluation of the local
sensitivitiesN times.

Bayesian DGSM takes into account the prior distributionhef parameters, therefoid ;; and
Y p,i; can be computed as:

N
Mpi; = > |Si(p,)|p(p,) (24)

1S55(p,)|” p(R,) — M3 (25)

WE

2
EB,ij
1

q

2.7. Extension to complex models

In the case of complex models with multiple inputs and midtgutputs, large sensitivity matrices
can be obtained and summary indices need to be computedtey eerpret the results. When
dealing with systems of ordinary differential equation®@3) or differential algebraic equations
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GLOBAL SENSITIVITY ANALYSIS FOR SYSTEMS BIOLOGY 9

(DAES), sensitivity indices of every observed state vdeai each time point measurement with
respect to each of the parameters are usually evaluateddén  summarize all this information,
sensitivity indices as the average of all the for each parameter can be defined:

1 1 e
S; = A ;;sﬁ(tk) (26)

whereN, is the number of measured states andhe number of time points.

The same expression is applicablejtg, o, SIij, SI;, Dij, Mij, Yij, Mpi; and Xp ;.
However, different indices have particular features angly thandle differently the effects of
averaging information as discussed below.

Sobol’ indices, are based upon the fraction of related glavéiriances in the overall variance,
that is, they provide information about the sensitivity hthe uncertainty is distributed among
the parameters) but not the magnitude of the uncertaintyishtessessed by the total variande
Thus, this summary will provide an average of the contriloutp the total variance for each output
variable at each sampling point. When an overall insignifigearameter is the most important in
unsensitive regions of the time space or ranks very highmegpect to an output variable that shows
low uncertainty, the results can be misleading. Furtheemehen the value of the total variante
has large variability among the different states or sangpfiaints this ranking can be difficult to
interpret. On the other hand, this normalization is somesinseful since large discrepancies on the
total variance of different states or even the same statéfereht time points can be due to state
variables ranging over different orders of magnitude aeg#rcentage of change can be of interest.
Therefore, we recommend the computation of the total vaedp together with the indiceST;;
andSI,g to get a deeper insight into the input factors importance.

Local sensitivities, Morris metrics, DGSM and Bayesian IMG8Sombine uncertainty with
sensitivity analysissS;;, i;, M;; and Mp ;; provide information about the relative importance of
each parameter, but since they are not normalized metniesum of them ovey (i.e. for the N,
parameters) are informative measures of the uncertairgyafticular output in a certain time point.
However, when the order of magnitude of the measured stagbles is significantly different, the
resulting averaged measures can be misleading. Dependitigeurpose of the analysis, the use
of relative values of the sensitivities may be advisablefmnputing these indices. If the sensitivity
analysis is performed prior parameter estimation, simii@asures should be used. That is, if a
weighted least squares function will be used for the estomathe relative sensitivities would be
a better proxi of the parameter ranking. In contrast, if thgroization will be based on a standard
least squares metric, the use of absolute sensitivitiedisable.

The use of relative sensitivities with respect to the inmwd autput variance, could in principle
overcome the main drawback of standard DGSM that providedinee measures for indices with
different uncertainty when they have the same structutalirothe model equations. However, we
have found that the use of this normalization when some obtiyeut states have small uncertainty
can lead to wrong conclusions overweighting the importarfitkee parameters affecting these states
even if the overall importance is small.

Biological networks often involve a wide range of time ssatbroughout the network. To
avoid the side effects of averaging information of eventsuotng over different time scales,
the experimental sampling points should be used as the tivhes the sensitivity is computed;
therefore different time points will be required for stathat change at different time scales.
Assuming that the experimentalists have set up an apptegmig@eriment taking into consideration
the different time scalese(g.an enzyme binding event will be measured at shorter inteven
protein synthesis), the resulting sensitivity indiced adicurately average the information from each
of the species involved in the experiment.

2.8. Applications of sensitivity analysis in systems lgjglo
Local sensitivity analysis have been widely applied in thlfof systems biology to identify critical
factors controlling biological behavior, design and opzdengenetic circuits, analyze the tradeoff

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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between robustness and fragility in cell regulation, and éppropriate drug target8(]. However,
a small but rapidly increasing number of studies in this anade use of global sensitivity measures
[25, 26, 31, 32, 33, 34, 11, 35].

The main application of GSA consists on assessing the effieparameter uncertainty in the
model outcome that can be useful for establishing a rankimgnportance of the parameters]],
identifying the critical parameters for a subsequent patanestimation, model reduction by fixing
unessential parameters, suggesting new experimentgndesy determining the critical variables
that capture the essential characteristics of the systén3f), etc.

Other applications can be found i85 where a method based on GSA was used to determine
the pseudo-globa priori identifiability of a model describing the aggregation of taotein. A
weighted average of a large number of correlation matriedsutated from the local sensitivities
at quasi-random points in the relevant parameter space s&bto remove the parameters that
appeared to be highly correlated.

In addition, several attempts to overcome the drawbackgtimal experimental design (OED)
based on the Fisher Information Matrix (FIM) due to its locature have been suggestag,[34, 8.

In these approaches, the input factors for the GSA are nceloing parameters of the model but
the experimental conditions such as initial values for tiagesvariables, control variables profiles,
sampling scheme, etc.

Other promising applications of global sensitivity an&yis the field of systems biology are:
robustness analysiSf] aiming to determine whether a system is capable to operatnvits
parameters, initial conditions and/or experimental cbods$ vary within their expected ranges;
determination of modularity of biochemical network&g] identifying subsets of states whose
concentrations depend only on a subset of parameters antifiicktion of species for drug target
selection B1, 33 by setting the critical steps in the network that could drilisease development.

3. RESULTS

In this study, a benchmark problem regarding a biochemiatiyay with three enzymatic steps
presented byd7] has been considered to illustrate the sensitivity anslysthods described above.

3.1. Problem statement: three-step biochemical pathway

This case study, considered as a challenging benchmarlepndbr parameter estimation by several
authors (B8],[39],[40]) involves a biochemical pathway with three enzymatic stepcluding the
enzymes and mRNAs explicitly. Figugecontains a diagram illustrating the network of reactions
and kinetic effects (feedback loops). The mathematicahtdation of the dynamic model consists

Concentration

0.5

e

SR T I == s
S «4—» Ml ¢—» M2¢——>» P 0 20 40 60 80 100 120

Time

Figure 2.Biochemical pathway scheme. Solidrigure 3. Concentration of the 8 species involved
arrows indicate reversible mass transfer reaction& the model using the nominal values for the
dashed arrows indicate activation, and dashed parameters.

curves with blunt ends indicate inhibition.
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of 8 nonlinear ODEs that describe the variation of the mdibooncentration over time:

dEl V4 Gl
- AL L E 27
dt Ki+G, 1 @n
dEQ ‘/5 G2
= = 2 Lk E 28
dt Ks+Gy 077 (28)
dEs Ve G's
=3 > 3 ke E 29
= Koty ol (29)
= Vl ki Gy (30)
14 ()" ()
= - R Gy @31
1+ () + (52
L e s G (32
1+ () + (52)
dMl _ kcatl E1 (ﬁ) (S — M1> B k‘C(th E2 (ﬁ) (Ml — MQ) (33)
dt 1+ Kill + I({\/IITILQ 1 + Krrtg, + Km4
dMQ _ k‘C(th E2 (K ma > (Ml MQ) B k‘C(ltg E5 (K e > (M2 - P) (34)
dt 1+ Krrig, + Km4 1+ KI'VrIrzb + Kf;bs

whereE;, E; and E3 are enzymestr;, G, andGs are the mRNA species for the enzyma@s;

and M- are intermediate metabolites of the pathwayand P (pathway substrate and product)
are concentrations under our contriok(control variables) and the rest are the kinetic parameters
involved on the pathway. The 36 kinetic parameters are divith two different classes: hill
coefficients, allowed to vary within the range (0.1, 10), afidhe others, allowed to vary within
the range (102, 10?). The substrateq = 10) and the product® = 1) are held constant over
the experiment. The initial conditions for the remainingtes areE; = 4.000, Es = 0.3641,

E3 =0.2946, G1 = 0.6667, G2 = 0.5725, G3 = 0.4176, M1 = 1.419 and My = 0.9346.

The results of an in-silico experiment using the nominaligalfor the parameters specified in
Tablel are represented in FiguBe All the sensitivity metrics were computed for the 36 partare
with respect to the 8 measured states at the measured timss gom t=0 to t=120, every 6
minutes).

The computations reported in this work were performed on a/INNKEL XEON
CPU (2.13 GHz) running Windows 7 and using the Matlab-baseolbbx SensSB {].
The necessary files to reproduce the results can be found énfahowing web site:
http://www.iim.csic.es/ ~ gingproc/SensSB.html

3.2. Local sensitivity analysis

The absolute,.;s) and relative §,..;) local sensitivity indices were computed at the nominahpoi
for the parameters (see Tab)eFigures4 and5 show the result of averaging these sensitivities over
time for each of the parameters and the contribution of tiheitieities with respect to each of the
state variables is represented in different colors. Théyaisgperformed using absolute sensitivities
highlights the importance of only 6 of the parameters andtrabthe uncertainty is generated by
the intermediate metabolited; and M,. As can be seen in Figui@the absolute value of these
two states is way higher than the rest of the species makiglikolute sensitivities to have large
values too. In contrast, relative sensitivities buffesthifect and reveal the effect of the uncertainty
due to the rest of states. This effect would also be found iarameter estimation problem where
the optimization would be mostly driven by fitting these 6graeters. Thus, there is an obvious
motivation for normalizing the models and/or using costctions for the parameter estimation that
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5 10 15 20 25 30 35 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
parameter parameter

Figure 4.5, at the nominal point. Figure 5.5,..; at the nominal point.

normalize the contribution of the different states as thgimam likelihood estimator of a weighted
least squares.

As expected from the model structure they are clusters drmpaters influencing each of the
state variables,e. parameterg; to pg are mainly affecting the dynamics of tmeRN A species
G, and the enzym&,, parameterg; to p;» are mostly influencingz> and E,, parameterg;s-ps
are responsible fo&; and E's behaviorpig-ps; are involved with the enzyme, pao-poy With the
enzymeks, pos-par With the enzymer3 and the rest of the parameters are essentially influencéng th
concentration of the metabolitdg; and M- although almost all of the parameters have significant
effect on these species what is not surprising since theptmenediate metabolites of the pathway.

The relative sensitivities reveal that for the nominal poiio% of the parameters account for
less thanl5% of the information while the0% most influential account for more th&v% (see
Figure5). Considering the absolute sensitivities, this effectvisremore noticeable (see Figute
therefore, in order to efficiently estimate the model part@nsanost of the efforts should be focussed
on the most influential group of parameters whereas thengssriant can be fixed to their nominal
values. These results are also in accordance with the coankidrawn by Gutenkunst et adll]
that tested several systems biology models showing thapfist’ sensitivity spectra (eigenvalues
roughly evenly distributed over many decades) are univensaystems biology models. This
property helps to explain the difficulty of extracting preziparameter estimates from collective
fits and reinforces the need for establishing a paramet&imgn

It can also be seen in Figurds5 that parametergs, pg andp:s (i.e. ni1, nis andniz) have
negligible sensitivity. This is an obvious result sinceyttae exponents off-, -£- and 7=
respectively (see E@0-32) and sinceP, Ki;, Ki, and Kiz are equal td these fractions WI|| not
be modified by changes on the exponents. However, this waildenthe case i or Ki,, Kis and
Ki3 move from their nominal values what is likely to happen ina@ problem where the values of
the parameters are usually unknown. This is an artefactoafl fmne-at-a-time” (OAT) techniques
that perturb only one parameter from the nominal point irhesimulation missing the effect of
perturbing several parameters simultaneously or exgatifierent regions of the parameter space.

Very valuable information can be drawn from local sendiidg, yet, the most difficult part of the
analysis is to identify a good estimator for the parametieisesa bad choice of the parameter values
will critically influence the parameter ranking. The seingty analysis is usually performed before
the parameter estimation, therefore, more robust methedseseded in order to ensure that small
changes in the parameters values will not significantly geahe results of the study.

3.3. Elementary effect method

In a first stage, the global sensitivities of the parametasseeveomputed by means of the Morris
method using a four level grids(= 4) and 10 trajectoriesN = 10) as recommended irl]. For

36 parameters this leads 1 = 370 function evaluations that for our model can be computed
in a few seconds. The low computational cost compared to ofdsie global sensitivity analysis
technigues makes this method very appealing. Howeverethdts obtained were pretty inconsistent
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and different executions of the method provided very diféresults. Consequently, we increased
the number of levels in the grid up to= 10 and the number of trajectories 16 = 100 reaching
Np = 3700 that computationally is still affordable (a few minutes iara@omputer). Figures-7
show the results for a uniform and a logarithmic distribnticespectively. The use of a logarithmic
distribution allows for a better sampling of the space andenmfluential parameters were detected.
It can also be noticed that even though this is a OAT methadtesit is a global technique, the
sensitivity for different combinations of parameters canassessed and, py andp;5 no longer
appear to be negligible as suggested by the local analysis.

400 T T T T T T T T T T TpT T T T

250 3508

3001 -
200

2501

150
= 2001

100| 1501

100
50)

| S _HEE — - I | | [ —
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
parameter parameter

Figure 6.z with uniform distribution. Figure 7.1 with logarithmic distribution.

As will be shown comparing these results with more powedahhiques as variance based ones,
the Morris method provides a good compromise between acgaral efficiency and is very useful
as a screening method especially for sensitivity analyBigrge or costly models. The overall
performance of the measugéan ranking the factors in order of importance is satisfactbiowever,
as pointed out byq1], in some instanceg is prone to Type Il erroi.e. failing in the identification
of factors of considerable influence on the model, beingeaimore resilient to Type | errdre.
the erroneous identification of a factor as influential wtes mot.

3.4. Variance based methods

The Sobol’ total sensitivity indicess¢”) computed from a uniform and a logarithmic distribution
using 2'2 LSD points are represented in Figurg®. Analogously to the Morris method, the

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
parameter parameters

Figure 8.517 with uniform distribution. Figure 9.517 with logarithmic distribution.

logarithmic distribution explores the parameter spacenmoge effective manner and it detected a
larger number of influential parameters. The results froenuthiform distribution are pretty different
to those obtained by the Morris method but the ones given &yatparithmic distribution are very
similar, differing only in the 8 last parametens{-ps¢) involved mainly with stated/; and M.

In order to further analyze these differences and to stueynfiuence of averaging the sensitivities
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with respect to the 8 states (Etf) we have computed the partial variancbg (| for the logarithmic
distribution. The partial derivatives are not normalizgdlie total sensitivity of each of the outputs,
thus, states that have a small contribution to the total waicdy in absolute terms will not be
reflected. FigurelO shows a very low variance for parametess-psg and the contribution of the
sensitivity related to statef; and M, is almost negligible. This explains the divergence of the

)

T
i

partial variance (D,

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

parameter
Figure 10.D™ with logarithmic distribution.

Sobol’ method with the elementary effects based meagsiihat, since it is not normalized by the
uncertainty of each of the states, also showed very low Bahsfor pag-pss.

Sobol’ method is a powerful technique for quantifying thiatige importance of input factors
or groups of factors. However, the main drawback is the cdatjmnal cost associated that, for
computationally intensive models or models with a large bemof parameters, can become
prohibitive. The convergence properties of this method bél analyzed in more detail in section
3.6

3.5. Derivative based global sensitivity measures

Figuresl1-12represent the values of the derivative based sensitivigsume)/,..; based on relative
sensitivities and the uncertainty due to each of the statablas, computed usingf? LSD points.
In this case, the uniform distribution captures better theeutainty than the Morris and Sobol’

= |
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
parameter parameter

Figure 11.M,..; with uniform distribution. Figure 12.M,..; with logarithmic distribution.

methods using the same distribution function. Nonethetesdogarithmic distribution identified a
larger set of sensitive parameters. The results of the DG@\uaite different to the Sobai” and
the Morriszi although the three methods are able to identify the most itapbfactors. The main
reason for that is that DGSM relies on partial derivativedevobol and Morris methods are based
on incremental ratios. The parameters with the highést arepg, p12, p1s, P21, p24 andpor that

in the model could be seen as the eigenvalues of the systemn \@dnsidering a large domain for
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the parameters, DGSM give valuable information about thecgire of model without taking into
account the uncertainty of each of the parametergarameters playing the same role in the model
equations but with different distribution would not be d@iguished).

The relative sensitivities for parametexs-psg and the contribution of the staté$, and M, that
were significant for the nominal point are negligible in theexall parameter space in agreement
with the results provided by and D7

This structural information can be very useful, howevempatational researchers are often
interested in the sensitivity in a plausible region of theapaseter space. In this case, and when
some experimental information is available, the use BayeBIGSM is advisable. FigurE3 shows
the distribution for parameters; andp,. In this case we have a convex problem with enough
information to define the distribution, thus, the measufg; 5 tends to the local sensitivity values
in the optimal set of parameters (see Figli®. This method is advantageous since it does not

p(p)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
parameter

Figure 13. Distribution of parameteps andps. Figure 14.M,..; p with logarithmic distribution.

require a previous estimation of the parameters and it #lsgsthe consideration of functions that
either due to the lack of information or structural propesthave multiple minima in the area of
interest and therefore they do not have a convex distribdtinction.

3.6. Convergence of the numerical methods

In order to analyze the convergence properties of SobolB&M methods, the results obtained
from Monte Carlo and Quasi Monte Carlo (Sobol' LDS) base@gnation are compared here.
Considering the sensitivity obtained with the maximum nemtf sampling points(®) as the true
value, the error of the method is computed as ¥x.

errorSI1(2') = \/(W) fori=1:n (35)

The convergence considering the results frdath LSD points as the true value is represented
in Figures15-16 for Sobol' and DGSM methods respectively, plotting the atioh of the error
with respect to the number of sampling points. Note that eaethuation of a sampling point for
Sobol’ indices implies the computation of the modél + 2 times (in this case 38 times) while the
evaluation of a sampling point for DGSM only requires the pomation of the partial derivatives
with respect to each parameter.

From Figuresl5-16 it follows that QMC integration provides very fast conveange rate with
—1.08 for SI” and —0.58 for M,..;, while for MC integration convergence is much slower with
—0.58 for SI7 and—0.26 for M,..;. Apart from DGSM using MC integration, the rest of the method
achieved a convergence error lower thaft. Although this error could be improved by increasing
the number of sampling points, we consider this value aat¥@ftor our purposes. This convergence
analysis is of great importance for determining the sufficieumber of sampling points required
to properly evaluate the sensitivities since it is probleespehdent and ne priori value can be
suggested.
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Figure 15. Convergence of7,. Figure 16. Convergence of,..;.

4. CONCLUSIONS

Global sensitivity analysis is an emerging tool for assipiin the development of sound dynamic
models of biological systems. An overview of some of the la@é methodologies is provided here
and the main reasons for their analogies and differencesralgzed.

The Morris method provides a good compromise between acgumad efficiency and it
is particularly useful for computationally expensive misdélhe choice ofk =4 and N = 10
recommended in the literature has been found insufficieribfomodel considered in this work and
a thinner grid together with a larger number of trajectoisesuggested in order to highly improve
the accuracy maintaining efficiency.

The importance of analyzing the partial derivativBd together with the Sobol’ indices is
highlighted in this work. The need for summarizing the imfiation about the sensitivity with
respect to different states can sometimes lead to indicd#fifult interpretation and some of the
information can be lost in the normalization process. THaesof D7 can provide information
about the uncertainty where&g andSI17 are only focused on the sensitivity (how this uncertainty
is distributed among the different input factors).

Derivative based Global Sensitivity Measures(DGSM) pdevinformation about the model
structure and are less dependent on the distribution ofgrenpeters. Moreover, DGSM are ideal to
study how the model is affected by small changes in the ingeibfs while the Morris and Sobol’
methods are preferred when we are interested on analyzngshilts of larger alterations.

The critical influence of the parameters distribution on tésults of a sensitivity analysis is
stated and illustrated with a relevant benchmark model. dftace of a logarithmic distribution
for exploring large parameter spaces without prior infaioraabout the plausible regions for the
optimal values has been proven very effective for the thilebay methods considered (Morris
method, Sobol’ indices and DGSM). Moreover, the QMC basésbiration method showed higher
convergence rate than the MC for computing the Sobol' irgliaad derivative based global
sensitivity measures.

The novel methodology presented here, Bayesian DGSM, geeva good estimation of the
sensitivity of the parameters taking maximum advantagdeftpriori available information in
form of experimental data.

APPENDIX A
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Table I. Nominal values and bounds for the 36 kinetic paranset

Parameter p# Nom.val | Parameter p# Nom.val

\ %1 p1 1 Vi P19 0.1
K D2 1 K, P20 1
ni1 P3 2 k4 P21 01
Ka, y2 1 Vs P22 0.1
naiy Ps 2 Ks Pp23 1

ky D6 1 ks P24 0.1

Vs p7 1 Ve P25 0.1
Ko P8 1 Kg D26 1
ni2 Po 2 kﬁ P27 01
Kas P10 1 kcaty D2s 1
naz Pp11 2 Km, P29 1

ks D12 1 Kmg P30 1

Vs P13 1 kcats P31 1
Kig D14 1 Kmg P32 1
nig Pis 2 Kmy P33 1
Ka3 P16 1 kcat3 P34 1
nas P17 2 Kmsg P35 1

ks P18 1 Kmg D36 1
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