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SUMMARY

The reliability of model predictions is affected by multiple sources of uncertainty, therefore most of the
efforts for modeling biological systems include a sensitivity analysis step aiming to identify the key
contributors to uncertainty. This generates insight aboutthe robustness of the model to variations in
environmental conditions, kinetic parameters, initial concentration of the species or any other source of
uncertainty. Local sensitivities measure the robustness of the model to small perturbations on the inputs
around their nominal value. There are several numerical methods for the calculation of local sensitivities,
but the calculated values should be identical within the numerical accuracy of the method used. In contrast,
as will be shown in this contribution, the results of different global sensitivity analysis (GSA) methods can
be very different and highly dependent on the distribution considered for the inputs under evaluation. In this
work, derivative based global sensitivities are extended to be able to consider an accurate probability density
function for the parameters based on the likelihood function. This strategy enforces the areas of the parameter
space most likely to reproduce the desired behavior minimizing the importance of parameter sets with low
probability of being optimal to dominate the sensitivity ranking. A model of a biochemical pathway with
three enzymatic steps is used here to illustrate the performance of several relevant GSA methods considering
different probability density functions for the parameters and revealing important hints about which method
and distribution to choose for each type of model and purposeof the analysis.
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1. INTRODUCTION

Pareto’s law (also known as the law of the “vital few and trivial many”) states that, for many events,
roughly 80% of the effects come from 20% of the causes. This behavior has also been recorded in
the field of modeling where the input factors’ importance hasbeen found to be unevenly distributed,
with a few factors creating almost all the uncertainty and the majority making only a negligible
contribution [1]. This property motivates the determination of the most relevant inputs that can
ultimately lead to model simplification if negligible factors are found.

Sensitivity analysis (SA) and uncertainty analysis are related methods that ideally should be run
in tandem. While uncertainty analysis focuses on quantifying uncertainty in the model output, SA
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2 RODRIGUEZ-FERNANDEZ ET AL.

could be defined as “the study of how uncertainty in the outputof a model can be apportioned to
different sources of uncertainty in the model input” [2].

In most of the available systems biology literature, sensitivities are understood as derivatives
of a particular state with respect to a particular input, andthe influence of factors on states is
assessed by looking at a single point in the input space. However, global sensitivity analysis (GSA)
methods that investigate the sensitivity over the entire input space have been recently studied with
application to biochemical models [3] and several tools facilitating the computation of the most
known sensitivity measures have been developed, namely Systems Biology Toolbox 2 [4], COPASI
[5], SBML-SAT [6], PottersWheel [7] and SensSB [8]. Nevertheless, a SA method can fail if its
underlying purpose is vaguely defined; diverse tests and measures may be thrown at a problem,
producing a range of different input rankings but leaving the researcher none the wiser as to which
ranking to believe or favor [1]. Several studies on biological systems have shown that theranking
of the parameter sensitivity may largely depend on the analysis method [9, 10, 11] but the reasons
for these discrepancies have not been widely examined. Moreover, the distribution of input factors
has a large impact on the result of any GSA method and in the case of biological systems these
distributions are not always easy to assess.

In this work, we review several local and global sensitivityanalysis techniques (Morris method,
Sobol’ indices and derivative based global sensitivities)and we study their adequacy for different
applications. The crucial influence of the input factors distribution is analyzed and illustrated with
a benchmark case study regarding a biochemical pathway model. Moreover, we introduce a novel
GSA methodology that is able to account for the crucial role of the distribution of input parameters
when experimental data are available.

2. METHODOLOGY

In order to be able to make use of the different sensitivity analysis techniques as defined above,
we first have to identify the type of models under investigation and the input and output factors of
interest.

2.1. Mathematical models

Many dynamic models of biological processes together with the input-output experiment designed
for their identification can be described by a general nonlinear model. Letx be the vector ofNx

state variables andp the vector ofNp model parameters:

ẋ(p, t) = f [x(p, t),u(t),p], x(0) = x0 (1)

y(p, t) = g[x(p, t),u(p, t),p] (2)

Note thatf specifies the model,u specifies the vector ofNu control variables for a particular
experiment andy the vector ofNy measured states (output variables). An experiment is specified
by the initial conditionsx(0), the control variablesu and the observationsy.

2.2. Input and output variables

Once the model has been defined, the next elements to be identified prior to sensitivity analysis
are the input and output variables of interest. In mathematical models of biological systems the
output variables are usually the concentration (or a function of them) of the measurable biological
components (proteins, metabolites, transcriptions factors, etc.). Depending on the target of the
analysis, a certain behavior of a set of states is under investigation, such as the agreement with
available experimental data or certain qualitative dynamics (steady states, monotonicity, oscillations,
etc.).

Given a nonlinear dynamic model representing several components, the set of states under
analysis and the time points where the sensitivities are evaluated will affect the results of the
importance ranking. Often, the sensitivity of each output factor with respect to each input factor
is evaluated at the given sampling points but when the problem size increases, this information
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GLOBAL SENSITIVITY ANALYSIS FOR SYSTEMS BIOLOGY 3

has to be summarized for the sake of clarity. The way of computing these metrics (averaging the
sensitivities over time or focusing on other regions as maximum values or values at the steady state;
using relative or absolute values with respect to the outputand/or input factors, etc.) will strongly
influence the results so particular attention should be payed.

Most of the sensitivity analyses performed on biological systems are focused on the model
parametersp. In the case of an ordinary differential equation (ODE) model derived by the principle
of mass action from a network of biochemical reactions, the parameters are typically rate constants
(e.g.association rates, disassociation rates, catalytic rates) but models are not always deduced from
mass action, and other parameters such as Hill coefficients or Michaelis-Menten constants can be
found. Another common source of uncertainty are the initialvalues of the state variablesx(0). Other
variables affecting the model, including environmental orexperimental conditions, can be treated
as control variablesu.

2.3. Input factors distribution

One of the most important stages in GSA is to determine the distribution of input factors [12].
Making reasonable assumptions about thea priori distribution of the initial values of the state
variables or the uncertainty in the control variables is often feasible since most of the time they
can be measured directly. On the contrary, evaluating the distribution of the model parameters that
can rarely be determined experimentally is much more challenging. Ideally, the distribution of the
parameters can be inferred by estimation from the availableexperimental data and it can be stated
that the parameters present a certain distribution with a meanp̄ and standard deviationσ. However,
this is not always possible either because we want to performthe sensitivity analysis prior the
parameter estimation, the distribution cannot be easily characterized with the available data, or we
want to analyze the sensitivity of the model in broader parameter spaces. In these cases, a common
practice is to select wide bounds and assume that the parameters are uniformly distributed among
these values. The selection of the lower bounds is usually easy because of the physical or biological
meaning (e.g.a kinetic constant cannot be negative). However, the upper bounds are often chosen
arbitrarily to contain all the potential values for each parameter and, therefore, it is expected that
good solutions may lie closer to the lower bounds than to the upper bounds [13]. In this situation, a
uniform distribution will not intensively explore the regions with small values whereas a logarithmic
distribution will do. Moreover, a logarithmic distribution is also helpful in the case of variables that
can intrinsically have values in different orders of magnitude (for instance, pre-exponential factors in
kinetic equations or degradation constants of different species) or with variables without physical or
biological meaning, for which selecting bounds is a difficult task. Figure1 illustrates this situation
for a variable spanning from10−3 to 103. If we generate a number of sampling points between

10-3 10-110-2 100 102101 103

10-3 ≈3.3∙102 ≈5∙102 103≈1.7∙102 ≈6.7∙102 ≈8.3∙102

a)

b)

Figure 1. Intervals within a variable range:
a) Uniform distribution. b) Logarithmic distribution.

these bounds using a uniform distribution, we will approximately obtain the same number of points
in every interval depicted in Figure1a. Alternatively, if a logarithmic distribution is selected, the
points will have equal probability across the sub-ranges shown in Figure1b. In other words, with
a uniform distribution, roughly 90% of the sampling points will have values between102 and103

with approximately only 0.1% of the sampling points covering the area between10−3 and1.
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4 RODRIGUEZ-FERNANDEZ ET AL.

2.4. Review of available sensitivity analysis methods

Local sensitivity indices are computed at the nominal values used for the parameters and the
behavior of the response function is described only locallyin the input space. Moreover, preliminary
experiments and model calibration tests should be carried out in order to obtain a first guess for the
parameter values and an iterative scheme involving both steps is required in order to study the model
sensitivity. In addition, these methods are linear thus they are not sufficient for dealing with complex
models, especially those in which there are nonlinear interactions between parameters.

In contrast, global sensitivity analysis methods evaluatethe effect of a parameter while all
other parameters are varied simultaneously, accounting for interactions between parameters without
depending on the stipulation of a nominal point (they explore the entire range of each parameter).
Among the most widely used GSA methods are the ones studied inthe following: the Morris method
[14] mostly used as a screening method, the Sobol’ method [15] considered as one of the most
powerful despite its high computational cost and the derivative based global sensitivity measures
(DGSM) [16] based on averaging the local sensitivities over the parameter space.

2.4.1. Local sensitivity methods.Most of the sensitivity analysis described in the literature are
based on derivatives. Indeed the partial derivative∂yi/∂pj of an outputyi with respect to an input
pj can be thought of as a mathematical definition of the sensitivity of yi versuspj (for the sake of
simplicity, in the rest of this paper we will denote all the input variables byp no matter whether they
are parameters, initial values or control variables).

Local sensitivity coefficients are the partial derivativesof the model state variables to the model
inputs evaluated at the normal operating point where all theinput variables have their nominal
values,p̂. Considering the model described by Eq.1-2, the sensitivity coefficients that form the
sensitivity matrix are:

Sabs,ij(p) =

(

∂yi
∂pj

)

y=y(t,p̂),p=p̂

(3)

These sensitivities are denoted absolute sensitivity functions and are useful for calculating errors due
to input factors variations and for assessing the times at which an input has its greatest or least effect.
However, absolute sensitivity functions are not normalized and they are not useful for comparing the
effects of different input factors for what relative sensitivity functions, computed by multiplying the
partial derivative (the absolute sensitivity function) bythe nominal value of the input and dividing
by the output value, should be used. The relative sensitivity of the functionyi to variations in the
parameterpj is given by:

Srel,ij(p) =
% change in pj
% change in yi

=
∂yi/yi
∂pj/pj

=
pj
yi

(

∂yi
∂pj

)

y=y(t,p̂),p=p̂

(4)

Relative sensitivities are ideal for comparing parameters, because they are dimensionless,
normalized functions. However, they present division by zero problems whenyi is equal to zero
and gives undue weight to the response if it is small. That is why, a threshold value (ymin) should
be defined to be used in the premultiplicator factor in Eq. (4) when the latter is smaller than the
ymin value [17].

There are several numerical methods for the calculation of local sensitivities (e.g. finite
differences [18], iterative approximation with directional derivatives [19], direct decoupled method
[20]) but the calculated values should be identical within the numerical accuracy of the method
used.

2.4.2. Morris method.The Morris method is traditionally used as a screening sensitivity technique
for problems with large number of variables (100s, 1000s) and/or for CPU intensive models. It
is composed of individually randomized “one-factor-at-a-time” experiments. Each input factor is
assumed to be uniformly distributed in the interval [0,1] and may take a discrete number of values,
called levels. The range of each input is divided intok levels then the region of experimentationΩ
is aNp-dimensional k-level grid.
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The sensitivity measures proposed in the original work of Morris [14] are based on what is called
an elementary effect (EE). The EE of the j-th input factor on the i-th input factor is defined as:

EEij(p̂) =
[yi(p̂1, ..., p̂j−1, p̂j +∆, p̂j+1, ..., p̂Np

)− yi(p̂)]

∆
(5)

where∆ is a predetermined multiple of1/(k − 1) and point̂p ∈ Ω is such that̂p+∆ is still in Ω.
The distribution of elementary effectsFij is obtained by randomly samplingN points fromΩ.

Two sensitivity measures are evaluated for each factor:µij an estimate of the mean of the distribution
Fij , andσij an estimate of the standard deviation ofFij . A high value ofµij indicates a parameter
with an important overall influence on the output. A high value ofσij indicates a parameter involved
in interactions with other parameters or whose effect is nonlinear. Non-monotonic functions have
regions of positive and negative values of partial derivativesEEij (p̂), hence due to the effect of
averaging,µij can be very small or even zero. To avoid such situations Campolongo et al. [21]
considered another sensitivity measure,µ̄ij , which is an estimate of the mean of the distribution of
the absolute values of the elementary effects and showed that µ̄ij gives a better estimate of the order
of importance thanµij .

The total computational cost for the simplest form of this method for each distributionFij is
NF = 2NNp (each elementary effect requires the computation ofyi twice). Morris [14] suggested
a more economical algorithm by using already computed values of functions in the calculation of
more than one elementary effect that has a cost ofNF = N(Np + 1). Previous experiments [1] have
demonstrated that the choicek = 4 andN = 10 produces valuable results.

Due to the frequent dispersity of biochemical parameters argumented before, in this work the
factors are assumed to be uniformly distributed in [0,1] andthen transformed from the unit
hypercube to a logarithmic distribution. This strategy aims to explore the parameter space in a more
effective way when it spans over several orders of magnitude.

2.4.3. Variance based methods.The most widely used variance based methods are the extended
FAST [22] and the Sobol’ method [15] considered as one of the most powerful despite its high
computational cost. The basis of the Sobol’ method is the decomposition of the variance of the
model output function (D) into summands of variances of combinations of input parameters in
increasing dimensionality. The variances of the terms in the ANOVA decomposition add up to the
total variance of the function:

D =

Np
∑

s=1

Np
∑

j1<...<js

Dj1...js (6)

whereDj1...js are called partial variances. Sobol’ defined the global sensitivity indices as the ratios:

SIj1...js = Dj1...js/D (7)

Therefore, allSIj1...js are nonnegative and add up to one. There are2Np terms in this summation and
the calculation of all of them is sometimes not practical. For this reason Sobol’ introduced sensitivity
indices for subsets of variables and the total sensitivity indices accounting for the interaction
between parameters defined as:

SITj = SIj +

Np
∑

s=1

SIjs + . . .+ SI1,2,...,Np
(8)

The first-order sensitivity indices (SIj ) account only for the effect of the parameterpj and the
total sensitivity indices (SITj ) account for the effect thatpj and its interactions with the rest of the
parameters have on the model output. Sobol’ [15] found an elegant way of computing these indices
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6 RODRIGUEZ-FERNANDEZ ET AL.

directly from the modelf(p). This method was improved later by Saltelli [23] leading to:

SIj =

∫

HNp

[

f(p)f(pj ,p
′

−j)− f(p′)
]

dpdp′

∫

HNp f2(p)dp− f2
0 (p)

(9)

SITj =
1

2

∫

HNp

[

f(p′)− f(pj ,p
′

−j)
]2

dpdp′

∫

HNp f2(p)dp− f2
0 (p)

(10)

wherep andp′ are two independent random points inHNp and(pj ,p′

−j) is the result of taking the
elementpj from p and replacing it intop′. However, variance based methods generally require a
large number of function evaluations to achieve reasonableconvergence and can become impractical
for large systems biology problems.

2.4.4. Global derivative based methods.As already mentioned, local sensitivity indices are
questionable when the model input is uncertain and when the model is of unknown linearity. To
circumvent this limitation, different authors suggested to use the average of the local sensitivities
over the parameter space. This approach was formalized by Kucherenko et al. [16] who called the
resulting set of measures derivative based global sensitivity measures (DGSM), using an analogy
with variance based global sensitivity measures. A link between DGSM and Sobol’ indices was
established in [24].

DGSM are based on averaging the local sensitivity measuresSij (p) over the parameter space
HNp . As explained for the Morris method, non-monotonic functions may have positive and negative
partial derivatives, thus, averaging the values can lead tomisleading results so measures based on
the absolute value of|Sij(p)| should be used. Such measures can be defined as:

Mij =

∫

HNp

|Sij(p)| dp (11)

Nonlinear and interaction effects can be captured by the variance ofMij :

Σij =

√

∫

HNp

(|Sij(p)| −Mij)
2 dp (12)

Σij can also be presented as:

Σ2
ij =

∫

HNp

|Sij(p)|
2
dp−M2

ij (13)

Note that in this technique the individual effects are evaluated as strict local derivatives with small
increments unlike the incremental ratios of the Morris method.

2.5. DGSM in a Bayesian framework

In addition to the increasing use of well established globalsensitivity analysis, several novel
methodologies have been developed for assessing input sensitivities in systems biology models.
Cho et al. [25] evaluated the global sensitivities by comparing the distributions of the parameters
associated to acceptable and unacceptable sets with respect to a threshold objective function
value. By checking the correlation coefficients of the corresponding cumulative frequencies each
parameter is classified as insensitive if the two distributions are not similar or sensitive otherwise.
Bentele et al. [26] calculated a measure of the global sensitivity from a weighted average of the
absolute value of the relative local sensitivities over theparameter space (the weighting factor aims
to amplify the statistical impact of sensitivities for those parameter sets that are more consistent
with the experimental observations and therefore more probable). Zheng et al. [9] proposed a GSA
method embedded within a random-search-based parameter identification routine (PID-embedded
method) that calculates the sensitivity indices directly from the parameter sets generated by a
Genetic Algorithm during parameter optimization.
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All these methods make use of the information available in form of experimental data to focus
the sensitivity analysis on regions of the parameter space that are more plausible to fit the data. In
this work, we suggest a method that enhances the benefits of exploiting the available information by
computing the prior distribution of the parameters and integrating the derivative based sensitivity
measures (DGSM) taking it into account. The derived metrics, MB,ij andΣ2

B,ij , can be considered
as probabilistic or Bayesian sensitivity analysis indicesso we will call them Bayesian DGSM.

Sensitivity analysis is often related to parameter estimation through the identification of crucial
parameters and the reduction of the model by fixing nonessential ones. Several estimator functions
have been suggested as metrics for parameter estimation in the field of systems biology, most
notably the maximum likelihood estimator introduced by Fisher in 1912 [27], for being the one
that maximizes the probability of the observed event. The use of this estimator requires several
assumptions including no modeling errors and Gaussian or known variance for the measurements
(see [28] for details). Moreover, the maximum likelihood function,J represents the probability
density function (PDF) of a model for the occurrence of the measurements for given parameters.
This function depends on the probability of the measurements and is given as:

J(p) =

NE
∏

i=1

NVi
∏

j=1

NMij
∏

k=1

1
√

(2πσ2
ijk)

exp

[

−
(ỹijk − yijk(p))

2

2σ2
ijk

]

(14)

wherep is set of parameters under analysis;i, j, k are indices for the experiments, variables, and time
points, respectively;NE is the number of experiments;NVi is the number of measured variables
in experimenti; NMij is the number of measures of the variablej during experimenti; σ2

ijk is the
variance of the measurek of the variablej in experimenti; ỹijk is the measurek of the variablej
in experimenti; yijk is the model predicted valuek of the variablej in experimenti.

In this work we suggest the computation of the maximum likelihood function for a discrete
number (N ) of parameter sets, therefore, the PDF is a representative of the probability of the
available measurements to be generated by a particular set.In order to generate a discrete probability
distribution:

N
∑

q=1

p(pq) = 1 (15)

wherepq is theqth realization ofp defined as a discrete-value random variable. Thus the probability
of pq can be defined as:

p(pq) =
J(pq)

∑N

q=1 J(pq)
(16)

and it can be used in the evaluation of the Bayesian DGSM as detailed in the following section.

2.6. Evaluation of the integrals

The computation of Bayesian DGSM, as well as Sobol’ indices and regular DGSM is based on the
evaluation of a series of integrals that can be presented in the following generic form:

I [f ] =

∫

HNp

f(p)dp (17)

It is assumed that the functionf(p) is integrable in theNp-dimensional unit hypercubeHNp .
Classical grid methods for evaluating integrals become inefficient in high-dimensions because of

the “curse of dimensionality” (exponential grows of the required integrand evaluations) [29]. Monte
Carlo (MC) methods do not depend on the dimensionality and are effective in high dimensional
integrations. However, the efficiency of MC methods is determined by the properties of random
numbers that are known to be prone to clustering. A higher rate of convergence can be obtained
by using deterministic uniformly distributed sequences also known as low-discrepancy sequences
(LDS) instead of random numbers. Methods based on the usage of such sequences are known
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8 RODRIGUEZ-FERNANDEZ ET AL.

as Quasi Monte Carlo (QMC) methods. LDS are specifically designed to place sample points as
uniformly as possible. Unlike random numbers, successive LDS points “know” about the position
of previously sampled points and “fill” the gaps between them. There are a few well-known and
commonly used LDS, also known as quasi random numbers, and different principles were used for
their construction by Holton, Faure, Sobol’, Niederreiterand others. Many practical studies have
proven that Sobol’ LDS are in many aspects superior to other LDS [29].

For a random variable that is uniformly distributed inHNp

I [f ] = E[f(p)] (18)

whereE[f(p)] is the mathematical expectation. An approximation of this expectation is

IN [f ] =

N
∑

q=1

f(pq)p(pq) (19)

wherepq is a sequence of LDS points of lengthN uniformly distributed in a unit hypercubeHNp .
Assuming equiprobable sampling points,p(pq) = 1/N . Therefore, from Eq. (9-10) and applying

the QMC algorithm for the evaluation of the integrals to eachoutput variableyi instead off , the
Sobol’ indices can be calculated in a straightforward manner according to the formulae:

SIij =
1
N

∑
[

yi(p)yi(pj ,p
′

−j)− yi(p
′)
]

1
N

∑

y2i (p)− ( 1
N

∑

yi(p))2
(20)

SITij =
1

2

1
N

∑
[

yi(p
′)− yi(pj ,p

′

−j)
]2

1
N

∑

y2i (p)− ( 1
N

∑

yi(p))2
(21)

Thus, each Quasi Monte Carlo sample point requires three computations of the modelyi(p), yi(p′)
andyi(pj ,p′

−j). For the computation of the Sobol’ indices of an entire set ofNp parameters, using
N sample points, the number of function evaluations isNF = N(Np + 2).

In the same way, applying the QMC algorithm to Eq. (11-13) and assuming that all the sampling
points have equal probability, the DGSM can be easily computed as:

Mij =
1

N

N
∑

q=1

∣

∣Sij(pq)
∣

∣ (22)

Σ2
ij =

1

N

N
∑

q=1

∣

∣Sij(pq)
∣

∣

2
−M2

ij (23)

The computation of the DGSM usingN sample points requires the evaluation of the local
sensitivitiesN times.

Bayesian DGSM takes into account the prior distribution of the parameters, thereforeMB,ij and
ΣB,ij can be computed as:

MB,ij =

N
∑

q=1

∣

∣Sij(pq)
∣

∣ p(pq) (24)

Σ2
B,ij =

N
∑

q=1

∣

∣Sij(pq)
∣

∣

2
p(pq)−M2

B,ij (25)

2.7. Extension to complex models

In the case of complex models with multiple inputs and multiple outputs, large sensitivity matrices
can be obtained and summary indices need to be computed to better interpret the results. When
dealing with systems of ordinary differential equations (ODEs) or differential algebraic equations
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(DAEs), sensitivity indices of every observed state variable at each time point measurement with
respect to each of the parameters are usually evaluated. In order to summarize all this information,
sensitivity indices as the average of all theSij for each parameter can be defined:

Sj =
1

Nx

1

Nt

Nx
∑

i=1

Nt
∑

k=1

Sij(tk) (26)

whereNx is the number of measured states andNt the number of time points.
The same expression is applicable toµ̄ij , σij , SIij , SITij , Dij , Mij , Σij , MB,ij and ΣB,ij .

However, different indices have particular features and they handle differently the effects of
averaging information as discussed below.

Sobol’ indices, are based upon the fraction of related partial variances in the overall variance,
that is, they provide information about the sensitivity (how the uncertainty is distributed among
the parameters) but not the magnitude of the uncertainty that is assessed by the total varianceDi.
Thus, this summary will provide an average of the contribution to the total variance for each output
variable at each sampling point. When an overall insignificant parameter is the most important in
unsensitive regions of the time space or ranks very high withrespect to an output variable that shows
low uncertainty, the results can be misleading. Furthermore, when the value of the total varianceDi

has large variability among the different states or sampling points this ranking can be difficult to
interpret. On the other hand, this normalization is sometimes useful since large discrepancies on the
total variance of different states or even the same state in different time points can be due to state
variables ranging over different orders of magnitude and the percentage of change can be of interest.
Therefore, we recommend the computation of the total varianceDi together with the indicesSIij
andSITij to get a deeper insight into the input factors importance.

Local sensitivities, Morris metrics, DGSM and Bayesian DGSM combine uncertainty with
sensitivity analysis.Sij , µij , Mij andMB,ij provide information about the relative importance of
each parameter, but since they are not normalized metrics, the sum of them overj (i.e. for theNp

parameters) are informative measures of the uncertainty ofa particular output in a certain time point.
However, when the order of magnitude of the measured state variables is significantly different, the
resulting averaged measures can be misleading. Depending on the purpose of the analysis, the use
of relative values of the sensitivities may be advisable forcomputing these indices. If the sensitivity
analysis is performed prior parameter estimation, similarmeasures should be used. That is, if a
weighted least squares function will be used for the estimation, the relative sensitivities would be
a better proxi of the parameter ranking. In contrast, if the optimization will be based on a standard
least squares metric, the use of absolute sensitivities is advisable.

The use of relative sensitivities with respect to the input and output variance, could in principle
overcome the main drawback of standard DGSM that provide thesame measures for indices with
different uncertainty when they have the same structural role in the model equations. However, we
have found that the use of this normalization when some of theoutput states have small uncertainty
can lead to wrong conclusions overweighting the importanceof the parameters affecting these states
even if the overall importance is small.

Biological networks often involve a wide range of time scales throughout the network. To
avoid the side effects of averaging information of events occurring over different time scales,
the experimental sampling points should be used as the timeswhen the sensitivity is computed;
therefore different time points will be required for statesthat change at different time scales.
Assuming that the experimentalists have set up an appropriate experiment taking into consideration
the different time scales (e.g.an enzyme binding event will be measured at shorter intervals than
protein synthesis), the resulting sensitivity indices will accurately average the information from each
of the species involved in the experiment.

2.8. Applications of sensitivity analysis in systems biology

Local sensitivity analysis have been widely applied in the field of systems biology to identify critical
factors controlling biological behavior, design and optimize genetic circuits, analyze the tradeoff

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
Prepared usingrncauth.cls DOI: 10.1002/rnc



10 RODRIGUEZ-FERNANDEZ ET AL.

between robustness and fragility in cell regulation, and find appropriate drug targets [30]. However,
a small but rapidly increasing number of studies in this areamade use of global sensitivity measures
[25, 26, 31, 32, 33, 34, 11, 35].

The main application of GSA consists on assessing the effectof parameter uncertainty in the
model outcome that can be useful for establishing a ranking of importance of the parameters [11],
identifying the critical parameters for a subsequent parameter estimation, model reduction by fixing
unessential parameters, suggesting new experimental designs by determining the critical variables
that capture the essential characteristics of the system [25, 32], etc.

Other applications can be found in [35] where a method based on GSA was used to determine
the pseudo-globala priori identifiability of a model describing the aggregation of tauprotein. A
weighted average of a large number of correlation matrices calculated from the local sensitivities
at quasi-random points in the relevant parameter space was used to remove the parameters that
appeared to be highly correlated.

In addition, several attempts to overcome the drawbacks of optimal experimental design (OED)
based on the Fisher Information Matrix (FIM) due to its localnature have been suggested [32, 34, 8].
In these approaches, the input factors for the GSA are no longer the parameters of the model but
the experimental conditions such as initial values for the state variables, control variables profiles,
sampling scheme, etc.

Other promising applications of global sensitivity analysis in the field of systems biology are:
robustness analysis [36] aiming to determine whether a system is capable to operate when its
parameters, initial conditions and/or experimental conditions vary within their expected ranges;
determination of modularity of biochemical networks [26] identifying subsets of states whose
concentrations depend only on a subset of parameters and identification of species for drug target
selection [31, 33] by setting the critical steps in the network that could drive disease development.

3. RESULTS

In this study, a benchmark problem regarding a biochemical pathway with three enzymatic steps
presented by [37] has been considered to illustrate the sensitivity analysis methods described above.

3.1. Problem statement: three-step biochemical pathway

This case study, considered as a challenging benchmark problem for parameter estimation by several
authors ([38],[39],[40]) involves a biochemical pathway with three enzymatic steps, including the
enzymes and mRNAs explicitly. Figure2 contains a diagram illustrating the network of reactions
and kinetic effects (feedback loops). The mathematical formulation of the dynamic model consists

S M1 M2 P

E1 E2 E3

G1 G2 G3

Figure 2. Biochemical pathway scheme. Solid
arrows indicate reversible mass transfer reactions,
dashed arrows indicate activation, and dashed

curves with blunt ends indicate inhibition.
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Figure 3. Concentration of the 8 species involved
in the model using the nominal values for the

parameters.
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of 8 nonlinear ODEs that describe the variation of the metabolite concentration over time:

dE1

dt
=

V4 G1

K4 +G1
− k4 E1 (27)

dE2

dt
=

V5 G2

K5 +G2
− k5 E2 (28)

dE3

dt
=

V6 G3

K6 +G3
− k6 E3 (29)

dG1

dt
=

V1

1 +
(

P
Ki1

)ni1

+
(

Ka1

S

)na1

− k1 G1 (30)

dG2

dt
=

V2

1 +
(

P
Ki2

)ni2

+
(

Ka2

M1

)na2

− k2 G2 (31)

dG3

dt
=

V3

1 +
(

P
Ki3

)ni3

+
(

Ka3

M2

)na3

− k3 G3 (32)

dM1

dt
=

kcat1 E1

(

1
Km1

)

(S −M1)

1 + S
Km1

+ M1

Km2

−
kcat2 E2

(

1
Km3

)

(M1 −M2)

1 + M1

Km3

+ M2

Km4

(33)

dM2

dt
=

kcat2 E2

(

1
Km3

)

(M1 −M2)

1 + M1

Km3

+ M2

Km4

−
kcat3 E3

(

1
Km5

)

(M2 − P )

1 + M2

Km5

+ P
Km6

(34)

whereE1, E2 andE3 are enzymes;G1, G2 andG3 are the mRNA species for the enzymes;M1

andM2 are intermediate metabolites of the pathway;S andP (pathway substrate and product)
are concentrations under our control (i.e. control variables) and the rest are the kinetic parameters
involved on the pathway. The 36 kinetic parameters are divided in two different classes: hill
coefficients, allowed to vary within the range (0.1, 10), andall the others, allowed to vary within
the range (10−2, 102). The substrate (S = 10) and the product (P = 1) are held constant over
the experiment. The initial conditions for the remaining states areE1 = 4.000, E2 = 0.3641,
E3 = 0.2946,G1 = 0.6667, G2 = 0.5725,G3 = 0.4176,M1 = 1.419 andM2 = 0.9346.

The results of an in-silico experiment using the nominal values for the parameters specified in
TableI are represented in Figure3. All the sensitivity metrics were computed for the 36 parameters
with respect to the 8 measured states at the measured time points (from t=0 to t=120, every 6
minutes).

The computations reported in this work were performed on a PC/INTEL XEON
CPU (2.13 GHz) running Windows 7 and using the Matlab-based toolbox SensSB [8].
The necessary files to reproduce the results can be found in the following web site:
http://www.iim.csic.es/ ˜ gingproc/SensSB.html

3.2. Local sensitivity analysis

The absolute (Sabs) and relative (Srel) local sensitivity indices were computed at the nominal point
for the parameters (see TableI). Figures4 and5 show the result of averaging these sensitivities over
time for each of the parameters and the contribution of the sensitivities with respect to each of the
state variables is represented in different colors. The analysis performed using absolute sensitivities
highlights the importance of only 6 of the parameters and most of the uncertainty is generated by
the intermediate metabolitesM1 andM2. As can be seen in Figure3 the absolute value of these
two states is way higher than the rest of the species making the absolute sensitivities to have large
values too. In contrast, relative sensitivities buffer this effect and reveal the effect of the uncertainty
due to the rest of states. This effect would also be found in a parameter estimation problem where
the optimization would be mostly driven by fitting these 6 parameters. Thus, there is an obvious
motivation for normalizing the models and/or using cost functions for the parameter estimation that

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
Prepared usingrncauth.cls DOI: 10.1002/rnc

http://www.iim.csic.es/~gingproc/SensSB.html


12 RODRIGUEZ-FERNANDEZ ET AL.

5 10 15 20 25 30 35
0

5

10

15

20

25

parameter

S
ab

s

 

 

G1
G2
G3
E1
E2
E3
M1
M2

Figure 4.Sabs at the nominal point.
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Figure 5.Srel at the nominal point.

normalize the contribution of the different states as the maximum likelihood estimator of a weighted
least squares.

As expected from the model structure they are clusters of parameters influencing each of the
state variables,i.e. parametersp1 to p6 are mainly affecting the dynamics of themRNA species
G1 and the enzymeE1, parametersp7 to p12 are mostly influencingG2 andE2, parametersp13-p18
are responsible forG3 andE3 behavior,p19-p21 are involved with the enzymeE1, p22-p24 with the
enzymeE2, p25-p27 with the enzymeE3 and the rest of the parameters are essentially influencing the
concentration of the metabolitesM1 andM2 although almost all of the parameters have significant
effect on these species what is not surprising since they areintermediate metabolites of the pathway.

The relative sensitivities reveal that for the nominal point, 50% of the parameters account for
less than15% of the information while the20% most influential account for more than50% (see
Figure5). Considering the absolute sensitivities, this effect is even more noticeable (see Figure4),
therefore, in order to efficiently estimate the model parameters most of the efforts should be focussed
on the most influential group of parameters whereas the less important can be fixed to their nominal
values. These results are also in accordance with the conclusions drawn by Gutenkunst et al. [41]
that tested several systems biology models showing that “sloppy” sensitivity spectra (eigenvalues
roughly evenly distributed over many decades) are universal in systems biology models. This
property helps to explain the difficulty of extracting precise parameter estimates from collective
fits and reinforces the need for establishing a parameter ranking.

It can also be seen in Figures4-5 that parametersp3, p9 andp15 (i.e. ni1, ni2 andni3) have
negligible sensitivity. This is an obvious result since they are exponents ofP

Ki1
, P

Ki2
and P

Ki3
respectively (see Eq.30-32) and sinceP , Ki1, Ki2 andKi3 are equal to1 these fractions will not
be modified by changes on the exponents. However, this would not be the case ifP orKi1, Ki2 and
Ki3 move from their nominal values what is likely to happen in a real problem where the values of
the parameters are usually unknown. This is an artefact of local “one-at-a-time” (OAT) techniques
that perturb only one parameter from the nominal point in each simulation missing the effect of
perturbing several parameters simultaneously or exploring different regions of the parameter space.

Very valuable information can be drawn from local sensitivities, yet, the most difficult part of the
analysis is to identify a good estimator for the parameters since a bad choice of the parameter values
will critically influence the parameter ranking. The sensitivity analysis is usually performed before
the parameter estimation, therefore, more robust methods are needed in order to ensure that small
changes in the parameters values will not significantly change the results of the study.

3.3. Elementary effect method

In a first stage, the global sensitivities of the parameters were computed by means of the Morris
method using a four level grid (k = 4) and 10 trajectories (N = 10) as recommended in [1]. For
36 parameters this leads toNF = 370 function evaluations that for our model can be computed
in a few seconds. The low computational cost compared to mostof the global sensitivity analysis
techniques makes this method very appealing. However, the results obtained were pretty inconsistent
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and different executions of the method provided very different results. Consequently, we increased
the number of levels in the grid up tok = 10 and the number of trajectories toN = 100 reaching
NF = 3700 that computationally is still affordable (a few minutes in our computer). Figures6-7
show the results for a uniform and a logarithmic distribution, respectively. The use of a logarithmic
distribution allows for a better sampling of the space and more influential parameters were detected.
It can also be noticed that even though this is a OAT method, since it is a global technique, the
sensitivity for different combinations of parameters can be assessed andp3, p9 andp15 no longer
appear to be negligible as suggested by the local analysis.
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Figure 6.µ̄ with uniform distribution.
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Figure 7.µ̄ with logarithmic distribution.

As will be shown comparing these results with more powerful techniques as variance based ones,
the Morris method provides a good compromise between accuracy and efficiency and is very useful
as a screening method especially for sensitivity analysis of large or costly models. The overall
performance of the measureµ̄ in ranking the factors in order of importance is satisfactory. However,
as pointed out by [21], in some instances̄µ is prone to Type II error,i.e. failing in the identification
of factors of considerable influence on the model, being instead more resilient to Type I error,i.e.
the erroneous identification of a factor as influential when it is not.

3.4. Variance based methods

The Sobol’ total sensitivity indices (SIT ) computed from a uniform and a logarithmic distribution
using 212 LSD points are represented in Figures8-9. Analogously to the Morris method, the
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Figure 8.SIT with uniform distribution.
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Figure 9.SIT with logarithmic distribution.

logarithmic distribution explores the parameter space in amore effective manner and it detected a
larger number of influential parameters. The results from the uniform distribution are pretty different
to those obtained by the Morris method but the ones given by the logarithmic distribution are very
similar, differing only in the 8 last parameters (p28-p36) involved mainly with statesM1 andM2.
In order to further analyze these differences and to study the influence of averaging the sensitivities
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with respect to the 8 states (Eq.26) we have computed the partial variances (DT
j ) for the logarithmic

distribution. The partial derivatives are not normalized by the total sensitivity of each of the outputs,
thus, states that have a small contribution to the total uncertainty in absolute terms will not be
reflected. Figure10 shows a very low variance for parametersp28-p36 and the contribution of the
sensitivity related to statesM1 andM2 is almost negligible. This explains the divergence of the
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Figure 10.DT with logarithmic distribution.

Sobol’ method with the elementary effects based measureµ̄ that, since it is not normalized by the
uncertainty of each of the states, also showed very low sensitivity for p28-p36.

Sobol’ method is a powerful technique for quantifying the relative importance of input factors
or groups of factors. However, the main drawback is the computational cost associated that, for
computationally intensive models or models with a large number of parameters, can become
prohibitive. The convergence properties of this method will be analyzed in more detail in section
3.6.

3.5. Derivative based global sensitivity measures

Figures11-12represent the values of the derivative based sensitivity measureMrel based on relative
sensitivities and the uncertainty due to each of the state variables, computed using212 LSD points.
In this case, the uniform distribution captures better the uncertainty than the Morris and Sobol’
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Figure 11.Mrel with uniform distribution.
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Figure 12.Mrel with logarithmic distribution.

methods using the same distribution function. Nonetheless, the logarithmic distribution identified a
larger set of sensitive parameters. The results of the DGSM are quite different to the SobolST and
the Morrisµ̄ although the three methods are able to identify the most important factors. The main
reason for that is that DGSM relies on partial derivatives while Sobol and Morris methods are based
on incremental ratios. The parameters with the highestMrel arep6, p12, p18, p21, p24 andp27 that
in the model could be seen as the eigenvalues of the system. When considering a large domain for
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the parameters, DGSM give valuable information about the structure of model without taking into
account the uncertainty of each of the parameter (i.e.parameters playing the same role in the model
equations but with different distribution would not be distinguished).

The relative sensitivities for parametersp28-p36 and the contribution of the statesM1 andM2 that
were significant for the nominal point are negligible in the overall parameter space in agreement
with the results provided bȳµ andDT .

This structural information can be very useful, however, computational researchers are often
interested in the sensitivity in a plausible region of the parameter space. In this case, and when
some experimental information is available, the use Bayesian DGSM is advisable. Figure13shows
the distribution for parametersp1 and p2. In this case we have a convex problem with enough
information to define the distribution, thus, the measureMrel,B tends to the local sensitivity values
in the optimal set of parameters (see Figure14). This method is advantageous since it does not
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Figure 13. Distribution of parametersp1 andp2.
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Figure 14.Mrel,B with logarithmic distribution.

require a previous estimation of the parameters and it also allows the consideration of functions that
either due to the lack of information or structural properties have multiple minima in the area of
interest and therefore they do not have a convex distribution function.

3.6. Convergence of the numerical methods

In order to analyze the convergence properties of Sobol’ andDGSM methods, the results obtained
from Monte Carlo and Quasi Monte Carlo (Sobol’ LDS) based integration are compared here.
Considering the sensitivity obtained with the maximum number of sampling points (2n) as the true
value, the error of the method is computed as Eq.35:

errorSI(2i) =

√

(

SI(2i)− SI(2n)

SI(2n)

)2

for i = 1 : n (35)

The convergence considering the results from213 LSD points as the true value is represented
in Figures15-16 for Sobol’ and DGSM methods respectively, plotting the evolution of the error
with respect to the number of sampling points. Note that eachevaluation of a sampling point for
Sobol’ indices implies the computation of the modelNp + 2 times (in this case 38 times) while the
evaluation of a sampling point for DGSM only requires the computation of the partial derivatives
with respect to each parameter.

From Figures15-16 it follows that QMC integration provides very fast convergence rate with
−1.08 for SIT and−0.58 for Mrel, while for MC integration convergence is much slower with
−0.58 for SIT and−0.26 for Mrel. Apart from DGSM using MC integration, the rest of the methods
achieved a convergence error lower than10%. Although this error could be improved by increasing
the number of sampling points, we consider this value acceptable for our purposes. This convergence
analysis is of great importance for determining the sufficient number of sampling points required
to properly evaluate the sensitivities since it is problem dependent and noa priori value can be
suggested.
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4. CONCLUSIONS

Global sensitivity analysis is an emerging tool for assisting in the development of sound dynamic
models of biological systems. An overview of some of the available methodologies is provided here
and the main reasons for their analogies and differences areanalyzed.

The Morris method provides a good compromise between accuracy and efficiency and it
is particularly useful for computationally expensive models. The choice ofk = 4 and N = 10
recommended in the literature has been found insufficient for the model considered in this work and
a thinner grid together with a larger number of trajectoriesis suggested in order to highly improve
the accuracy maintaining efficiency.

The importance of analyzing the partial derivativesDT together with the Sobol’ indices is
highlighted in this work. The need for summarizing the information about the sensitivity with
respect to different states can sometimes lead to indices ofdifficult interpretation and some of the
information can be lost in the normalization process. The values ofDT can provide information
about the uncertainty whereasSI andSIT are only focused on the sensitivity (how this uncertainty
is distributed among the different input factors).

Derivative based Global Sensitivity Measures(DGSM) provide information about the model
structure and are less dependent on the distribution of the parameters. Moreover, DGSM are ideal to
study how the model is affected by small changes in the input factors while the Morris and Sobol’
methods are preferred when we are interested on analyzing the results of larger alterations.

The critical influence of the parameters distribution on theresults of a sensitivity analysis is
stated and illustrated with a relevant benchmark model. Thechoice of a logarithmic distribution
for exploring large parameter spaces without prior information about the plausible regions for the
optimal values has been proven very effective for the three global methods considered (Morris
method, Sobol’ indices and DGSM). Moreover, the QMC based integration method showed higher
convergence rate than the MC for computing the Sobol’ indices and derivative based global
sensitivity measures.

The novel methodology presented here, Bayesian DGSM, provides a good estimation of the
sensitivity of the parameters taking maximum advantage of the a priori available information in
form of experimental data.
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Table I. Nominal values and bounds for the 36 kinetic parameters.

Parameter p# Nom. val Parameter p# Nom. val

V1 p1 1 V4 p19 0.1
Ki1 p2 1 K4 p20 1
ni1 p3 2 k4 p21 0.1
Ka1 p4 1 V5 p22 0.1
na1 p5 2 K5 p23 1
k1 p6 1 k5 p24 0.1
V2 p7 1 V6 p25 0.1
Ki2 p8 1 K6 p26 1
ni2 p9 2 k6 p27 0.1
Ka2 p10 1 kcat1 p28 1
na2 p11 2 Km1 p29 1
k2 p12 1 Km2 p30 1
V3 p13 1 kcat2 p31 1
Ki3 p14 1 Km3 p32 1
ni3 p15 2 Km4 p33 1
Ka3 p16 1 kcat3 p34 1
na3 p17 2 Km5 p35 1
k3 p18 1 Km6 p36 1
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