



(12)

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 370 216

(21) Número de solicitud: 201030723

(51) Int. CI.:

C12N 9/02 (2006.01) C12N 15/52 (2006.01) C12N 15/62 (2006.01) C12N 15/81 (2006.01)

### SOLICITUD DE PATENTE

A1

 22 Fecha de presentación: 17.05.2010
 (7) Solicitante/s: Consejo Superior de Investigaciones Científicas (CSIC) c/ Serrano, 117 28006 Madrid, ES
 (43) Fecha de publicación del la solicitud: 13.12.2011
 (43) Fecha de publicación del folleto de la solicitud: 13.12.2011
 (7) Solicitante/s: Consejo Superior de Investigaciones Científicas (CSIC) c/ Serrano, 117 28006 Madrid, ES
 (7) Inventor/es: Maté Mate, Diana; Valdivieso Ugarte, Malena; Fernández Torres, Layla y Alcalde Galeote, Miguel
 (7) Agente: Pons Ariño, Ángel

54 Título: Lacasa de alto potencial redox.

57 Resumen:

Lacasa de alto potencial redox.

La presente invención describe la evolución dirigida de una lacasa de alto potencial redox expresada funcionalmente en *S. cerevisiae* que presenta una alta tasa de producción, una elevada actividad y una gran termoestabilidad. La presente invención se refiere a la secuencia aminoacídica de dicha lacasa y a la secuencia nucleotídica que codifica para dicha lacasa. La lacasa de la invención presenta aplicaciones en diversos sectores: nano-biotecnología, industria papelera, biorremediación, industria textil, industria alimentaria, industria farmacéutica, industria química, etc.

### DESCRIPCIÓN

Lacasa de alto potencial redox.

- La presente invención se encuentra dentro del campo de la biología molecular, la tecnología del ADN recombinante 5 y la biotecnología. Específicamente, se refiere a una enzima oxidasa de tipo lacasa mejorada en su expresión funcional, su actividad catalítica y su termoestabilidad. La expresión funcional, mejora de actividad catalítica y termoestabilidad de la lacasa se lleva a cabo en células eucariotas de Saccharomyces cerevisiae a través de un proceso de evolución molecular dirigida. Dicha enzima pueden emplearse como catalizador en procesos industriales relacionados con la transformación de la biomasa lignocelulósica para la obtención de biocombustibles o la elaboración de productos de 10
- madera y papel con nuevas propiedades, para el sector alimentario, la producción textil y el sector químico, así como para la biorremediación de efluentes y contaminantes ambientales, y para el diseño de bionanodispositivos.

#### Estado de la técnica anterior

Las lacasas (EC 1.10.3.2) son un grupo de oxidasas ampliamente distribuido en plantas superiores y en hongos, aunque también se han descrito en algunas bacterias e incluso en cutículas de insectos (Alcalde, 2007. Industrial enzymes. Structure, function and applications. Ed. Polaina, J. y MacCabe, A.P. Springer, Heidelberg (Alemania), pp. 459-474). Pertenecen a la familia de las oxidasas multicobre azul (junto con las ascorbato oxidasa y la ceruloplasmina), y se presentan generalmente como glicoproteínas monoméricas extracelulares.

20

Las lacasas, individualmente, catalizan la oxidación de un amplio espectro de sustancias orgánicas aromáticas. Entre estas sustancias se encuentran los orto y para-difenoles, los fenoles metoxi-substituidos, los bencenotioles, los hidroxindoles, el 1-naftol y la siringaldazina (Gianfreda *et al.*, 1999. Bioremediation Journal 3:1-25). Los radicales libres resultantes sufren diferentes reacciones dependiendo de su estructura y de las condiciones de reacción. El acoplamiento de radicales libres generando productos diméricos o poliméricos y las descarboxilaciones oxidativas son las reacciones más frecuentes. También son sustratos de lacasas los compuestos metálicos inorgánicos/orgánicos. El Mn<sup>2+</sup> es

oxidado a Mn<sup>3+</sup> y también el Fe (EDTA)<sup>2-</sup> es aceptado por la enzima (Thurston, 1994. Microbiology-UK 140:19-26).

La oxidación de todos estos sustratos va acoplada a la reducción del oxígeno molecular a dos moléculas de agua. 30 Esto significa que por cada molécula de oxígeno reducida, se oxidan 4 moléculas de sustrato sin producir peróxido de hidrógeno. Por estos motivos, las lacasas se consideran como los catalizadores "verdes" ideales ya que emplean  $O_2$ como co-sustrato generando únicamente H<sub>2</sub>O como subproducto.

- Las lacasas contienen un cobre de tipo 1 (T1) donde tiene lugar la oxidación del sustrato reductor, y un centro o 35 cluster trinuclear con tres cobres, un T2 y dos T3, donde tiene lugar la reducción del O<sub>2</sub>. El mecanismo de reacción debe funcionar como una batería, almacenando electrones de las reacciones de oxidación individuales para reducir el oxígeno molecular y producir agua (Davies, 2002. Lacease. En: Handbook of Metallproteins. (ed A. Messercschimdt et al), pp. 1359-1368. John Wiley and Sons, LTD, New York).
- 40

15

25

El potencial redox formal (E°) de las lacasas tiene una relación directa con la energía requerida para arrancar un electrón al sustrato reductor, constituyendo una de las características fundamentales de estas enzimas. De hecho, el comportamiento catalítico de las lacasas sobre la mayoría de los sustratos reductores depende del E° en el Cu T1 (aceptor de electrones). De este modo, las lacasas con un mayor E°T1 son de especial interés en biotecnología

debido a que son capaces de oxidar sustratos con mayor E<sup>o</sup> como ciertos hidrocarburos aromáticos policíclicos o diversos colorantes orgánicos sintéticos. El E<sup>o</sup> de diferentes lacasas ha sido ampliamente estudiado mediante técnicas 45 espectroelectroquímicas (principalmente voltamperometría cíclica y valoraciones redox) haciendo uso de diferentes tipos de electrodos y mediadores redox (Xu, F. et al., 1998. Biochem. J. 334:63-70; Shleev, S. V. et al. 2004. Biochimie 86:693-703).

50

65

El E° del Cu T1 de algunas lacasas fúngicas es mayor (E° T1 cercano a +800 mV) que el de las lacasas de plantas o bacterianas (por ejemplo la lacasa de *Rhus vernicifera* tiene un E°'T1= +400 mV) y otras oxidasas multicobre azul (ascorbato oxidasa  $E^{\circ}T1 = +340 \text{ mV}$ ). Sin embargo, es importante señalar que también existen marcadas diferencias en los Eº'T1 de las diferentes lacasas fúngicas, desde +465 mV de la lacasa del ascomiceto Myceliophtora thermophila

hasta +790 mV de la lacasa del basidiomiceto Pycnoporus cinnabarinus. En este sentido, se ha realizado un enorme 55 esfuerzo con la intención de dilucidar qué factores determinan estas diferencias en los Eº T1, sobre todo si se tienen en cuenta las geometrías de coordinación de los sitios de Cu, prácticamente conservadas. La mayor parte de estos estudios físico-químicos se ha servido del conocimiento aportado por los modelos cristalográficos disponibles. En concreto se han resuelto a fecha de hoy las estructuras en 3D de 8 lacasas de Coprinus cinereus, Melanocarpus albomyces, Bacillus

Las llamadas "lacasas de alto potencial redox" -procedentes de hongos basidiomicetos de podredumbre blancaposeen un enorme potencial biotecnológico debido a su amplia especificidad de sustrato (oxidan fenoles, aminas, tioles, antraceno, etc.) y a sus bajos requerimientos de aplicación (sólo requieren oxígeno, que es transformado en agua durante la reacción). Cuando actúan sobre el polímero de lignina (o compuestos de tipo fenólico) pueden catalizar tanto actividades de degradación como de polimerización. Además, su rango de sustratos puede ser ampliado a compuestos no fenólicos más difíciles de degradar utilizando mediadores redox, de origen natural o sintético, en los denominados sistemas lacasa-mediador (Camarero et al., 2005. Appl. Environ. Microb. 71:1775-1784).

subtilis, Trametes versicolor, Rigidoporus lignosus, Lentinus tigrinus, Trametes trogii y Pycnoporus cinnabarinus. 60

La tecnología de las lacasas de alto potencial redox puede ser empleada en prácticamente la totalidad de la cadena de producción de productos papeleros: la elaboración de la pasta de papel, el blanqueo libre de cloro de las pastas, la eliminación del *pitch* o el tratamiento de efluentes.

5 En la industria de productos forestales dos áreas más de investigación emergentes son a) el diseño de materiales lignocelulósicos con nuevas propiedades de resistencia y estabilidad mediante el injerto de compuestos fenólicos catalizado por lacasa, en la denominada "funcionalización de las fibras de celulosa"; y b) el uso de lacasas para la mejora en la adhesión de tableros de madera (mediante el acoplamiento enzimático *in situ* de la lignina), sin necesidad de utilizar adhesivos tóxicos a base de formaldehído. Además, las lacasas encuentran aplicaciones en los siguientes sectores (Xu, 2005. Industrial Biotechnology 1:38-50):

- i) La industria alimentaria: procesamiento de bebidas o de productos de panadería.
- ii) La industria textil: degradación (detoxificación) de los colorantes de los efluentes o blanqueo de tejidos (lavado a la piedra de *jeans*).
- iii) Nanobiotecología: a) como detectores de fenoles, oxígeno, azidas, morfina, codeína, catecolaminas o flavonoides en la elaboración de biosensores para análisis clínicos y medioambientales; y b) elaboración de biopilas de combustible que ofrecen energía eléctrica limpia (sin utilizar combustibles fósiles) mediante la inmovilización de lacasas en el cátodo.
- iv) Biorremediación: degradación de PAHs (Hidrocarburos Aromáticos Policíclicos), compuestos AOX (Halógenos Orgánicos Absorbibles), etc.
- v) Síntesis química: a) producción de polímeros complejos (ej. policatecol para resinas de cromatografía); b) síntesis de agentes farmacológicos: antitumorales (ej. viblastina), nuevos derivados antibióticos (ej de la ciclosporina A), o colorantes (Suberasa<sup>®</sup> de Novozymes); c) cosméticos: tintes de cabello formulados con lacasa.

30

15

20

La aplicación de las lacasas a nivel industrial requiere de sistemas de expresión robustos que proporcionen altos niveles de enzima activa. El empleo de sistemas de expresión heterólogos posibilita la producción de lacasas de diferentes procedencias en un mismo hospedador, así como de nuevas variantes con propiedades mejoradas con respecto a la enzima salvaje.

35

Por este motivo, se ha estudiado en profundidad la expresión heteróloga de lacasas fúngicas en hospedadores eucariotas (Kunameni *et al.* 2008 Microbial Cell Factories., 7:32). Se ha realizado especial hincapié en sistemas de expresión basados en hongos filamentosos (*Aspergillus oryzae, Aspergillus niger, Aspergillus sojae* y *Trichoderma reseei*); y levaduras (*Saccharomyces cerevisiae, Pichia pastoris, Pichia methalonica, Yarrowia lipolytica* y *Kluyve-*

40 romyces lactis). Gracias a los avances obtenidos en el diseño de biorreactores y a la optimización de las condiciones de expresión en levaduras, se han alcanzado niveles de expresión de unos 20 mg de lacasa activa por litro de cultivo en Yarrowia lipolytica o Pichia pastoris. Estos niveles son significativamente inferiores a los 135 mg/L obtenidos en Aspergillus oryzae o los 920 mg/L en Trichoderma. Sin embargo, la elección de levaduras como S. cerevisiae como hospedador ofrece la valiosa ventaja de poder mejorar las propiedades catalíticas de las lacasas recombinantes o su

45 estabilidad en las condiciones de operación, mediante técnicas de evolución molecular dirigida.

Se ha estudiado la expresión en S. cerevisiae de lacasas de los hongos Coriolus hirsutus, Trametes versicolor, Melanocarpus albomyces, Trametes sp. strain C30, Pleurotus ostreatus, Pycnoporus coccineus y Pleurotus eryngii, aunque los niveles de expresión funcional detectados han sido mínimos (Kunameni et al., 2008. Microbial Cell Factories.

- 50 7:32). No obstante, la expresión funcional de lacasas fúngicas en *S. cerevisiae* puede ser incrementada significativamente mediante técnicas de evolución molecular dirigida, que permite el diseño de nuevas funciones enzimáticas no existentes en ambientes naturales o la mejora de ciertas propiedades de la enzima (Arnold, 2001. Nature 409:253-257). Esta metodología recrea en el laboratorio los procesos claves de la evolución natural (mutación, recombinación y selección) de manera que es posible diseñar enzimas de gran interés científico y tecnológico. De esta manera,
- 55 sometiendo los genes seleccionados a ciclos sucesivos de evolución molecular, las diferentes mutaciones puntuales beneficiosas se irán acumulando y combinando hasta adquirir la propiedad deseada, que se ve mejorada de manera exponencial, generación tras generación. Utilizando este procedimiento se consiguió incrementar hasta 18 mg/L la producción de lacasa del ascomiceto *Myceliophthora thermophila* en *S. cerevisiae* (Bulter *et al.*, 2003. Appl. Environ. Microb. 69: 987-995. 2003).

60

En la evolución *in vitro*, mediante mutagénesis aleatoria inducida y/o recombinaciones en el material genético que codifica para una o varias proteínas, se crea una diversidad genética que posteriormente se expresa y explora bajo las condiciones en las que se quiere mejorar la enzima (altas temperaturas o medios no convencionales, pHs extremos, etc.). La mayoría de las características enzimáticas -regioespecificidad, enantioespecificidad, termoestabilidad, estabi-

<sup>65</sup> lidad en disolventes orgánicos, expresión génica, incluso la búsqueda de actividades *de novo* en el caso de anticuerpos catalíticos- pueden ser sometidas a experimentos de evolución dirigida (Tao & Cornish, 2002. Curr. Opin. Chem. Biol. 6:858-864.).

Aunque, considerando la eficiencia de transformación, la estabilidad del ADN plasmídico y la tasa de crecimiento, *E. coli* es el organismo hospedador más frecuentemente utilizado en la expresión funcional heteróloga de los genes que codifican la proteína de interés, el diferente uso de codones, y la imposibilidad de realizar las modificaciones post-traduccionales necesarias para la correcta secreción de la proteína madura (como el procesamiento proteolítico

- 5 o las glicosilaciones) pueden causar un plegamiento inapropiado de la proteína que es acumulada en cuerpos de inclusión, impidiendo su expresión funcional. Esto es especialmente cierto para las lacasas fúngicas para las que no se ha logrado todavía su expresión funcional en *E. coli*. Algunos de estos problemas pueden evitarse si estos genes se expresan en hospedadores eucarióticos cuya maquinaria celular sea más próxima a la nativa, como es el caso de las levaduras. En especial, el uso de *Saccharomyces cerevisiae* es de gran interés ya que posee la habilidad de glicosilar
- 10 y secretar las proteínas al medio extracelular (lo cual evita en muchos casos pasos intermedios de lisis celular) y tiene una elevada eficiencia de transformación. Además, haciendo uso de un vector episódico adecuado, no integra el plásmido dentro de su genoma, facilitando así su posterior manipulación. Otra ventaja muy interesante desde un punto de vista evolutivo es su elevada frecuencia de recombinación de ADN, la cual a diferencia de *E. coli* permite la construcción de genotecas *in vivo* a través de la recombinación homologa de diferentes genes (conocido como *in*
- 15 vivo ADN shuffling o "barajeo"). Por último, la ligación de los genes mutados en vectores de expresión es, en muchos casos, un paso laborioso que requiere un ajuste fino. En levaduras, el mecanismo reparador de huecos (*in vivo gap repair*) puede sustituir la ligación *in vitro* de una manera rápida y precisa (Bulter & Alcalde, 2003. Directed evolution: library creation. Methods and protocols. Ed. Arnold, F.H. y Georgiou, G. Humana Press, Totowa, New Jersey (EEUU), pp. 17-22).

20

La evolución molecular dirigida de lacasas fúngicas presenta como requisito indispensable la expresión funcional de la enzima en *Saccharomyces cerevisiae*. La expresión funcional en *S. cerevisiae* de lacasas de alto potencial redox -procedentes de basidiomicetos- no se ha descrito con éxito hasta el momento. Únicamente se ha reportado la mejora por evolución dirigida de lacasas de bajo potencial de oxido-reducción por el grupo de M. Alcalde y colaboradores.

25 Dichos trabajos se han centrado en la lacasa de bajo potencial redox (E<sup>o</sup> T1 = +475 mV) del ascomiceto Myceliophthora thermophila. En estos trabajos, los niveles de expresión funcional en S. cerevisiae se lograron beneficiándose de la similitud existente entre el microorganismo de partida (Myceliophthora thermophila) y S. cerevisiae, ambos ascomicetos. Con este sistema se ha conseguido mediante evolución dirigida: i) su expresión funcional en S. cerevisiae, (Bulter et al.., 2003. Appl. Environ. Microb. 69: 987-995.); y ii) su estabilización en cosolventes orgánicos, (Zumarraga et al.,

30 2007. Chem. Biol. 14: 1052-1064.; Zumarraga et al., 2008. Proteins 71: 250-260.; Zumarraga et al., 2007 Biocatal. Biotrans. 25: 219-228; Alcalde et al., 2005. J. Biomol. Screen. 10: 624-631).

Dado que el rango de actuación de la lacasa evolucionada de *Myceliophthora thermophila* está limitado por su bajo potencial redox (E°T1 = +475 mV) que le impide catalizar eficientemente la oxidación de moléculas con potenciales redox superiores al suyo, las lacasas de alto potencial redox producidas por hongos basidiomicetos de podredumbre de la madera suponen un punto de partida más adecuado para la mejora de las propiedades de la lacasa por evolución dirigida, debido a su mayor aplicabilidad biotecnológica.

- Las lacasas de alto potencial redox son un claro ejemplo de biocatalizador generalista que convierte en virtud su promiscuidad de sustratos. Impulsadas por oxígeno molecular, las lacasas de alto potencial redox transforman cientos de sustratos de diferente naturaleza y complejidad, abarcando desde xenobióticos (por ejemplo: pesticidas, tintes industriales, hidrocarburos aromáticos policíclicos) hasta biopolímeros (lignina, almidón). De aquí que las lacasas de alto potencial redox encuentren aplicaciones potenciales en biorremediación, refinado de textiles, bioblanqueo de pasta de papel, biocombustibles, síntesis orgánica y muchos otros procesos (Xu, 2005. Biochem. J. 334, 63-70; Kunamneni
- 45 et al., 2008. Microb. Cell Fact. 7, 32; Widsten y Kandelbauer, 2008. Enzyme Microb. Tech. 42, 293-307). Además, las lacasas de alto potencial redox son de las pocas enzimas capaces de aceptar electrones de manera directa desde un compartimento catódico, siendo así esenciales para la bioelectroquímica en la ingeniería de nanobiodispositivos, lo cual genera un interés especial en el diseño de bionanosensores tridimensionales y biopilas de combustible (Shleev et al., 2005. Bioelectrochemistry 67, 115-124). Desafortunadamente, su diseño práctico mediante evolución dirigida se
- 50 ha visto hasta ahora impedido por la falta de enfoques apropiados para evitar los complejos problemas encontrados durante su expresión funcional (Roodveldt *et al.*, 2005. Curr. Opin. Struc. Biol. 15, 50-56). De hecho, existen únicamente unos pocos estudios preliminares debido a la pobre exocitosis producida por la levadura (Festa *et al.*, 2008. Proteins 72, 25-34; Cusano *et al.*, 2009; Miele *et al.*, 2010. J. Appl. Microbiol. 108, 998-1006). La lacasa de alto potencial redox de la presente invención, diseñada *ad hoc*, es fácilmente exportable y soluble, en forma activa y estable, lo que
- abre un abanico de posibilidades para su futura ingeniería. En efecto, el meticuloso diseño experimental empleado, que involucró la evolución dirigida y la mutagénesis dirigida, ha sido crucial para crear un biocatalizador altamente activo y termoestable que ahora está disponible para enfrentarse a nuevos retos. Asimismo, la evolución conjunta del gen foráneo de la lacasa de alto potencial redox con el gen del preprolíder del factor  $\alpha$  proporciona una forma idónea de mejorar estas capacidades a partir de niveles de expresión indetectables. Esta estrategia puede ser ahora aprovechada
- 60 para diseñar otras lacasas de alto potencial redox, lo que apoya la idea general de emplear la evolución dirigida del preprolíder del factor  $\alpha$  como molde general para la expresión de diferentes sistemas enzimáticos (Rakestraw *et al.*, 2009. Biotechnol. Bioeng. 103, 1192-1201). Esperamos que en el futuro próximo, las lacasas de alto potencial redox diseñadas mediante evolución dirigida y enfoques racionales en *S. cerevisiae* puedan afrontar retos atractivos presentes en la biocatálisis tradicional y moderna.

<sup>65</sup> 

El grupo de M. Alcalde y colaboradores describe en Microbial Cell Factories (2010, 9:17) varias lacasas generadas mediante varios métodos de evolución dirigida de las secuencias polinucleotídicas que comprenden el gen de la lacasa de alto potencial redox ( $E^{\circ}T1 = +790 \text{ mV}$ ) del hongo basidiomiceto PM1, y la secuencia codificante de la secuencia

señal nativa del factor  $\alpha$ . De esta forma, estos autores han dado lugar a una expresión funcional mejorada en *S*. *cerevisiae* y a una actividad enzimática aumentada hacia uno o más sustratos.

Sin embargo, hasta la fecha no se ha conseguido producir lacasas de alto potencial redox con una elevada actividad 5 y una elevada termoestabilidad en cantidad suficiente.

### Descripción de la invención

La presente invención describe la evolución dirigida de una lacasa de alto potencial redox expresada funcionalmente en *S. cerevisiae* que presenta una elevada actividad y una gran termoestabilidad. El punto de partida fue la lacasa de alto potencial redox del basidiomiceto PM1, la cual exhibe unas destacables propiedades de estabilidad y actividad, incluyendo activación térmica (Coll *et al.*, 1993. Appl. Environ. Microb. 59, 2607-2613). Tras reemplazar la secuencia señal nativa por la secuencia preprolíder del factor  $\alpha$  con el fin de regular el tráfico de la proteína heteróloga, la proteína de fusión fue objeto de 8 ciclos de evolución de laboratorio en combinación con enfoques racionales. El

15 último mutante de este proceso, constituye una valiosa herramienta para diseñar lacasas de alto potencial redox *ad hoc* para diferentes aplicaciones.

Por tanto, la presente invención proporciona una nueva lacasa con alto potencial redox, alta tasa de producción, alta actividad y alta termoestabilidad. La presente invención se refiere a la secuencia aminoacídica de dicha lacasa y a la secuencia nucleotídica que codifica para dicha lacasa.

Los autores de la presente invención han utilizado una combinación metodológica basada en la evolución y la mutagénesis dirigida y han confeccionado una lacasa que resuelve la necesidad de un biocatalizador con elevada actividad y termoestabilidad, y que además presenta una alta tasa de producción funcional (8 mg/L; 1400 U/L de fermentado).

La lacasa de la presente invención es altamente estable frente a la temperatura (valores de  $T_{50}$ = 73°C), la presencia de cosolventes orgánicos y en un amplio intervalo de pH (estable en el intervalo 3 a 9). Dicha lacasa posee unos valores cinéticos del orden de 6 veces superiores a los descritos para lacasas equivalentes en el estado de la técnica, por lo que su diseño evolutivo ha permitido:

- i) incrementar 34000 veces los niveles de actividad total;
  - ii) incrementar sus constantes catalíticas,
- iii) mantener una elevada estabilidad frente a diversos factores (temperatura, pH, cosolventes).

Por tanto, las principales ventajas de la lacasa de la presente invención son:

- i) presenta una alta tasa de producción,
  - ii) presenta una elevada actividad y
- 45 iii) presenta una elevada termoestabilidad.

Un primer aspecto de la invención se refiere a un polinucleótido (en adelante llamado polinucleótido de la invención) que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 1 (en adelante llamado polipéptido de la invención). En una realización preferida, el polinucleótido de la invención tiene la secuencia nucleotídica SEQ ID NO: 2.

El término "polinucleótido", tal y como se emplea en la descripción, se refiere a formas poliméricas de nucleótidos de cualquier longitud, tanto ribonucleótidos como desoxirribonucleótidos.

<sup>55</sup> El término "codifica", tal y como se emplea en la descripción, hace referencia a la correlación que existe entre los tripletes de nucleótidos o codones en una secuencia de ADN y los aminoácidos que forman los péptidos, las secuencias aminoacídicas o las proteínas. Cuando se dice que una secuencia nucleotídica codifica para un péptido, significa que cuando dicha secuencia nucleotídica sea transcrita a ARN mensajero (ARNm) y este ARNm sea traducido, se generará dicho péptido.

60 `

25

30

35

40

El término "péptido", "polipéptido" o "proteína", tal y como se emplea en la descripción, se refiere a una forma polimérica de aminoácidos de cualquier longitud.

<sup>65</sup> Otro aspecto de la invención se refiere a una construcción genética (en adelante llamada construcción genética de la invención) que comprende:

a. el polinucleótido de la invención, o

- b. el polinucleótido de la invención, que además comprende un sistema o vector de expresión génica, operativamente enlazado con, al menos, un promotor que dirija la transcripción de dicho polinucleótido, y/o con otras secuencias nucleotídicas necesarias o apropiadas para la transcripción *in vitro* o *in vivo* y su regulación en tiempo y lugar.
- 5

10

Una construcción genética puede incluir los vectores de clonación y expresión génica que comprende el polinucleótido de la invención. Tales vectores de expresión génica incluyen secuencias de control, tales como, por ejemplo, elementos de control de la traducción (como códigos de iniciación y de parada) y de la transcripción (por ejemplo, regiones de promotor-operador, sitios de unión). Los vectores conforme a la invención pueden incluir plásmidos bacterianos y vectores virales, y otros vectores de acuerdo con los procedimientos bien conocidos y documentados en el estado de la técnica, y pueden expresarse en una variedad de sistemas de expresión diferentes, asimismo bien conocidos y documentados. Se conoce, así mismo, una variedad de técnicas que pueden utilizarse para introducir tales vectores en células procarióticas o eucarióticas (células hospedadoras) para su expresión. Técnicas adecuadas de

- 15 transformación o transfección están bien descritas en el estado de la técnica. Un "vector" es un replicón al que se ha unido otro segmento polinucleótido, para realizar la replicación y/o expresión del segmento unido. Un "replicón" es cualquier elemento genético que se comporta como una unidad autónoma de replicación polinucleótida dentro de una célula; esto es, capaz de replicarse bajo su propio control. El término "secuencia de control" se refiere a secuencias de nucleótidos que son necesarias para efectuar la expresión de las secuencias codificadoras a las que están ligadas.
- 20 La naturaleza de dichas secuencias de control difiere dependiendo del organismo huésped; en procariotas, dichas secuencias de control generalmente incluyen un promotor, un sitio de unión ribosomal, y señales de terminación; en eucariotas, generalmente, dichas secuencias de control incluyen promotores, señales de terminación, intensificadores y, en ocasiones, silenciadores. Se pretende que el término "secuencias de control" incluya, como mínimo, todos los componentes cuya presencia es necesaria para la expresión, y también puede incluir componentes adicionales cuya
- 25 presencia sea ventajosa. La expresión "unidos de forma operativa" se refiere a una yuxtaposición en la que los componentes así descritos tienen una relación que les permite funcionar en la manera intencionada. Una secuencia de control "unida de forma operativa" a una secuencia codificadora está ligada de tal manera que la expresión de la secuencia codificadora se consigue en condiciones compatibles con las secuencias de control.
- 30 En una realización preferida, la construcción genética de la invención además comprende un polinucleótido que codifica para un péptido señal mejorado por evolución dirigida que favorece la expresión funcional del polipéptido de la invención. Preferiblemente, el péptido señal es el del factor α, de secuencia aminoacídica SEQ ID NO: 9. Más preferiblemente, el polinucleótido que codifica para el péptido señal es la secuencia nuecleotídica SEQ ID NO: 10. Preferiblemente, la construcción genética de la invención comprende un polinucleótido que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 3. Más preferiblemente, la construcción genética de la invención comprende un polinucleótido que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 3. Más preferiblemente, la construcción genética de la invención comprende
- el polinucleótido de secuencia nucleotídica SEQ ID NO: 4.

El término "péptido señal", tal y como se emplea en la descripción, se refiere a un péptido que se localiza en el extremo amino de un polipéptido o proteína, y cuya función es dirigir la localización de la proteína a distintos 40 compartimentos de la célula (núcleo, mitocondria, cloroplasto, retículo endoplásmico (RE), aparato de Golgi (AG), etc.) o al espacio extracelular, en el caso de que la proteína sea secretada.

El péptido señal del factor  $\alpha$  es un polipéptido de 83 aminoácidos. Los 19 primeros aminoácidos constituyen el prelíder que dirige el polipéptido en creación hacia el RE. Tras entrar en el RE, el prelíder es escindido por una peptidasa, dejando una pro-proteína. En este punto, las N-glicosilaciones de tres residuos de asparagina facilitan el tránsito de la pro-proteína del RE al AG. En el AG, el prolíder puede actuar como chaperona hasta que es procesado por las proteasas KEX1, KEX2 y STE13 (Romanos *et al.*, 1992. Yeast 8, 423-488; Shuster, 1991. Curr. Opin. Biotech. 2, 685-690). Además, el prolíder parece estar implicado en un proceso de señalado vacuolar, que es perjudicial para la secreción heteróloga (Rakestraw *et al.*, 2009. Biotechnol. Bioeng. 103, 1192-1201).

50

55

En una realización preferida de la construcción genética de la invención, entre la secuencia nucleotídica que codifica para el péptido señal del factor  $\alpha$  SEQ ID NO: 9 y la secuencia nucleotídica que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 1 (ambos mejorados por evolución dirigida), se encuentra la secuencia nucleotídica que codifica para los aminoácidos ácido glutámico y fenilalanina. Más preferiblemente, la construcción genética de la invención comprende el polinucleótido que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 5. Más preferiblemente, la construcción genética de la invención comprende el polinucleótido de secuencia nucleotídica SEQ ID NO: 6.

Estos dos aminoácidos (ácido glutámico y fenilalanina) son consecuencia de la estrategia de clonaje empleada 60 para fusionar la secuencia nucleotídica que codifica para el factor  $\alpha$  con la secuencia nucleotídica que codifica para la 1acasa de la invención.

Otro aspecto de la invención se refiere a una célula hospedadora (en adelante llamada célula de la invención) que comprende el polinucleótido de la invención o la construcción genética de la invención. Más preferiblemente, la célula de la invención pertenece al género *Saccharomyces*. Aún más preferiblemente, la célula de la invención pertenece a la especie *Saccharomyces cerevisiae* (*S. cerevisiae*).

El término "célula hospedadora", tal y como se emplea en la descripción, se refiere a una célula que sirve como recipiente del polinucleótido de la invención o de la construcción genética de la invención. El término "célula hospedadora", tal y como se emplea en la descripción, también puede referirse a una célula que expresa una proteína de interés (por ejemplo, la lacasa de la invención) donde la célula hospedadora es transformada con un vector de expresión que contiene el polinucleótido de la invención o la construcción genética de la invención, además de otras secuencias

nucleotídicas de control.

La levadura de cerveza S. cerevisiae es un hongo unicelular que pertenece al Superreino Eukaryota, (grupo Metazoa/Fungi), Reino Fungi, Subreino Dikarya, Phylum Ascomycota, Subphylum Saccharomycotina, Clase Saccharomycetes, Orden Saccharomycetales, Familia Saccharomycetaceae y Género Saccharomyces. 10

Otro aspecto de la invención se refiere a una lacasa de alto potencial redox (en adelante llamada lacasa de la invención) que comprende el polipéptido de la invención. Preferiblemente, la lacasa de la invención además comprende los aminoácidos ácido glutámico y fenilalanina en el extremo amino del polipéptido, y su secuencia aminoacídica es

SEQ ID NO: 7. Más preferiblemente, la lacasa de la invención además comprende los últimos cuatro aminoácidos del 15 péptido señal del factor  $\alpha$  mejorado por evolución dirigida (ácido glutámico, treonina, ácido glutámico, alanina) en el extremo amino del polipéptido, y su secuencia aminoacídica es SEQ ID NO: 8.

La cola extra amino terminal de 2 aminoácidos no altera la termoestabilidad ni la actividad de la lacasa de la invención. 20

La presencia de los últimos cuatro aminoácidos del péptido señal del factor  $\alpha$  (ácido glutámico, treonina, ácido glutámico, alanina) se debe a la falta de procesado por parte de la proteasa STE13. Este es un fenómeno común en casos en los que una proteína alcanza niveles de hipersecreción, como sucede con la lacasa de la invención cuando es producida por la celula hospedadora de la invención. Es bien sabido que la cantidad de proteasa STE13 producida por la maquinaria de S. cerevisiae está ligada a la producción del factor  $\alpha$ , de ahí que cuando la lacasa fusionada al preprolíder del factor  $\alpha$  se hipersecreta, los niveles de la proteasa STE13 generados no son suficientes para procesar

correctamente el extremo terminal del prolíder. La cola extra amino terminal de 6 aminoácidos (los últimos cuatro aminoácidos del péptido señal del factor  $\alpha$  y los dos aminoácidos producto de la estrategia de clonaje) no altera la termoestabilidad ni la actividad de la lacasa de la invención. 30

El término "amino terminal", tal y como se emplea en la descripción, se refiere al extremo desde el que se crea el polipéptido o proteína durante la traducción del ARNm. Este extremo se denomina animo terminal porque el aminoácido que se sitúa en la posición inicial presenta el grupo amino libre.

35

25

5

El término "proteasa", tal y como se emplea en la descripción, se refiere a una proteína con actividad enzimática o enzima capaz de cortar (digerir, lisar, proteolizar o procesar) un polipéptido o proteína en una región concreta de su secuencia aminoacídica. Una proteasa también puede llamarse peptidasa o hidrolasa, ya que rompe el enlace peptídico entre dos aminoácidos de una secuencia aminoacídica, polipéptido o proteína.

40

La expresión "falta de procesado", tal y como se emplea en la descripción, se refiere a la ausencia de corte por parte de la proteasa. Se entiende por procesamiento de una enzima el fenómeno por el cual dicha enzima modifica su sustrato. En este caso, se entiende por procesamiento de la proteasa el corte del polipéptido al final de la secuencia aminoacídica del péptido señal del factor  $\alpha$ .

45

El término "hiperseoreción", tal y como se emplea en la descripción, se refiere a una secreción aumentada en gran medida. Esta secreción grandemente aumentada se debe a la presencia del péptido señal del factor a con la secuencia aminoacídica mejorada ŠEQ ID NO: 9. La hipersecreción de la lacasa de la invención permite la alta tasa de producción de dicha lacasa.

50

Otro aspecto de la invención se refiere a un método de obtención de la lacasa de la invención, que comprende:

- cultivar la célula hospedadora de la invención, y a.
- purificar la lacasa. b. 55

60

El término "purificar", tal y como se emplea en la descripción, se refiere a la separación de la lacasa de la invención y a su concentración, a partir del medio de cultivo de la célula de la invención. La separación de la lacasa puede llevarse a cabo mediante técnicas de solubilidad diferencial, cromatografía, electroforesis o isoelectroenfoque. Las técnicas de cromatografía pueden estar basadas en el peso molecular, la carga o la afinidad de la proteína y puede realizarse en columna, en papel o en placa. La separación de la proteína puede realizarse, por ejemplo, por cromatografía líquida rápida (FPLC, del inglés Fast Protein Liquid Cromatography), en un sistema automatizado que reduce notablemente el tiempo de purificación e incrementa el rendimiento de la purificación.

65

Otro aspecto de la invención se refiere al uso del polinucleótido de la invención o de las construcciones genéticas de la invención para la obtención de una lacasa de alto potencial redox.

Otro aspecto de la invención se refiere al uso de la célula hospedadora de la invención para la obtención de una lacasa de alto potencial redox.

Otro aspecto de la invención se refiere a un cultivo de células hospedadoras de la invención.

Un cultivo de células hospedadoras se refiere al proceso de mantener y crecer las células hospedadoras. Los cultivos celulares necesitan condiciones controladas de temperatura, pH, porcentajes de gases como el dióxido de carbono y el oxígeno, así como la presencia de los nutrientes adecuados para permitir la viabilidad y la división celular. Los cultivos celulares pueden desarrollarse en sustratos sólidos como el agar, o en medio líquido, lo que permite cultivar grandes cantidades de células en suspensión.

Otro aspecto de la invención se refiere al uso del cultivo de células hospedadoras de la invención para la obtención de una lacasa de alto potencial redox.

15 A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.

### 20

5

10

### Descripción de las figuras

Figura. 1. Muestra la Ruta de Evolución Artificial de  $\alpha$ -PM1. Se empleó una combinación de estrategias evolutivas (mutagénesis aleatoria, barajado in vivo del ADN (del inglés "in vivo DNA-shuffiing"), ensamblaje in vivo de librerías mutagénicas con diferente espectro mutacional (IvAM, del inglés "in vivo assembly of mutant libraries with different 25 mutational spectra") y racionales (mutagénesis dirigida tanto para recuperar mutaciones beneficiosas como para el intercambio mutacional con HRPL evolucionadas) durante la evolución del gen de fusión  $\alpha$ -PM1. El punto de partida para las mutaciones incorporadas en el 7º ciclo por mutagénesis dirigida está indicado por las flechas punteadas. MAT: mejora en la actividad total frente al tipo parental de la generación anterior. MT: mejora en la termoestabilidad frente al tipo parental de la generación anterior. 30

Figura 2. Muestran los entrecruzamientos sugeridos durante la Evolución Dirigida de  $\alpha$ -PM1. El pre-líder del factor- $\alpha$  está representado en gris, el prolíder del factor- $\alpha$  en blanco y la PM1 madura en negro. Las nuevas mutaciones puntuales están señaladas en gris. Con doble asterisco está señalado el mutante 16B10, el mejor mutante de termoestabilidad de la 6ª generación.

Figura. 3. Muestra el enfoque racional de la Termoestabilidad. (A) Detalle del modelo 3D de la lacasa mostrando la ubicación del Residuo 454 en las inmediaciones del sitio Cu T1 para el parental PM1 y el mutante 7H2. S454 establece dos puentes de hidrógeno con A458 y después de la mutación, forma un enlace adicional con A161. La esfera es el cobre T1. Termoestabilidad de HRPLs evolucionadas: (B)  $T_{50}$  de los mutantes de la 4<sup>a</sup>, 5<sup>a</sup> y 6<sup>a</sup> generación. 40Círculos negros, mutante 1D11 (4ª G); triángulos blancos, mutante 11A2 (4ª G); triángulos negros, mutante 7H2 (5ª G); círculos blancos, mutante 6C8 ( $6^{a}$  G); cuadrados negros, mutante 16B10 ( $6^{a}$  G). (C)  $T_{50}$  de los mutantes construidos por mutagénesis dirigida usando el mutante 6C8 como molde. Triángulos negros, mutante P393H; cuadrados negros, mutante D281E; triángulos blancos invertidos, mutante S224G; círculos blancos, mutante revertido S454F.

45

35

Figura. 4. Muestra la caracterización bioquímica del mutante OB-1. (A, B) Perfiles de pH actividad de las lacasas mutantes. Círculos blancos, mutante 5G3 (3ª G); círculos negros, mutante 1D11 (4ª G); triángulos negros, mutante S454F (7<sup>a</sup> G); triángulos blancos, mutante OB-1 (8<sup>a</sup> G). Las actividades se midieron en buffer Britton y Robinson 100 mM a diferentes pHs con 3 mM DMP (A) o ABTS (B) como sustratos. La actividad lacasa fue normalizada al valor de

- actividad óptimo y cada punto, incluyendo la desviación estándar, es la media de tres experimentos independientes. (C) 50  $T_{50}$  del mutante OB-1 y otras HRPLs relacionadas. Triángulos negros, lacasa de *Coriolopsis gallica*; círculos negros, lacasa de Pleurotus ostreatus; cuadrados negros, lacasa de Pycnoporus cinnabarinus; triángulos blancos invertidos, lacasa de Trametes versicolor, círculos blancos, lacasa de Trametes hirsuta; cuadrados blancos, mutante OB-1. (D) Estabilidad de OB-1 en presencia de concentraciones crecientes (v/v) de distintos disolventes orgánicos. Los experimentos
- se realizaron en viales con tapón de rosca conteniendo la variante OB-1 en una mezcla disolvente/buffer Britton y Ro-55 binson 100 mM (pH 6,0). Tras 4 h, se extrajeron alícuotas y se midió la actividad con ABTS 3 mM en buffer acetato sódico 100 mM (pH 4,0). Cuadrados negros, acetonitrilo; triángulos negros invertidos, etanol; cuadrados blancos, N,N'dimetilformamida; círculos blancos, metanol; círculos negros, dimetilacetamida; triángulos blancos, dimetilsulfóxido. La actividad residual está expresada como el porcentaje de actividad original a la correspondiente concentración de di-
- solvente orgánico. (E) Estabilidad frente al pH del mutante OB-1 a pH 3,0, 6,0 y 9,0. Las muestras de enzima fueron in-60 cubadas en buffer Britton y Robinson 10 mM a diferentes pHs, y la actividad residual se midió en ABTS 3 mM en buffer acetato sódico 100 mM (pH 4,0). Círculos negros, pH 3,0; cuadrados blancos, pH 6,0; triángulos negros, pH 9,0.

Figura, 5. Muestra las mutaciones en la Lacasa Evolucionada. Muestra los detalles de las siete mutaciones presentes 65 en la variante OB-1 (B, D, F) comparadas con los correspondientes residuos de la lacasa PM1 nativa (A, C, E). Las esferas representan átomos de Cu. Se muestran los ligandos del Cu T1 y del cluster trinuclear Cu T2/T3. Los puentes de hidrógeno relacionados con los residuos mutados (antes y después de la mutación) se muestran como líneas discontinuas.

Figura. 6. Muestra la estrategia de clonaje para la construcción de  $\alpha$ -PM1.

Figura. 7. Muestra la Ruta de Evolución Artificial de  $\alpha$ -PcL. La figura muestra las tres primeras generaciones de la lacasa de *Pycnoporus cinnabarinus*. MAP: mejora en la actividad total frente al tipo parental de la generación anterior. Esta figura está relacionada con la Figura 1.

Figura. 8. Muestra la caracterización del mutante OB-1. (A) espectro de masas del mutante OB-1. (B) Electroforesis del mutante OB-1 purificado. Los carriles contienen lo siguiente. 1: marcador de peso molecular, 2: filtrado del cultivo, 3: precipitación fraccionada con sulfato de amonio, 4: intercambio aniónico, 5: intercambio aniónico de alta resolución. (C) N-deglicosilación de OB-1. Los carriles contienen lo siguiente: 1: OB-1, 2: OB-1 deglicosilado, 3: marcador de peso molecular. La enzima purificada fue deglicosilada usando la N-glicosidasa PNGasaF. Las muestras se analizaron en un gel de SDS y acrilamida al 12% y se tiñeron con azul de Coomassie. Esta figura está relacionada con la Figura 4.

- 15 Figura. 9. Muestra la estructura general de la Lacasa Evolucionada OB-1. Están representados los tres dominios de tipo cobre (D1, D2 y D3), los átomos de cobre como esferas grises y las sustituciones de aminoácidos, en negro. También se muestran las distancias de los residuos mutados al cobre T1 (representadas como líneas discontinuas) y la superficie de la proteína. Esta figura está relacionada con la Figura 5.
- Figura 10. Muestra el alineamiento parcial de la secuencia aminoacídica de PM1 y de otras lacasas de alto potencial redox muy relacionadas. La numeración incluye las secuencias señal. El alineamiento de las secuencias se realizó con el algoritmo cobalto en el servidor NCBI-Blast. PM1, lacasa del basidiomiceto PM1 (CAA78144.1) (SEQ ID NO: 34); T. C30, lacasa de *Trametes* sp. C30 Lacc1 (AAF06967.1) (SEQ ID NO: 35); *T. trogii*, lacasa de *Trametes trogii* (2HRG-A(SEQ ID NO: 36)); *C. gallica*, lacasa de *Coriolopsis gallica* (ABD93940.1) (SEQ ID NO: 37); *C. rigida*,
- lacasa de Coriolopsis rigida (ACU29545.1) (SEQ ID NO: 38); T. sp AH28-2, lacasa A de Trametes sp. AH28-2 (AAW28933.1) (SEQ ID NO: 39); T. versicolor, lacasa III de Trametes versicolor (AAL93622.1) (SEQ ID NO: 40); T. pubescens, lacasa 2 de Trametes pubescens (AAM18407.1) (SEQ ID NO: 41); T. hirsuta, lacasa de Trametes hirsuta (ACC43989.1) (SEQ ID NO: 42); T. I-62, lacasa de Trametes sp. I-62 (AAQ 12269.1) (SEQ ID NO: 43); P. coccineus, lacasa de Pycnoporus coccineus (BAB69775.1) (SEQ ID NO: 44); P. sanguineus, lacasa de Pycnoporus sanguineus (ACN69056.1) (SEQ ID NO: 45); P. cinnabarinus, lacasa de Pycnoporus cinnabarinus (AAF13052.1) (SEQ ID NO:
- 46); L. tigrinus, lacasa de Lentinus triginus (2QT6-A) (SEQ ID NO: 47).

#### Modos de realización de la invención

35 La presente invención se ilustra adicionalmente mediante los siguientes ejemplos, los cuales no pretenden ser limitativos de su alcance.

### Ejemplo 1

40

5

10

#### Punto de partida para la evolución: la construcción de $\alpha$ -PM1

Nuestro punto de partida fue la lacasa de alto potencial redox del basidiomiceto PM1. Además de su elevado potencial redox (por encima de +700 mV), la lacasa PM1 es altamente estable en el intervalo de pH de 3 a 9 y a elevada temperatura (con una actividad óptima a 80°C) (Coll *et al*, 1993. Appl. Environ. Microb. 59, 2607-2613, Coll *et al*, 1993, Appl. Environ. Microb. 59, 4129-4135). Estas características la convierten en altamente deseable no sólo para uso práctico sino también para llevar a cabo experimentos de evolución dirigida. Teniendo en mente que la acumulación de mutaciones beneficiosas durante varios ciclos de evolución de laboratorio generalmente conduce a la desestabilización del molde proteico, cuanto mejor sea la estabilidad de la enzima de partida, mayor es la probabilidad

- 50 de alcanzar las mejoras perseguidas sin poner en peligro la función proteica (Bloom y Arnold, 2009, Proc. Natl. Acad. Sci. USA 106, 9.995-10.000). En primer lugar, el ADN copia de la lacasa PM1 con la secuencia señal nativa fue clonado en el correspondiente vector lanzadera, aunque no se detectaron niveles de expresión funcional en S. cerevisiae. Para aumentar los niveles de expresión a valores que pudieran detectarse en los ensayos de screening, la secuencia señal nativa de la lacasa PM1 fue reemplazada por diferentes péptidos señales comúnmente empleados para
- 55 expresar proteínas heterólogas en levadura. El mejor resultado se consiguió con la construcción  $\alpha$ -PM1 (Figura 6) constituida por el preprolíder de la feromona del factor  $\alpha$  (Shuster, 1991. Curr. Opin. Biotech. 2, 685-690) acoplada a la PM1 madura, lo cual generó niveles de expresión muy bajos pero detectables (~35 mU/L). Los coeficientes de varianza (CV) para los ensayos de *screening* se ajustaron durante el proceso de evolución (alcanzando CVs por debajo del 11% a partir del tercer ciclo en adelante) y las condiciones de microfermentación fueron optimizadas (asimilación

60 de cobre, composición del medio, disponibilidad de oxígeno y temperatura).

#### 1.1. Reactivos y enzimas

65 El vector pUEX1 con el cDNA de la PM1 nativa fue cedido por el Prof. R. Santamaría (Universidad de Salamanca). La lacasa de *Trametes versicolor*, las lacasas de *Pycnoporus cinnabarinus y Trametes hirsuta*, y las lacasas de *Coriolopsis gallica y Pleurotus ostreatus*, fueron donadas por Novozymes (Davis, CA, USA), Prof. E. Record (Universidad de Marsella, Francia), Prof. A. Yaropolov (Instituto de Bioquímica, Moscú, Rusia) y Prof. R. Vázquez-

Duhalt (UNAM, Cuernavaca, México), respectivamente. El ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), el DMP (2,6-dimetoxifenol), la Taq polimerasa y el kit de transformación en S. cerevisiae fueron comprados a Sigma-Aldrich. Las células competentes de E. coli XL2-Blue y los kits Genemorph I y II Random mutagénesis son de Stratagene. La cepa BJ5465 de S. cerevisiae deficiente en proteasas es de LGCPromochem. El vector lanzadera

- 5 pJRoC30 con el gen de resistencia a ampicilina y el de auxotrofía para uracilo procede del Instituto de Tecnología de California (Caltech, CA, USA), mientras que el vector pGAPZ $\alpha$ , que contiene el prepro-líder del factor  $\alpha$ , es de Invitrogen, USA. Los kits Zymoprep yeast plasmid miniprep, Zymodean gel DNA recovery, y DNA clean & concentrator TM-5 se compraron a Zymo Research. El kit NucleoSpin Plasmid se compró a Macherey-Nagel y las enzimas de restricción BamHI y XhoI a New England Biolabs. Todos los reactivos usados fueron los de mayor pureza disponible.
- 10

### 1.2. Construcción de la $\alpha$ -PM1

- El ADN copia de la PM1 incluyendo la señal líder nativa fue clonado en el vector lanzadera pJRoC30 en S. cerevisiae. El vector pUEX1 con el ADN copia de la PM1 se usó como molde para amplificar la PM1 incluyendo los 15 21 aminoácidos del péptido señal. Los cebadores utilizados para la amplificación fueron: (SEO ID NO: 11) F3PM1: 5'CTCTATACTTTAACGTCAAGGAGAAAAAACTATA ART-3' y (SEQ ID NO: 12) R3PM1: 5'GACATAACTAAT TACATGATGCGGCCC TCTAGATGCATGCTCGAGCtcactggtcgtcggcgagagc3', donde las letras mayúsculas indi-can los fragmentos que anillan específicamente *in vivo* en las células de *S. cerevisiae* con el vector pJRoC30 linearizado
- con BamHI y XhoI. La correspondiente construcción pJRoC30-PM1 no dio lugar a niveles de expresión funcional en S. 20 cerevisiae. En consecuencia, la secuencia señal nativa de la PM1 fue sustituida por las señales líder de MtLT2 (Bulter et al., 2003. Appl. Environ. Microb. 69, 987-995), la de la glucosa oxidasa de Aspergillus niger (Frederick et al., 1990. J. Biol. Chem. 265, 3793-3802) y el preprolíder del factor  $\alpha$  (Brake et al., 1984. Proc. Natl. Acad. Sci. USA 81, 4642-4646), siendo el último el único que dio lugar a niveles detectables de secreción de la PM1 en S. cerevisiae (inferior
- a 35 mU/L). La construcción  $\alpha$ -PM1 se obtuvo por amplificación del gen de la PM1 nativa excluyendo la señal líder 25 usando los cebadores (SEQ ID NO: 13) PM1Eco-F (5'-gcGAATTCagcattgggccagtc-3') y (SEQ ID NO: 14) PM1-R (5'-atGGCGGCCGC<u>tta</u>ctggtcgtcggcgagagc-3), que incluyen las dianas para EcoRI y NotI (en letras mayúsculas) así como el codón de parada óptimo (en negrita y subrayado) para *Pichia Pastoris*. El vector pGAPZ $\alpha$  con el preprolíder del factor  $\alpha$  fue linearizado con *EcoRI* y *Not*I, y el fragmento amplificado correspondiente fue digerido con *EcoRI* y
- *Not*I y clonado en el pGAPZ $\alpha$  linearizado, dando lugar a la construcción pGAPZ $\alpha$ -PM1. La construcción pGAPZ $\alpha$ -30 PM1 se utilizó para amplificar el gen de fusión  $\alpha$ -PM1 por medio de los siguientes cebadores: (SEQ ID NO: 15)  $\alpha$ -F (5'-ATAGGATCCatgagatttccttcaatttttactgctgtt-3') que incluye la diana de *BamH*I (en letras mayúsculas) y (SEQ ID NO: 16) PM1-R (5'-tcaatgtccgcgttcgcaggga-3'). El fragmento obtenido se digirió con *Not*I. El vector episómico pJRoC30 fue digerido con BamHI y amplificado con Klenow para el clonaje con extremos romos. Finalmente, el plásmido fue digerido con NotI, desfosforilado y ligado con  $\alpha$ PM1 para generar el pJRoC30- $\alpha$ PM1.

35

Ejemplo 2

40 Evolución de laboratorio de  $\alpha$ -PM1

La estrategia de evolución dirigida fue elaborada siguiendo las siguientes reglas: i) para ajustar adecuadamente los requisitos de la ruta secretora del hospedador durante la expresión funcional de la lacasa, el gen de fusión completo fue objeto de mutagénesis aleatoria y/o recombinación. Por lo tanto, se evolucionó conjuntamente tanto el preprolíder del factor  $\alpha$  como el gen de la lacasa foránea con el fin de adaptar ambos elementos para una exportación exitosa por S. 45 cerevisiae; ii) para asegurar que la mejora de actividad no fuera dependiente de un sustrato en concreto, se validaron y emplearon durante la evolución molecular ensayos de screening basados en la oxidación de compuestos fenólicos (2,6 DMP) y no fenólicos (ABTS); iii) para garantizar la termoestabilidad general del mutante final, las pérdidas en estabilidad producidas por la acumulación de mutaciones durante la evolución fueron detectadas y recuperadas mediante

- enfoques racionales acoplados con el screening de termoestabilidad de librería de mutantes; y iv) las mutaciones que 50 representaron mejoras significativas durante los primeros ciclos de evolución in vitro, pero que no fueron finalmente seleccionadas tras las recombinaciones y el screening, fueron recuperadas individualmente, analizadas e introducidas en las últimas variantes mediante mutagénesis dirigida.
- La generación de diversidad fue emulada aprovechando la maquinaria celular eucariota de S. cerevisiae. Los altos 55 niveles de recombinación homologa que ofrece S. cerevisiae permiten reparar in vivo los productos mutagenizados con el vector linearizado a través de la ingeniería de extremos solapantes diseñados al efecto sin alterar la clase de lectura. Las librerías mutagénicas fueron recombinadas mediante barajado in vivo del ADN (del inglés "in vivo DNA shuffling" y/o mediante ensamblaje in vivo de librerías mutagénicas con diferente espectro mutacional (IvAM, del
- inglés "in vivo assembly of mutant libraries with different mutational spectra") (Okkels, 2004. Enzyme functiona-lity: design, engineering, and screening, A. Svendsen, ed. (New York: Marcel Dekker, Inc.). 413-424; Zumárraga et 60 al., 2008. Proteins 71, 250-260). Para aumentar el número de entrecruzamientos entre los insertos sin comprometer la eficiencia de transformación, se chequearon varias regiones solapantes con baja homología respecto al vector linearizado. Las tasas mutacionales se ajustaron de forma que aproximadamente 1-3 aminoácidos por proteína de fu-
- sión fueran introducidos, de media, por cada ciclo de evolución (Tracewell y Arnold, 2009. Curr. Opin. Chem. Biol. 65 13, 3-9).

Más de 50.000 clones fueron explorados en 8 ciclos de evolución dirigida y mutagénesis dirigida, culminando en la selección de la última variante, el mutante OB-1, con una mejora total sobre  $\alpha$ -PM1 de 34.000 veces (Figura 1). Con independencia de la enzima y la característica sometida a evolución dirigida, es raro alcanzar unas mejoras tan elevadas. Parece lógico pensar que la evolución conjunta del preprolíder del factor  $\alpha$  junto con la PM1 madura para su

5 secreción en levadura, haya favorecido un efecto sinérgico entre ambos polipéptidos, lo cual eventualmente se traduce en una mejora en la exportación de  $\alpha$ -PM1 por el hospedador eucariota. Durante la ruta de evolución artificial (Figura 1), se caracterizaron y fueron recombinados 26 mutantes con mejoras entre 1,3 a 12 veces respecto del mejor tipo parental correspondiente en cada ciclo. En términos generales, hasta 28 posiciones diferentes fueron mutadas (9 de ellas mutaciones sinónimas) a lo largo del gen de fusión  $\alpha$ -PM1 (Tabla 1). De éstas, 9 mutaciones se encontraron en el preprolíder del factor  $\alpha$  y las restantes 19 en el gen de la lacasa.

10

15

Los dos primeros ciclos de evolución se llevaron a cabo mediante PCR propensa a error con diferentes tasas mutacionales y con ADN polimerasas con distinto perfil mutacional (Figura 1, Tabla 1). Para acelerar aún más la evolución, a partir del segundo ciclo en adelante se empleó un protocolo que combinó la construcción de librerías mutantes a partir de cada parental mediante barajado in vivo del ADN. Esta estrategia produjo entrecruzamientos complejos para cada descendencia junto con la introducción de nuevas mutaciones puntuales (Figura 2). La mejor

- variante del quinto ciclo, el mutante 7H2, tuvo aprox. 24.300 veces mejor actividad que  $\alpha$ -PM1, con una actividad total de 1.000 U/L. La caracterización preliminar de 7H2 demostró una fuerte reducción en su termoestabilidad con un descenso en su  $T_{50}$  de aprox. 5°C con respecto a sus correspondientes parentales, los mutantes 1D11 y 11A2 (de 73°C a 68°C, Figura 3B), lo cual estuvo relacionado con la significativa caída de actividad durante su almacenamiento en 20
- largos períodos (perdiendo aproximadamente el 30% de su actividad tras 14 días a 4°C). La acumulación de mutaciones beneficiosas pero desestabilizantes durante la evolución es un fenómeno bien descrito (Bloom et al., 2006. Proc. Natl. Acad. Sci. USA 103, 5869-5874; Bloom y Arnold, 2009. Proc. Natl. Acad. Sci. USA 106, 9995-10000; García et al., 2010. Microb. Cell Fact. 9, 17).

25

30

Para superar este problema y recuperar la estabilidad al tiempo que permitiera tolerar la introducción de un nuevo set de mutaciones beneficiosas, se incorporó en el sexto ciclo un screening de termoestabilidad basado en la determinación de la  $T_{50}$  (definida como la temperatura a la que la enzima retiene el 50% de su actividad tras 10 min de incubación) (García et al., 2010. Microb. Cell Fact. 9, 17; Bommarius et al., 2006. Curr. Opin. Biotech. 17, 606-610). Para esta ocasión, la librería se construyó mediante IvAM, mezclando diferentes perfiles y predisposiciones mutacionales. La mejor variante de termoestabilidad, 16B10, recuperó parte de su termoestabilidad con una mejora en su  $T_{50}$ 

de 3°C (Figura 3B), pero a expensas de su actividad, la cual se redujo a la mitad (de 1.000 a 510 U/L) (Figura 1, Tabla 1). Por otro lado, la mejor variante de actividad de este ciclo, el mutante 6C8, todavía mejoró su actividad total hasta valores de 2.000 U/L mientras que retuvo una estabilidad similar a 7H2.

35

En este punto, estuvimos en la encrucijada de o bien continuar evolucionando para termoestabilidad a partir de 16B10 pero poniendo en peligro la actividad, o emplear el mutante 6C8 como parental e intentar resolver el problema de estabilidad "racionalmente".

- 40 Más que enfrentarnos con el bien conocido "trueque" que normalmente surge entre la actividad y la estabilidad para muchas mutaciones puntuales (Romero y Arnold, 2009. Nat. Rev. Mol. Cell Bio. 10, 866-876), decidimos volver a analizar el inestable mutante 7H2. Este mutante procede de un evento de entrecruzamiento entre 1D11 y 11A2, lo cual permitió unir las mutaciones V( $\alpha$ 10)D, A( $\alpha$ 87)T y V162A del mutante 11A2 con las mutaciones H208Y, A239P, S426N y A461T del mutante 1D11 (Figura 2, Tabla 1).
- 45

TABLA 1: Mutaciones introducidas en la evolución dirigida de  $\alpha$ -PM1. +, mutación acumulada; •, nueva mutación. En sombreado se detallan las mutaciones sinónimas; con subíndices se indican el uso de codones en S. cerevisiae. \*EI mutante OB-1 incorporó las dos mutaciones recuperadas S224G y D281 más la mutación revertida S454F introducidas mediante mutagénesis dirigida en los ciclos de evolución 7º y 8º.

50

Además, 7H2 incorporó una mutación sinónima más la mutación F454S, generada por mutagénesis en combinación con barajado in vivo del ADN. Decidimos mapear esta mutación en un modelo 3D basado en la estructura cristalográfica de la lacasa de Trametes trogii (con un 97% de identidad de secuencia con la PM1). La Phe454 está localizada en una  $\alpha$  hélice cercana al cobre del sitio T1, el lugar donde se une el sustrato reductor. De hecho, la Phe454

60

se sitúa al lado de uno de los ligandos de coordinación del cobre T1, la His455 que parece estar involucrada en la unión 55 del sustrato reductor facilitando la entrada de electrones al cobre T1 (Bertrand et al., 2002. Biochemistry 41, 7325-7333; Matera et al., 2008. Inorg. Chim. Acta 361, 4129-4137). La inspección del modelo sugiere que la mutación F454S permite un puente de H adicional con la Alai61 (Figura 3A).

|    |            |          |             |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             |             |             |              | -            |              | _                                       |              |
|----|------------|----------|-------------|------------|------------|------------|----------------|----------------|-------------|-------------|-------------|-----------------|-----------------|-------------|----------------------------|-------------|-----------------|-------------|-------------|-------------|--------------|--------------|--------------|-----------------------------------------|--------------|
|    | 8G         | OB-1*    | :           | +          | +          |            |                | +              |             |             | +           | +               | +               | +           | +                          |             |                 | +           | +           | +           | +            |              |              |                                         | +            |
| 5  | 6G         | 16B10    |             | +          |            | ٠          |                |                |             |             | +           | +               | +               | +           | +                          |             | •               | +           |             | +           |              |              | •            | •                                       | +            |
|    | 9          | 6C8      |             | +          | •          |            |                | •              |             |             | +           | +               | +               | +           | +                          |             |                 | +           |             | +           |              |              |              |                                         | +            |
| 10 | 5G         | 7H2      |             | +          |            |            |                |                |             |             | +           | +               | +               | +           | +                          |             |                 | +           |             | +           |              |              |              |                                         | +            |
|    |            | 7F2      |             | +          |            |            |                |                |             |             | +           |                 | +               |             | +                          | +           |                 |             | +           | +           |              |              |              |                                         | +            |
| 15 | 4G         | 11A2     |             | +          |            |            |                |                |             |             | +           | •               | +               | +           | +                          |             |                 |             |             | +           | +            |              |              |                                         | +            |
|    |            | 1101     |             | ÷          |            |            | •              |                |             |             | +           |                 | +               |             |                            |             |                 | •           |             | +           |              |              |              |                                         | +            |
| 20 |            | 11B3     |             | +          |            |            |                |                |             |             | +           |                 | +               |             |                            |             |                 |             |             | +           | +            |              |              |                                         |              |
| 20 |            | 8G8      |             | +          |            |            |                |                |             | •           | +           |                 | +               |             | +                          | •           |                 |             | +           | +           |              |              |              |                                         |              |
|    |            | 4B8      |             | +          |            |            |                |                |             |             | +           |                 | +               |             | +                          |             |                 |             |             | +           |              |              |              |                                         | +            |
| 25 | 3G         | 4E12     |             | +          |            |            |                |                |             |             | +           |                 | +               | •           | +                          |             |                 |             |             | +           | +            |              |              |                                         |              |
|    |            | 9H4      |             | +          |            |            |                |                | +           |             | +           |                 |                 |             |                            |             |                 |             |             | +           |              |              |              |                                         | +            |
| 30 |            | 7D2      |             | +          |            |            |                |                | +           |             |             |                 |                 |             |                            |             |                 |             |             | +           |              |              |              |                                         | +            |
|    |            | 5G3      |             | +          |            |            |                |                |             |             | +           |                 | +               |             |                            |             |                 |             |             | +           |              |              |              |                                         | +            |
| 35 |            | 4C2      |             |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             |             | +           |              |              |              |                                         |              |
|    | 2G         | 2G5      |             |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             |             | +           | •            |              |              |                                         |              |
| 10 | C1         | 10D2     |             |            |            |            |                |                | •           |             |             |                 |                 |             |                            |             |                 |             |             | +           |              |              |              |                                         | •            |
| 40 |            | 3E1      |             | •          |            |            |                |                |             |             | •           |                 | •               |             | •                          |             |                 |             |             | +           |              | •            |              |                                         |              |
|    |            |          | 1A2         |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             |             |             | •            |              |              | <br>                                    |              |
| 45 | 16         |          | 30C         |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             | •           |             |              | L            |              | <br>                                    |              |
|    | L          | -IMI-    | <u> </u>    |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             |             | •           |              |              |              |                                         |              |
| 50 | Generación | Mutación | Codón       | GTT(29)GAT | AAC(69)AAA | ATT(98)ACT | 27TG(157)CTG10 | 6GGC(186)GGA11 | TTA(188)TCA | GAG(248)GGG | GCT(259)ACT | 45GAA(270)GAG19 | 27CAA(483)CAG12 | GTC(758)GCC | 6GCG(774)GCT <sub>21</sub> | AAC(814)GAC | 21GCT(828)GCC13 | CAC(895)TAC | AGC(943)GGC | GCT(988)CCT | GAC(1116)GAA | GTT(1129)CTT | GCG(1354)ACG | <sub>7</sub> CCC(1458)CCT <sub>13</sub> | AGC(1550)AAC |
| 55 | Gen        | Mu       | Amino ácido | V(al 0)D   | N(023)K    | l(a33)T    | L(023)L        | G(a62)G        | L(a63)S     | Ε(α 83)G    | A(a87)T     | E(000)E         | Q70Q            | V162A       | A167A                      | NI8ID       | A185A           | H208Y       | S224G       | A239P       | D281E        | V286L        | A361T        | P395P                                   | S426N        |
| 60 |            |          |             |            |            |            |                |                |             |             |             |                 |                 |             |                            |             |                 |             |             |             |              |              |              |                                         |              |

Parece posible que este nuevo puente de H provoque el movimiento del segmento helicoidal donde se encuentra la His455, amplificando la distancia entre el ligando de coordinación y el cobre T1. Este efecto incrementaría las velocidades catalíticas, pero disminuiría dramáticamente la estabilidad de la variante. Por lo tanto, se decidió revertir la mutación F454S en el mutante 6C8 mediante mutagénesis dirigida. El mutante revertido generado (mutante S454F) recupero completamente su estabilidad con una  $T_{50}$  idéntica a la de los parentales del 4° ciclo y anteriores (Figura 3C). Notoriamente, mientras el mutante revertido fue 0,5 veces más débil catalíticamente (900 U/L) mostró unos valores de actividad similares a los descritos para 7H2 pero siendo de nuevo altamente termoestable. El efecto sinérgico de recombinar 1D11 y 11A2, junto con la nueva mutación beneficiosa que apareció en 6C8 (N[ $\alpha$ 23]K) sirvió para superar la pérdida de la mutación F454, que resultó ser beneficiosa pero altamente desestabilizante, en términos de mejora de

10 actividad total.

5

#### 2.1. Recuperación de mutaciones beneficiosas

- 15 Durante el diseño de la lacasa de alto potencial redox en *S. cerevisiae*, algunas de las mutaciones descubiertas en las fases iniciales de la evolución que afectaron la actividad fueron finalmente descartadas por el aparato de recombinación homologa de *S. cerevisiae*, a pesar de sus potenciales efectos beneficiosos. En el hospedador eucariota, la probabilidad de que un evento de entrecruzamiento suceda entre dos mutaciones es directamente proporcional al número de nucleótidos que separa ambas mutaciones. Así, no es sorprendente que algunas mutaciones beneficiosas no fueran finalmente
- 20 incorporadas en un molde que ya contenía la mutación A239P, tales como las mutaciones S224G o D281G (Figura 2). Pensamos que sería interesante rescatar estas mutaciones y probarlas individualmente en la variante 6C8. La mutación S224G fue la única mutación presente en el mutante PM1-30C (de la primera generación) produciendo una mejora de 7 veces en la actividad (Figura 1). Esta variante fue de nuevo empleada como parental en el tercer ciclo para ejercer un efecto de *backcrossing* y así, S224G se incorporó a la descendencia. Desafortunadamente, debido al ya mencio-
- nado entrecruzamiento entre 1D11 y 11A2 en el quinto ciclo, la mutación S224G finalmente se perdió. Asimismo, la mutación D281E apareció de forma independiente en diferentes momentos de la evolución (en los mutantes PM1-1A2 y 2G5 de la primera y segunda generación) con unas mejoras de aprox. 4 veces. De nuevo, la recombinación entre 1D11 y 11A2 eliminó la mutación D281E del gen de la lacasa. Ambas mutaciones fueron estudiadas individualmente mediante mutagénesis dirigida en el séptimo ciclo y en ambos casos, la actividad total aumento sin comprometer la termente al mutación de la segunda en el séptimo ciclo y en ambos casos, la actividad total aumento sin comprometer la termente al mutación de la segunda en el segunda
- 30 termoestabilidad (Figuras 1, 3C). Así pues, las mutaciones S224G y D281E se incorporaron conjuntamente al mutante revertido en el último ciclo para dar lugar al mutante OB-1.

#### 2.2. Intercambio mutacional con una lacasa de alto potencial redox evolucionada

35

En un esfuerzo paralelo, también hemos estado involucrados en la evolución dirigida de otra lacasa de alto potencial redox procedente del hongo *Pycnoporus cinnabarinus* (Camarero *et al.*, 2009. Patent PCT/ES2009/070516), la cual comparte el 77% de identidad de secuencia con la lacasa PM1. Emulando el mismo enfoque que hemos seguido con la lacasa PM1, la secuencia señal nativa de la lacasa de *P. cinnabarinus* se reemplazó por el preprolíder del factor  $\alpha$ , y

- 40 la correspondiente proteína de fusión fue objeto de varios ciclos de mutagénesis aleatoria y recombinación (Figura 7). Una de las mejores mutaciones encontradas durante la evolución de la lacasa de *P. cinnabarinus* (P394H) se encuentra en la vecindad del cobre T1. La sustitución de una Pro por una His en la posición 394 promueve un nuevo puente de H con la Asn208 que está próxima a la His295, uno de los ligando del cobre T1 (Camarero *et al.*, 2009. Patent PCT/ES2009/070516). El alineado de secuencias de la lacasa PM1 con la lacasa de *P. cinnabarinus* índica que la P394
- 45 pertenece a una región altamente conservada entre las lacasas de alto potencial redox (Figura 10). Por lo tanto, la mutación P394H (P393H empleando la numeración de la PM1) fue introducida en 6C8 durante el séptimo ciclo con mejoras en la actividad de hasta 3.000 U/L pero con una pérdida significativa de termoestabilidad (la T<sub>50</sub> bajo 2°C, Figura 3C).
- 50 Realmente desconocemos si la pérdida de termoestabilidad tras la mutación fue un efecto lateral común en ambas lacasas o si únicamente aconteció en el mutante 6C8. De hecho, no se pudo realizar un análisis de termoestabilidad en la lacasa de *P. cinnabarinus* ya que la P394H fue introducida en el primer ciclo, cuando los niveles de expresión eran virtualmente indetectables (Figura 7). Teniendo en cuenta que nuestro principal objetivo era el diseñar una HRPL altamente activa y estable, y a pesar de la mejora en actividad, la mutación P393H no fue finalmente incorporada en el último en cuenta que nuestro principal objetivo era el diseñar una HRPL
- 55 el último mutante, la variante OB-1.

#### 2.3. Evolución dirigida del preprolíder del factor $\alpha$

- 60 La secuencia señal preprolíder del factor  $\alpha$  codifica un polipéptido de 83 aminoácidos del cual los 19 primeros residuos constituyen el prelíder que dirige el polipéptido en creación hacia el retículo endoplasmático (RE). Tras entrar en el RE, el prelíder es escindido por una peptidasa dejando una pro-proteína. En este punto, las N-glicosilaciones de tres residuos de asparagina facilitan el tránsito de la pro-proteína del RE al aparato de Golgi. En el Golgi, el prolíder puede actuar como chaperona hasta que es procesado por las proteasas *KEX1, KEX2* y *STE13* (Romanos *et al.*, 1992.
- <sup>65</sup> Yeast 8, 423-488; Shuster, 1991. Curr. Opin. Biotech. 2, 685-690). Además, el prolíder parece estar implicado en un proceso de señalado vacuolar, que es perjudicial para la secreción heteróloga (Rakestraw *et al.*, 2009. Biotechnol. Bioeng. 103, 1192-1201). Hasta 8 mutaciones, (3 sinónimas) fueron introducidas en el preprolíder del factor α durante la evolución de la α-PM1 aunque únicamente las mutaciones V[α10]D, N[α23]K, A[α87]T y la mutación sinónima

 $G[\alpha 62]G$  se conservaron en la última variante mutante OB-1. V[ $\alpha$ 10]D se localiza en el dominio hidrofóbico del prelíder e interesantemente, una de las mejores mutaciones encontradas durante la evolución de la lacasa de *P. cinnabarinus* fusionada con el preprolíder del factor  $\alpha$  fue también descubierta en este dominio (mutación A[ $\alpha$ 9]D, Figura 7). Se ha descrito que las mutaciones en la pre-región pueden afectar el señalado en el RE y la secreción (Romanos *et al.*, 1992. Yeast 8, 423-488). El papel de estas dos mutaciones consecutivas en el tráfico de lacasa fue testado mediante

5 1992. Yeast 8, 423-488). El papel de estas dos mutaciones consecutivas en el tráfico de lacasa fue testado mediante la construcción de mutantes individuales, dobles y revertidos a partir del mutante 6C8 durante el séptimo ciclo de evolución (Tabla 2).

#### 10

### TABLA 2

# Mejoras de actividad para los mutantes en las posiciones 9 y 10 del prelíder del factor $\alpha$ . Los mutantes fueron construidos empleando el mutante 6C8 como tipo parental

15

20

|                                            | A(α9)D | V(α10)D | A(α9)D<br>V(α10)D | D(α9)A<br>D(α10)V |
|--------------------------------------------|--------|---------|-------------------|-------------------|
| Mejora de<br>actividad total<br>(en veces) | 2,2    | 2,2     | 0,5               | 0,1               |

25

Los datos experimentales indican que la mutaciones individuales, A[ $\alpha$ 9]D y V[ $\alpha$ 10]D, ejercen una clara mejoría en la secreción aunque no cuando son combinadas: la hidrofobicidad de este dominio es entonces disminuida drásticamente.

<sup>30</sup> Es bien sabido que la mayoría de las alteraciones que reducen la eficiencia de translocación están relacionadas con el descenso general en la hidrofobicidad de este dominio (Romanos *et al.*, 1992. Yeast 8, 423-488). Suponemos que los cambios individuales en los residuos carboxílicos cargados en las posiciones 9 o 10 del preprolíder del factor  $\alpha$  podrían afectar positivamente la interacción entre el péptido señal y la partícula de reconocimiento de señal involucrada en las posiciones de las posiciones de

- orientar e insertar la cadena polipeptídica de la lacasa en la bicapa de la membrana del RE (Nothwehr y Gordon, 1990. <sup>35</sup> BioEssays 12, 479-484; Boyd y Beckwith, 1990. Cell 62, 1031-1033). La mutación N[ $\alpha$ 23]K aparece en el primer de los tres sitios de Asn-glicosilación del prolíder (Romanos *et al.*, 1992). Aunque no es absolutamente necesario para la secreción, tales glicosilaciones podrían facilitar el transporte del RE al Golgi (Rakestraw *et al.*, 2009. Biotechnol. Bioeng. 103, 1192-1201). Sin embargo, nuestros resultados no apoyan esta hipótesis ya que tras la eliminación del sitio de glicosilación en el sexto ciclo de evolución (generando el mutante 6C8) se mejoró la secreción.
- 40

45

Finalmente, la mutación A[ $\alpha$ 87]T se encontró en el sitio de procesado para *STE13*, una dipeptidil aminopeptidasa que elimina los residuos espaciadores (Glu/Asp-Ala)<sub>2</sub> en el amino terminal entre el prolíder del factor  $\alpha$  y la lacasa PM1 madura. Tras la mutación, los residuos espaciadores proporcionan un ambiente incluso más hidrofílico a la diana del sitio de restricción para la *KEX2* (Lys-Arg), lo cual podría afectar a la secreción de la lacasa madura (Brake, 1990. Meth Enzymol 185, 408-421).

### 2.4. Evolución Dirigida: Aspectos Generales

En cada generación, los fragmentos de PCR se lavaron, concentraron y cargaron en un gel de agarosa de bajo punto de fusión, tras lo cual se purificaron usando el kit Zymoclean gel DNA recovery (Zymo Research). Los productos de PCR se clonaron bajo el control del promotor Gal 1 del vector de expresión pJRoC30, reemplazando el gen nativo presente en el mismo. Para eliminar el gen nativo, el plásmido pJRoC30 fue linearizado con *Xho*I y *BamH*I y el plásmido lineal fue concentrado y purificado del mismo modo que se describió arriba para los fragmentos de PCR.

55

### 2.5. Primera Generación

Se prepararon tres librerías independientes con distintas ADN polimerasas y bajo diferentes tasas mutacionales.
 La primera librería mutagénica (~15.000 mutantes) se construyó con el kit Genemorph I ajustando la tasa mutacional a 1,1-3,5 mutaciones por kb. La segunda y la tercera librería (~15.000 mutantes cada una) fueron construidas con el kit Genemorph II ajustando la tasa mutacional a 0-4,5 y 4,5-9 mutaciones por kb, respectivamente. La PCR propensa a error se llevó a cabo en un termociclador de gradiente (Mycycler, BioRad, USA) usando los siguientes parámetros:
 95°C durante 2 min (1 ciclo); 94°C durante 0,45 min, 53°C durante 0,45 min, 74°C durante 3 min (28 ciclos); y 74°C

<sup>&</sup>lt;sup>65</sup> durante 10 min (1 ciclo), 54 c durante 6,45 min, 55 c durante 6,45 min, 74 c durante 5 min (26 ciclos), 57 + c durante 10 min (1 ciclo). Los cebadores usados para la amplificación fueron: RMLN directo (SEQ ID NO: 17) (5-CCTCTATACTTTAACGTCAAGG-3', que se une a las pb 160-180 del pJRoC30- $\alpha$ PM1) y RMLC inverso (SEQ ID NO: 18) (5'-GGGAGGGCGTGAATGTAAGC-3', que se une a las pb 2028-2048 del pJRoC30- $\alpha$ PM1). Para promover

la ligación *in vivo*, se diseñaron fragmentos de 40 y 66 pb homologas al vector lineal. Los productos de PCR (400 ng) se mezclaron con el vector linerarizado (100 ng) y se transformaron en células competentes usando el kit de transformación en levadura de Sigma. Las células transformantes se sembraron en placas SC y se incubaron durante 3 días a 30°C. Las colonias con el vector completo de replicación autónoma se picaron y se sometieron a ensayos de *screening*, así como a re*-screenings* adicionales. Del primer al quinto ciclo de evolución las librerías se exploraron de

cara a encontrar mejoras en de actividad, y a partir del sexto ciclo, se incorporó un ensayo de termoestabilidad.

### 2.6. Segunda Generación

La segunda generación se realizó por PCR mutagénica con la ADN polimerasa Mutazyme I y usando el mutante PM1-60 como parental. La tasa mutacional se ajustó a 2,1-3,5 mutaciones por kb y la librería mutagénica (~1.000 mutantes) se preparó como se describió para la primera generación.

15

10

5

#### 2.7. Tercera Generación

Las mejores variantes de la segunda generación (3E1, 10D2, 2G5 y 4C2) se sometieron a amplificación con Taq/MnCl<sub>2</sub> y recombinación por barajado *in vivo* del ADN (~1.000 clones). El mutante PM1-30C de la primera generación también fue incluido como parental para *backcrossing*. Las amplificaciones Taq/MnCl<sub>2</sub> se prepararon en un volumen final de 50 µL conteniendo 90 nM RMLN, 90 nM RMLC, 0,1 ng/µL template, 0,3 mM dNTPs (0,075 mM de cada uno), 3% DMSO, 1,5 mM MgCl<sub>2</sub>, 0,05 U/µL Taq polimerasa. Se probaron diferentes concentraciones de MnCl<sub>2</sub> para estimar la tasa mutacional adecuada, obteniendo 0,01 mM como la concentración final, y la PCR se realizó igual que en las generaciones anteriores. Se diseñaron varias áreas de solapamiento, con un tamaño variable desde 5 a 70 pb, para aumentar el número de entrecruzamientos sin comprometer la eficiencia de la transformación.

25 desde 5 a 70 pb, para aumentar el número de entrecruzamientos sin comprometer la eficiencia de la transformación. Los productos de PCR se mezclaron en cantidades equimolares y se transformaron junto con el vector linearizado en la levadura (ratio productos PCR:vector, 4:1).

### 30 2.8. Cuarta Generación

Las mejores variantes de la tercera generación (5G3, 7D2, 9H4, 4E12, 4B8, 8G8 y 11B3) se sometieron a amplificación con Taq/MnCl<sub>2</sub> y recombinación por barajado *in vivo* del ADN (~1.000 clones) como se describió para la tercera generación.

35

#### 2.9. Quinta Generación

Las mejores variantes de la cuarta generación (1D11, 11A2, y 7F2) se sometieron a amplificación con Taq/MnCl<sub>2</sub> 40 y recombinación por barajado *in vivo* del ADN (~1.000 clones) como se describió para la tercera generación.

### 2.10. Sexta Generación

- 45 Se construyó una librería de ~1.300 clones por ensamblaje de librerías mutantes IvAM (Zumárraga *et al.*, 2008. Proteins 71, 250-260). El mutante 7H2 se utilizó como parental, y las librerías Taq/MnCl<sub>2</sub> y Mutazima se mezclaron en cantidades equimolares, y se transformaron en células de *S. cerevisiae* competentes junto con el vector linearizado tal y como se describió arriba (ratio librería:vector, 8:1). A partir de esta generación se incorporó un *screening* de termoestabilidad (véase más adelante).
- 50

#### 2.11. Mutagénesis Dirigida

- La séptima y octava generación se obtuvieron por mutagénesis dirigida usando "*in vivo Overlap Extension*" (IVOE) (Alcalde, 2010. *In vitro* Mutagenesis Protocols, J. Bramman, ed. (Totowa, New Jersey, US: Humana Press). Se realizaron simultáneamente dos reacciones de PCR para amplificar los dos fragmentos de ADN que superponen en posiciones específicas correspondientes a las regiones objetivo de mutagénesis dirigida en la secuencia parental. Las reacciones de PCR se hicieron en un volumen final de 50 μL conteniendo 0,25 μM de cada cebador, 100 ng de molde, 0,25 mM de cada dNTP, 3% DMSO y 2,5 Unidades de la ADN polimerasa Pfu-Ultra. Las condiciones de la PCR fueron las si-
- 60 guientes: 95°C durante 2 min (1 ciclo); 94°C durante 0,45 min, 55°C durante 0,45 min, 74°C durante 2 min (28 ciclos); y 74°C durante 10 min (1 ciclo). Los fragmentos de PCR se cargaron en geles de agarosa de bajo punto de fusión y se purificaron usando el kit "*Zymoclean gel DNA recovery*". El plásmido pJRoC30 fue linearizado con *XhoI* y *BamHI* y el vector linearizado se purificó como se describió arriba para los fragmentos de PCR. Los fragmentos de PCR (400 ng de cada uno) se mezclaron con el vector linearizado (100 ng, 8:1 ratio producto PCR:vector) y se transformaron en cólulos de lordura comparatore como se describió enteriormente. En promedio, se envirgence 50 elores individueles de lordura comparatore como se describió enteriormente.
- 65 células de levadura competentes como se describió anteriormente. En promedio, se analizaron 50 clones individuales por mutación. Los plásmidos seleccionados fueron aislados y secuenciados para verificar la mutagénesis dirigida.

#### 2.12. Séptima Generación

Los siguientes mutantes se construyeron usando la variante 6C8 como parental:

- 5 <u>Mutante revertido S454F</u>: Los cebadores para la PCR 1 fueron: RMLN y DEL-REV (SEQ ID NO: 19) (5'cgtgaacccagctcaaggtg<u>GAAgtcgatgtggcagtggagg-3</u>' que se une en pb 5'-1823-1866-3' del pJRoC30- $\alpha$ PM1). Los cebadores para la PCR 2 fueron: DEL-FOR (SEQ ID NO: 20) (5'-cctccactgccacatcgac<u>TTC</u>caccttgaggctgggttcacg-3' que se une en pb 5'-1823-1866-3' del pJRoC30- $\alpha$ PM1) y RMLC.
- 10 <u>Mutante S224G</u>: Los cebadores para la PCR 1 fueron: RMLN y 5-S315G-REV (SEQ ID NO: 21) (5'-gtctggggcttga gattcac<u>GCCgtccgcctcgatgacg-3</u>' que se une en pb 5'-1136-1174-3' del pJRoC30-αPM1). Los cebadores para la PCR 2 fueron: 5'-S315G-FOR (SEQ ID NO: 22) (5'-cgtcatcgaggcggac<u>GGCgtgaatctcaagccccagac-3</u>' que se une en pb 5'-1136-1174-3' del pJRoC30-αPM1) y RMLC.
- 15 <u>Mutante D281E</u>: Los cebadores para la PCR 1 fueron: RMLN y 4-D372E-REV (SEQ ID NO: 23) (5'-gctcaacgggcg cagcacc<u>TTC</u>gtagcgaaggatggc-3' que se une en pb 5'-1308-1344-3' del pJRoC30-αPM1). Los cebadores para la PCR 2 fueron: 4-D372E-FOR (SEQ ID NO: 24) (5'-gccatccttcgctac<u>GAAggtgctgcgcccggttgagc-3</u>' que se une en pb 5'-1639-1678-3' del pJRoC30-αPM1) y RMLC.
- 20 <u>Mutante P393H</u>: Los cebadores para la PCR 1 fueron: RMLN y 3CP484HREV (SEQ ID NO: 25) (5'-gcaagtggaagg ggt<u>gGTGgaagccgggggcggcggagg-3'</u> que se une en pb 5'-1639-1678-3' del pJRoC30-αPM1). Los cebadores para la PCR 2 fueron: 3CP484HFOR (SEQ ID NO: 26) (5'-cctccgccgcccccggcttc<u>CAC</u>caccccttccacttgc-3' que se une en pb 5'-1639-1678-3' del pJRoC30-αPM1) y RMLC.
- 25 <u>Mutante A[ $\alpha$ 9]D</u>: Los cebadores para la PCR 1 fueron: RMLN-2 (SEQ ID NO: 27) (5'-ggtaattaatcagcgaagc-3' que se une en pb 5'-5-24-3' del pJRoC30- $\alpha$ ) y 1C-REVDI (SEQ ID NO: 28) (5'-gaggatgctgcgaataa<u>ATC</u>atcagtaaaaattgaagg-3' que se une en pb 5'-219-257-3' del pJRoC30- $\alpha$ PM1). Los cebadores para la PCR 2 fueron: 1C-FORDI (SEQ ID NO: 29) (5'-ccttcaattttactgat<u>GAT</u>ttattcgcagcatcctc-3' que se une en pb 5'-219-257-3' del pJRoC30- $\alpha$ PM1) y RMLC.
- 30 <u>Doble mutante A[ $\alpha$ 9]D-D[ $\alpha$ 10]V: Los cebadores para la PCR 1 fueron: RMLN-2 y 1C-PREALREV (SEQ ID NO: 30) (5-gaggatgctgcgaaAACATCatcagtaaaaattgaagg-3' que se une en pb 5'-219-257-3' del pJRoC30- $\alpha$ PM1). Los cebadores para la PCR 2 fueron: 1C-PREALFOR (SEQ ID NO: 31) (5'-ccttcaatttttact<u>GATGTT</u>ttattcgcagcatcctc-3' que se une en pb 5'-219-257-3' del pJRoC30- $\alpha$ PM1) y RMLC.</u>
- <sup>35</sup> <u>Mutante revertido D[α10]V</u>: Los cebadores para la PCR 1 fueron: RMLN-2 y 1C-PREALDOBREV (SEQ ID NO: 32) (5'-gaggatgctgcgaa<u>AAC</u>atcatcagtaaaaattgaagg-3' que se une en pb 5'-219-257-3' del pJRoC30-αPM1). Los cebadores para la PCR 2 fueron: 1C-PREALDOBFOR (SEQ ID NO: 33) (5'-ccttcaattttactgat<u>GTT</u>ttattcgcagcatcctc-3' que se une en pb 5'-219-257-3' del pJRoC30-αPM1) y RMLC.

#### 40

#### 2.13. Octava Generación

El mutante OB-1 se obtuvo por introducción de las mutaciones S224G y D281E en el mutante revertido S454F de la 7ª generación. Los cebadores para la PCR1 fueron: RMLN y 5-S315G-REV. Los cebadores para la PCR2 fueron: 45 5-S315G-FOR y 4-D372E-REV. Los cebadores para la PCR3 fueron: 4-D372E-FOR y RMLC.

Todos los codones sometidos a mutagénesis dirigida están subrayados.

#### 50 2.14. Screening de alto rendimiento

Los *screenings* de actividad y termoestabilidad se realizaron en formato sólido y líquido (en placas de 96 pocillos). Los mutantes seleccionados fueron producidos y purificados como se describe más adelante.

55

#### Modelado de la Proteína

En la base de datos de proteínas "Protein Data Bank" se llevó a cabo una búsqueda de proteínas con homología estructural respecto a la lacasa PM1. La proteína más similar a la PM1 fue la lacasa de *Trametes trogii*, cuya estructura cristalográfica está resuelta con una resolución de 1,58 Å y tiene un 97% de identidad de secuencia (PDB id: 2hrgA)

(Matera *et al.*, 2008. Inorg. Chim. Acta 361, 4129-4137). Se generó un modelo por medio del servidor para el modelado de proteínas Swiss-Model (<u>http://swissmodel.expasy.org/</u>) y se analizó con DeepView/Swiss-Pdb Viewer y PyMol Viewer.

65

### Ejemplo 3

#### Caracterización del mutante OB-1

5 El último mutante obtenido, la variante OB-1, fue purificado a homogeneidad y caracterizado bioquímicamente (Tabla 3, Figuras 4 y 8). La actividad específica del mutante OB-1 fue de 400 U/mg y presentó unos niveles de secreción de ~8 mg/L. La masa molecular de OB-1 fue estimada por espectrometría de masas MALDI-TOF en 60.310 Da, 3.690 Da por debajo del peso molecular para la lacasa nativa expresada por el basidiomiceto PM1 (Coll *et al.*, 1993. Appl. Environ. Microb. 59, 2607-2613) (Figura 8). La masa molecular determinada a partir de la composición de aminoácidos de OB-1 fue 53.284 Da y la contribución a la glicosilación deducida a partir del patrón de desglicosilación fue entorno al 10% (Figura 8).

TABLA 3

#### Cinéticas para la lacasa evolucionada

| 2 | ) | C | ) |
|---|---|---|---|

25

15

| Substrato | Mutante OB-1              |                                            |                                                           |  |  |  |  |
|-----------|---------------------------|--------------------------------------------|-----------------------------------------------------------|--|--|--|--|
|           | <i>K<sub>m</sub></i> (mM) | <i>k</i> <sub>cat</sub> (s <sup>-1</sup> ) | $k_{\text{cat}}/K_m (\text{m}\text{M}^{-1}\text{s}^{-1})$ |  |  |  |  |
| ABTS      | 0,0063 ± 0,0009           | 200 ± 7                                    | 31721                                                     |  |  |  |  |
| DMP       | 0,14 ± 0,02               | 134 ± 5                                    | 939                                                       |  |  |  |  |
| Guaiacol  | 6,6 ± 0,5                 | 47 ± 1                                     | 7,2                                                       |  |  |  |  |

Nuestros resultados de evolución dirigida en *S. cerevisiae* de las lacasas de *P. cinnabarinus* (PcL) (Camarero *et al.*,
 2009. Patent PCT/ES2009/070516) y de la lacasa *M. thermophila* (MtL) (Bulter *et al.*, 2003. Appl. Environ. Microb.
 69, 987-995; Zumárraga *et al.*, 2007. Chem. Biol. 14, 1052-1064) fueron bastante diferentes y al contrario que la variante OB-1, los mutantes de PcL y MtL fueron hiperglicosilados con residuos de azúcar que contribuyeron alrededor del 50% del peso molecular total. Ya que en el aparato de Golgi es donde se produce la compleja adición de cadenas periféricas de carbohidratos mediante la incorporación de residuos de mañosa, la hiperglicosilación puede ser considerada como una consecuencia de tiempos de residencia más largos en este compartimento celular. Suponemos

- que nuestro mutante evolucionado es fácilmente secretado por *S. cerevisiae* mientra que otras lacasas heterólogas experimentan serias dificultades para salir del Golgi. Los perfiles de pH para compuestos fenólicos y no fenólicos no se vieron alterados significativamente durante la evolución, por lo que OB-1 y las variantes previas del proceso evolutivo mostraron similares valores de pH (aproximadamente 4,0 y 3,0 para DMP y ABTS respectivamente, Figuras 4A, 4B).
- <sup>40</sup> Los parámetros cinéticos se valoraron con sustratos clásicos frecuentemente usados para caracterizar lacasas (Tabla 3). Las cinéticas de OB-1 fueron ~4 a 6 veces mejores que las descritas para las lacasas altamente relacionadas de *Trametes* C30 y *Trametes trogii*, que comparten 99 y 97% de identidad de secuencia con la lacasa PM1, respectivamente (Klonowska *et al.*, 2002. Eur. J. Biochem. 269, 6119-6125; Colao *et al.*, 2006. Microb. Cell Fact. 5, 31). Notablemente, tras 8 ciclos de evolución la termoestabilidad del mutante OB-1 se conservó 100%, con valores de T<sub>50</sub> de ~73°C. La
- <sup>45</sup> lacasa PM1 pertenece al grupo de lacasas de alto potencial redox aisladas de la región oeste del Mediterráneo, junto con las lacasas de *T. troggi, Trametes* C30 y *Coriolopsis gallica*. Todas estas lacasas de alto potencial redox comparten un elevado grado de identidad de secuencia (superior al 97%) y similares características bioquímicas, incluyendo en todos los casos una elevada termoestabilidad (Colao *et al.*, 2003. Appl. Microbiol. Biot. 63, 153-158; Hilden *et al.*, 2009. Biotechnol. Lett. 31, 1117-1128). Para evaluar adicionalmente la termoestabilidad de nuestra lacasa evolucio-
- <sup>50</sup> nada, se comparó con una batería de lacasas de alto potencial redox de diferentes procedencias (Figura 4C). La T<sub>50</sub> del mutante OB-1 fue mayor que las de las lacasas de alto potencial redox de *Trametes hirsuta, Trametes versicolor, P. cinnabarinus*, o *Pleurotus ostreatus* y como se presumía, similar a la T<sub>50</sub> de *Coriolopsis gallica* (con un 96% de identidad de secuencia con la PM1, Figura 10). La estabilidad de OB-1 fue adicionalmente evaluada en presencia de altas concentraciones de cosolventes orgánicos con diferentes polaridades y naturaleza química (Figura 4D). Como
- <sup>55</sup> era de esperar de una enzima altamente termoestable (Zumárraga *et al.*, 2007), la lacasa evolucionada PM1 fue altamente tolerante a la presencia de cosolventes (reteniendo entre un 30 a un 90% de su actividad tras 4 h de incubación en concentraciones de cosolventes tan altas como 50% (v/v)). La estabilidad de la lacasa evolucionada a diferentes valores de pHs fue también evaluada, manteniendo cerca del 90% de su actividad en el intervalo de pH 3-9 tras 4 h de incubación (Figura 4E).

60

La última variante OB-1 acumuló 15 mutaciones: 5 en la secuencia preprolíder del factor  $\alpha$  (dos sinónimas), y 10 en la proteína madura (3 sinónimas). Tres de las cinco mutaciones sinónimas favorecieron el uso de codones (Tabla 1), lo cual puede ser un factor potencial para beneficiar el rendimiento de la secreción afectando a la velocidad de elongación (Romanos *et al.*, 1992. Yeast 8, 423-488). Las mutaciones beneficiosas en la lacasa madura se mapearon

<sup>&</sup>lt;sup>65</sup> básicamente en residuos más bien accesibles, algunos localizados lejos de los cobres catalíticos mientras que otros aparecieron en la vecindad de los sitios catalíticos (la Tabla 4 y las Figuras 5, 9 resumen las características de estos cambios en la estructura de la lacasa mutante).

En particular, las mutaciones V162A, S426N y A461T están en la vecindad del cobre T1. La Val162 es uno de los residuos hidrofóbicos en el lazo que delimita la cavidad del bolsillo de sustrato del sitio T1 (Bertrand *et al.*, 2002. Biochemistry 41, 7325-7333). El cambio de Val a Ala en esta posición representa la sustitución de un residuo hidrofóbico por otro que también lo es pero más pequeño, lo cual podría favorecer la unión del sustrato (Figuras 5A,

- 5 5B). La Ser426 está unida mediante un puente de H a la Gly428 pero tras la mutación el puente de H se interrumpe y la Asn426 resultante establece un nuevo puente de H con la Thr427 adyacente. A consecuencia de este efecto, la Thr427 se encuentra doblemente unida a la His394 que es ligando del cobre T1, por lo que este cambio podría afecta la posición relativa de la His394 respecto del sitio T1 (Figuras 5A, 5B).
- 10 La Ala461 es adyacente a la Phe460, que constituye la posición del cuarto ligando axial en lacasas de plantas y bacterianas (Alcalde, 2007. Industrial Enzymes: Structure, functions and applications, J. Polaina and A.P. MacCabe, eds. (Dordrecht, The Netherlands: Springer) 459-474), y establece puentes de hidrógeno con los ligandos del cobre T1, His455 y Cys450. La mutación A461T parece generar un nuevo puente de H con la Phe460, lo cual podría cambiar la geometría local del sitio T1 (Xu *et al.*, 1998. Biochem. J. 334, 63-70), Figuras 5A, 5B.
- 15

20

La mayoría de las mutaciones beneficiosas restantes (H208Y, S224G, A239P, D281E) fueron localizadas lejos de los cobres catalíticos, apareciendo en giros y motivos secundarios cuyo papel en la función de la lacasa es incierto (Tabla 4, Figuras 5C, 5D, 5E, 5F). Es altamente improbable que tales mutaciones pudieran haber sido anticipadas mediante diseño racional, sin embargo, el empleo de la evolución dirigida ha permitido descubrir la relevancia funcional de éstas regiones de la lacasa previamente desconocidas.

| 25 | (Tabla pasa a página siguiente) |
|----|---------------------------------|
| 30 |                                 |
| 35 |                                 |
| 40 |                                 |
| 45 |                                 |
| 50 |                                 |
| 55 |                                 |
| 60 |                                 |
| 65 |                                 |

| Interacciones mediante<br>puentes de hidrógeno con<br>los residuos circundantes*<br>Antes de la Después de | la mutación<br> | I237, T168                                                  | E221                              | Q241       | V189, G282                        | T427                                                                                 | G459, <b>F460</b>                                                                |
|------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------|-----------------------------------|------------|-----------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Interaccione<br>puentes de h<br>los residuos e<br>Antes de la                                              | mutación<br>    | I237, T168                                                  | <u>T105,</u> E221,<br><u>R242</u> | Q241       | <u>T188,</u> V189,<br><u>T190</u> | <u>G428</u>                                                                          | G459                                                                             |
| Distancia<br>al sitio<br>T2/T3 (Å)                                                                         | 21.29           | 19.33                                                       | 9.96                              | 11.65      | 35.33                             | 16.40                                                                                | 10.93                                                                            |
| Distancia<br>al sitio T1<br>(Å)                                                                            | 9.62            | 14.74                                                       | 21.22                             | 8.57       | 39.95                             | 8.23                                                                                 | 8.86                                                                             |
| Posición relativa                                                                                          | Superfice       | Cerca del Asp206 (que<br>une fenoles al Cu del<br>sitio T1) | Superficie                        | Superficie | Superficie                        | Superficie. En la<br>vecindad del Cu T1, al<br>lado de la T427 (unida a<br>la H394). | Vecindad del Cu T1, al<br>lado de la F460<br>(posición del 4º ligando<br>axial). |
| Motivo de<br>estructura<br>secundaria                                                                      | Giro            | Lámina beta                                                 | Giro                              | Giro       | Giro                              | Lámina beta                                                                          | Lámina beta                                                                      |
| Dominio                                                                                                    | D2              | D2                                                          | D3                                | D2         | D2                                | D3                                                                                   | D3                                                                               |
| Mutación                                                                                                   | V162A           | Н208Ү                                                       | S224G                             | A239P      | D281E                             | S426N                                                                                | A461T                                                                            |

\* Subrayado, las uniones interrumpidas tras la mutación; en negrita, las nuevas uniones formadas tras la mutación.

Tabla 4: Mutaciones en el mutante maduro OB-1.

ES 2 370 216 A1

Por ejemplo, el Asp281 está localizado en un loop distal del dominio D2 quedando prácticamente expuesto a la superficie proteica (a unos 40 Å del sitio del cobre T1). La substitución de un Asp por un Glu en la posición 281 rompió dos puentes de H con la Thr188 y la Thr190 de un bucle vecino, y produjo un nuevo puente de H con la Gly282 del mismo motivo, lo cual podría incrementar la flexibilidad de esta zona (Figuras 5E, 5F). En cualquier caso,

 <sup>5</sup> tampoco se puede descartar que las mutaciones mencionadas mejoren el plegamiento y la maduración de la lacasa en *S. cerevisiae*, además de su posible contribución a la robustez final de la proteína.

| 10 |  |  |  |
|----|--|--|--|
| 15 |  |  |  |
| 20 |  |  |  |
| 25 |  |  |  |
| 30 |  |  |  |
| 35 |  |  |  |
| 40 |  |  |  |
| 45 |  |  |  |
| 50 |  |  |  |
| 55 |  |  |  |
| 60 |  |  |  |
| 65 |  |  |  |

### REIVINDICACIONES

- 1. Polinucleótido que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 1.
- 5 2. Polinucleótido según la reivindicación 1 de secuencia nucleotídica SEQ ID NO: 2.

3. Construcción genética que comprende:

- a. el polinucleótido según cualquiera de las reivindicaciones 1 ó 2.
  - b. el polinucleótido según cualquiera de las reivindicaciones 1ó 2, que además comprende un sistema o vector de expresión génica, operativamente enlazado con, al menos, un promotor que dirija la transcripción de dicho polinucleótido, y/o con otras secuencias nucleotídicas necesarias o apropiadas para la transcripción in vitro o in vivo y su regulación en tiempo y lugar.

15

35

10

4. Construcción genética según la reivindicación 3, que además comprende un polinucleótido que codifica para un péptido señal que favorece la expresión funcional del polipéptido de secuencia aminoacídica SEQ ID NO: 1.

20 5. Construcción genética según la reivindicación 4, donde el péptido señal es el del factor  $\alpha$  evolucionado de secuencia aminoacídica SEQ ID NO: 9.

6. Construcción genética según cualquiera de las reivindicaciones 4 ó 5, donde el polinucleótido que codifica para el péptido señal es la secuencia nucleotídica SEQ ID NO: 10. 25

7. Construcción genética según cualquiera de las reivindicaciones 4-6, que comprende un polinucleótido que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 3.

8. Construcción genética según cualquiera de las reivindicaciones 3-7, que comprende el polinucleótido de secuen-30 cia nucleotídica SEQ ID NO: 4.

9. Construcción genética según cualquiera de las reivindicaciones 3-8, donde entre la secuencia nucleotídica que codifica para el péptido señal del factor  $\alpha$  y la secuencia nucleotídica que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 1, se encuentra la secuencia nucleotídica que codifica para los aminoácidos ácido glutámico y fenilalanina.

10. Construcción genética según la reivindicación 9 que comprende un polinucleótido que codifica para el polipéptido de secuencia aminoacídica SEQ ID NO: 5.

40 11. Construcción genética según cualquiera de las reivindicaciones 9 o 10 que comprende el polinucleótido de secuencia nucleotídica SEQ ID NO: 6.

12. Célula hospedadora que comprende un polinucleótido según cualquiera de las reivindicaciones 1 ó 2, o una construcción genética según cualquiera de las reivindicaciones 3-11. 45

13. Célula hospedadora según la reivindicación 12, que es una levadura.

14. Célula hospedadora según la reivindicación 13, que pertenece al género Saccharomyces.

50 15. Célula hospedadora según cualquiera de las reivindicaciones 13 ó 14 que pertenece a la especie Saccharomyces cerevisiae.

16. Lacasa de alto potencial redox que comprende el polipéptido de secuencia aminoacídica SEQ ID NO: 1.

55 17. Lacasa de alto potencial redox según la reivindicación 16 que además comprende los aminoácidos ácido glutámico y fenilalanina en el extremo amino del polipéptido, cuya secuencia aminoacídica es SEQ ID NO: 7.

18. Lacasa de alto potencial redox según cualquiera de las reivindicaciones 16 ó 17, que además comprende los últimos cuatro aminoácidos del péptido señal del factor  $\alpha$  (ácido glutámico, treonina, ácido glutámico, alanina) en el extremo amino del polipéptido, cuya secuencia aminoacídica es SEQ ID NO: 8.

19. Método de obtención de una lacasa de alto potencial redox según se describe en las reivindicaciones 16-18, que comprende:

a. cultivar la célula hospedadora según cualquiera de las reivindicaciones 12-15, y

b. purificar la lacasa.

60

65

20. Uso de los polinucleótidos según cualquiera de las reivindicaciones 1 ó 2 o de las construcciones genéticas según cualquiera de las reivindicaciones 3-11 para la obtención de una lacasa de alto potencial redox.

21. Uso de la célula hospedadora según cualquiera de las reivindicaciones 12-15 para la obtención de una lacasa
de alto potencial redox.

22. Cultivo celular que comprende las células hospedadoras según cualquiera de las reivindicaciones 12-15.

23. Uso del cultivo según la reivindicación 22 para la obtención de una lacasa de alto potencial redox.

| 15 |  |  |  |
|----|--|--|--|
| 20 |  |  |  |
| 25 |  |  |  |
| 30 |  |  |  |
| 35 |  |  |  |
| 40 |  |  |  |
| 45 |  |  |  |
| 50 |  |  |  |
| 55 |  |  |  |
| 60 |  |  |  |
| 65 |  |  |  |

FIG. 1

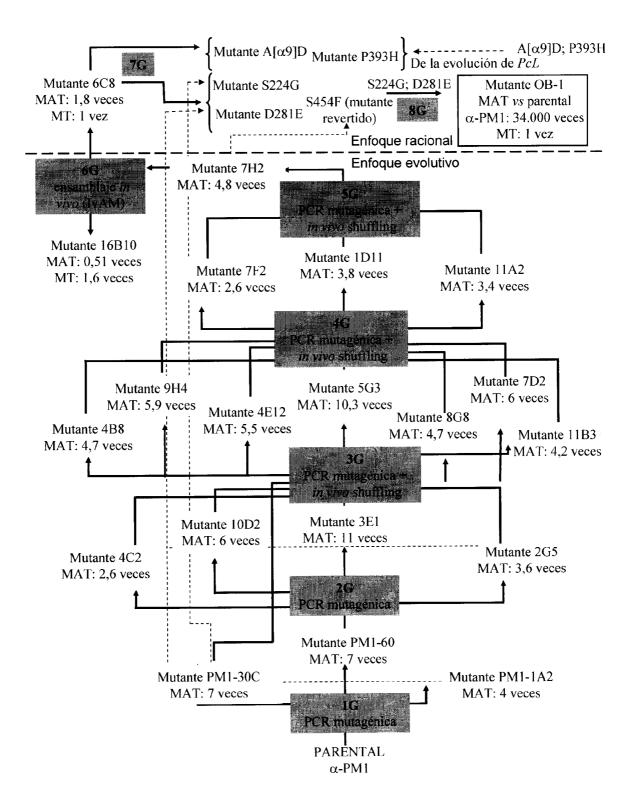
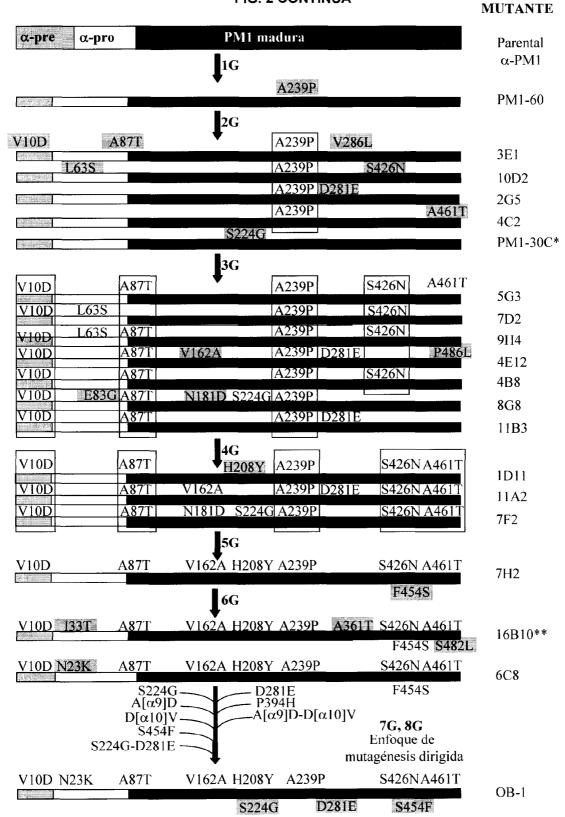




FIG. 2 CONTINÚA



# FIG. 2

| MUTANTE                | EVENTO DE ENTRE-<br>CRUZAMIENTO SUGERIDO | MEJORA (VECES)<br>Mutante/parental α-M1 |
|------------------------|------------------------------------------|-----------------------------------------|
| Parental $\alpha$ -PM1 |                                          |                                         |
| PM1-60                 |                                          | 12                                      |
| 3E1                    |                                          | 132                                     |
| 10D2                   |                                          | 72                                      |
| 2G5                    |                                          | 43                                      |
| 4C2                    |                                          | 31                                      |
| PM1-30C*               |                                          | 7*                                      |
|                        |                                          |                                         |
| 5G3                    | 3E1+10D2+4C2                             | 1.360                                   |
| 7D2                    | 3E1+10D2                                 | 792                                     |
| 9H4                    | 3E1+10D2                                 | 779                                     |
| 4E12                   | 3E1+2G5+2 nuevas mutaciones              | 726                                     |
| 4B8                    | 3E1+10D2                                 | 620                                     |
| 8G8                    | 3E1+PM1-30C+2 nuevas mutaciones          | 620                                     |
| 11B3                   | 3E1+2G5                                  | 554                                     |
|                        |                                          |                                         |
| 1D11                   | 5G3+1 nueva mutación                     | 5.170                                   |
| 11A2                   | 5G3+4E12                                 | 4.625                                   |
| 7F2                    | 5G3+8G8                                  | 3.535                                   |
|                        |                                          |                                         |
| 7H2                    | 11A2+1D11<br>+1 nueva mutación           | 24.290                                  |
| 16B10**                | 2 nuevas mutaciones                      | 12.390                                  |
| 6C8                    | 1 nuevas mutaciones                      | 43.720                                  |
|                        |                                          |                                         |
|                        |                                          |                                         |

|      | 3 mutaciones:                 |        |
|------|-------------------------------|--------|
| OB-1 | 2 recuperadas,<br>1 revertida | 34.000 |

FIG 3A

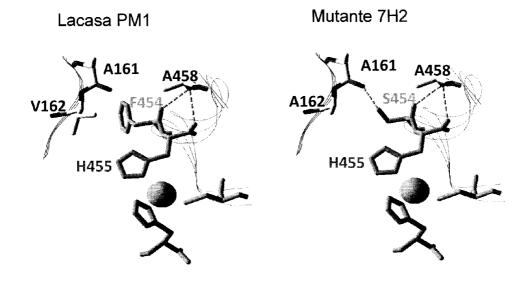
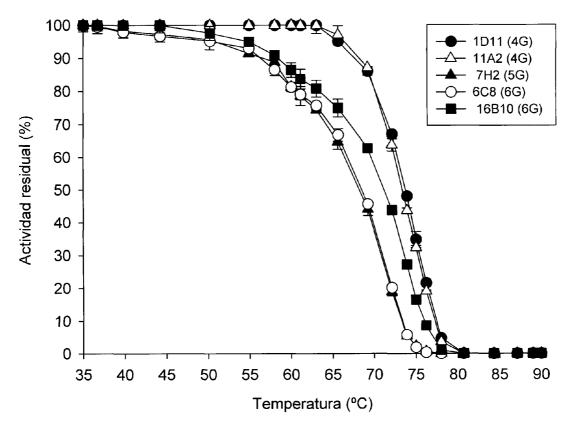




FIG. 3B





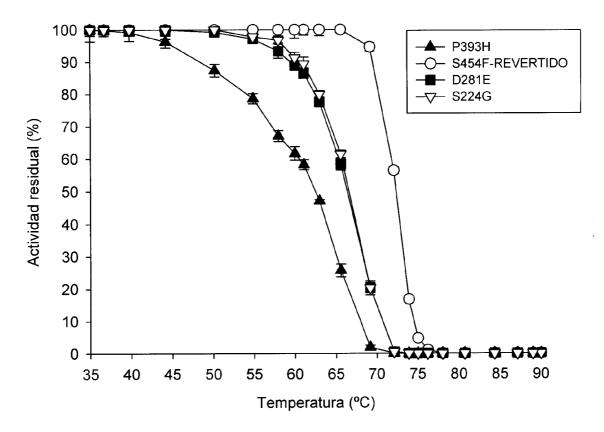
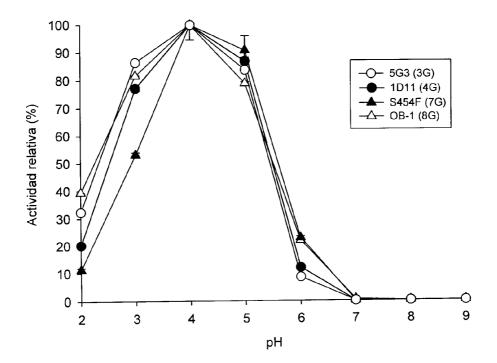
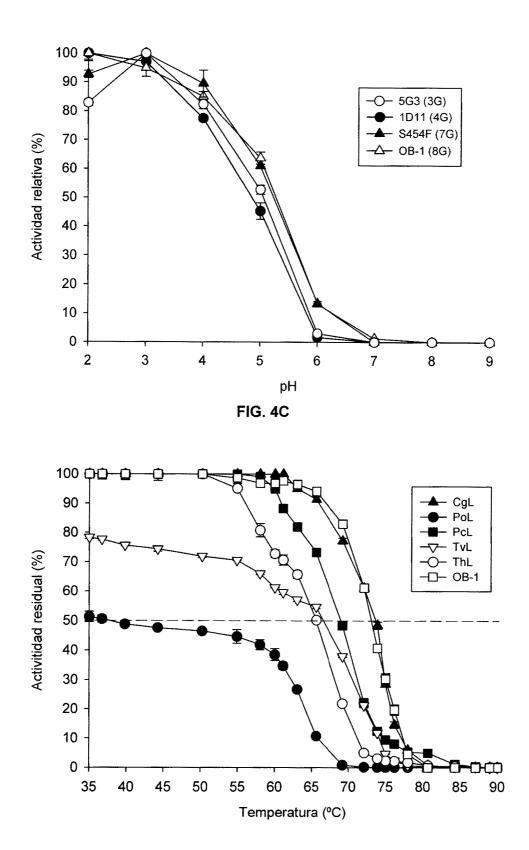





FIG. 4A

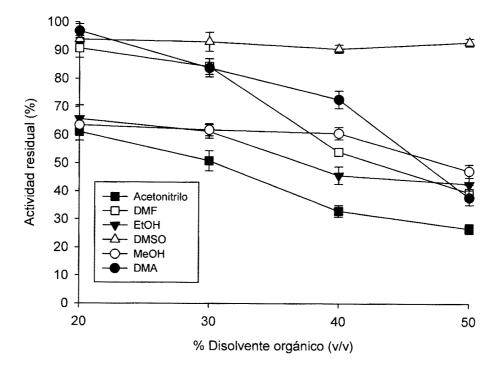
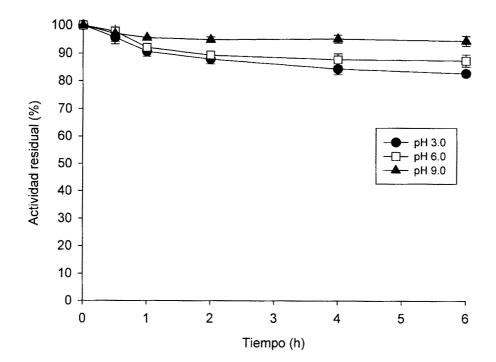
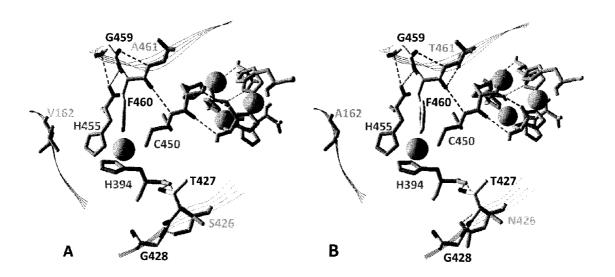


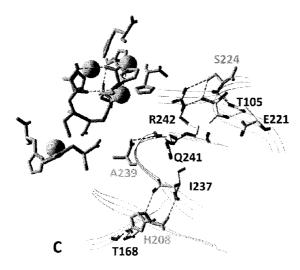
ES 2 370 216 A1

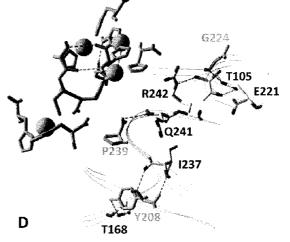
FIG. 4B

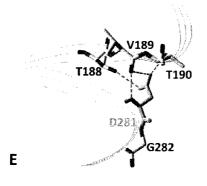


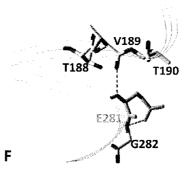
ES 2 370 216 A1



FIG. 4D


FIG. 4E

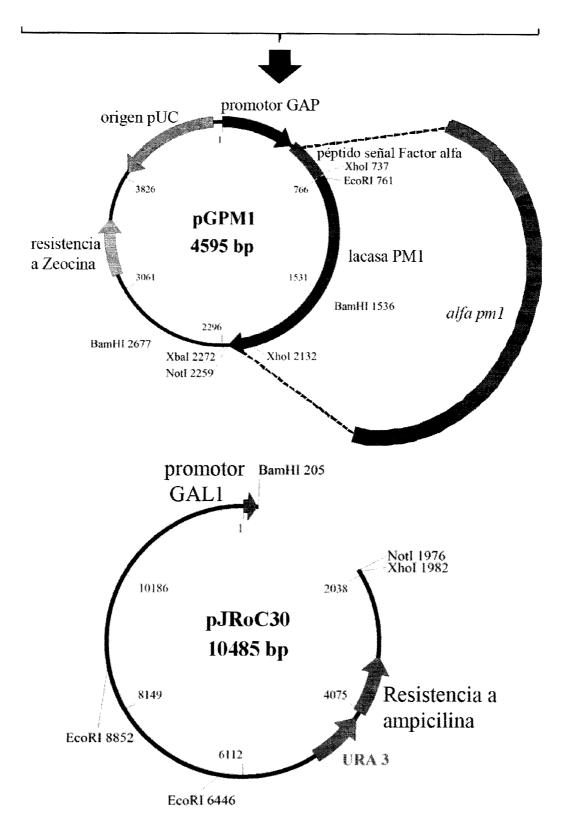


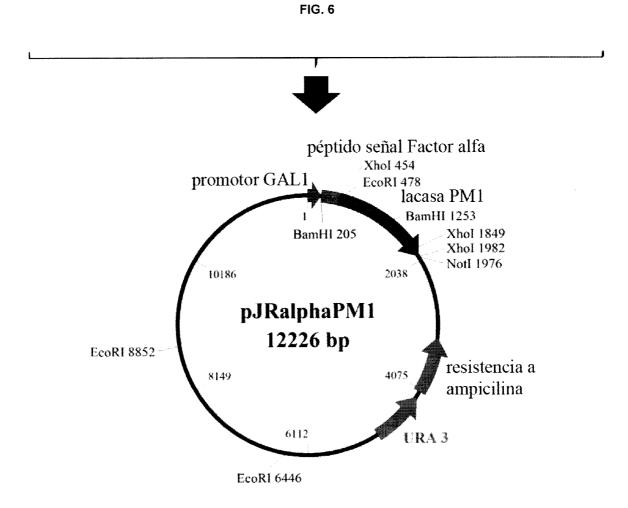




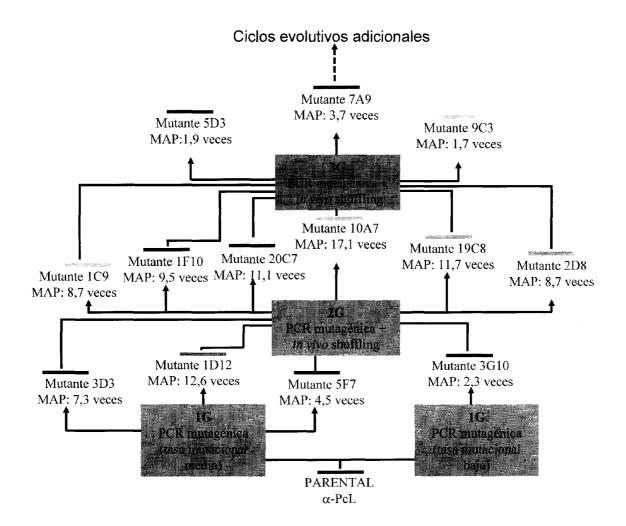


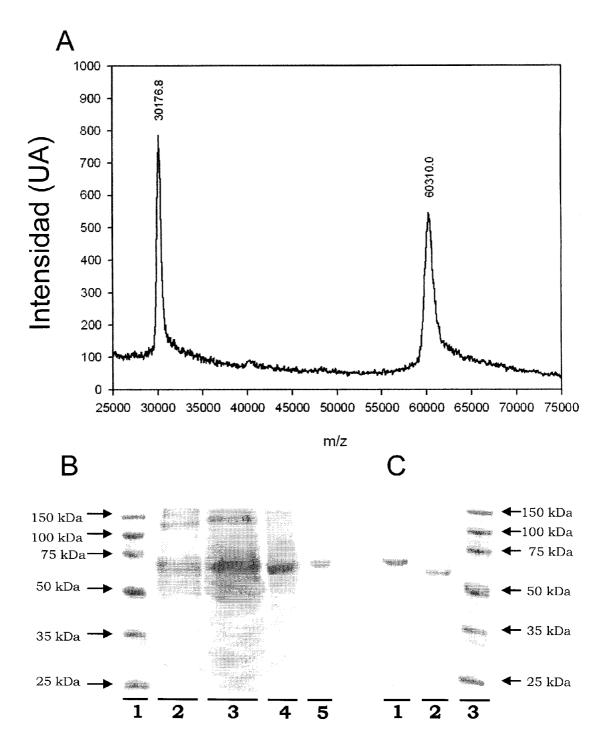







### FIG. 6 CONTINÚA



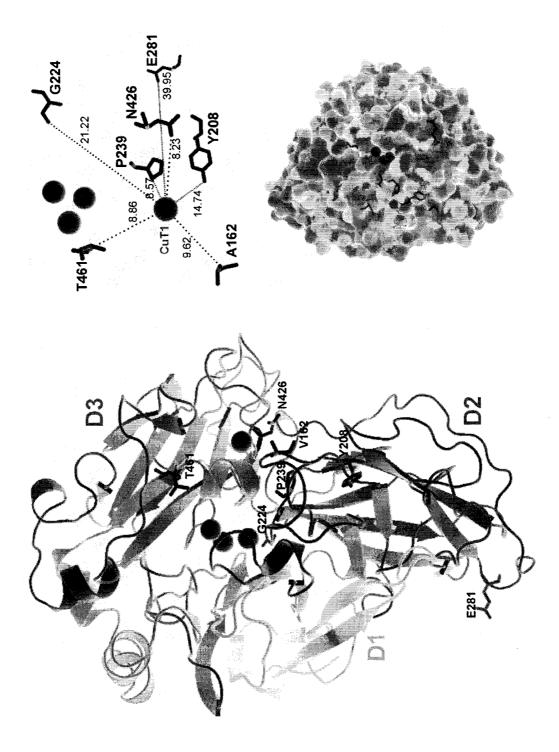

FIG. 6 CONTINÚA




32










**FIG. 8** 



FIG. 9



456 480 480 480 480 480 480 4780 4780 456 478 478 458 LLT 177 IEISLPATSAARGFPHPFHLHGHTFAVVRSAGSSTYNYANPVYRDVVSTGSP--GDNVTIRFRTDNPGPWFLHCHIDFHL LEISLPAT SAADGFPHP FHLHGHTFAVVRSAGSSTYNYANPVYRDVV STGSP--GDNVTIR FRIDNPGPWFLHCHI DFHL (EISLPATAAARGFPHPFHLHGHTFAVVRSAGSSTYNYENPVYRDVVSTGSP--GDNVTIRFRTDNPGFWFLHCHIDFHL LEISL PATTAARGEPHP FHLHGHAFAVVRSAGSSTYNYENPVYRDVVSTGSP--GDNVTIR FRTDNPGPWFLHCHI DFHL LEISLPATAAA DGFPHPFHLHGHTFAVVRSSGQQTYNYANPVYRDVVSTGSP--GDNVTIRFRTDNPGPMFLHCHIDFHL I E I S FPATAAA BGAFH FH LHGH A FAVV RSAGST VYNYDN PI FRDVV STGT PAAGDNV TI R FR TDN PG PWFLHCH I DFH L LEIS FPATAAAMGAPHPFHLHGHAFAVVRSAGSTVYNYDNPIFRDVVSIGTPAAGDNVTIRFRTDNPGPWFLHCHIDFHL LEIS FPATTAARGAPHP FHLHGHAFAVV RSAGSTVYNYDNPIFRDVV STGTPAAGDNVTIR FRIDNPGPWFLHCHI DFHL EISFPATAAA BGAPHPFHLHGHTFAVVRSAGSTVYNYDNPIFRDVVSTGTPAAGDNVTIRFDTNNPGPWFLHCHIDFHL IEISFPATAAAPGVPHPFHLHGHTFAVVRSAGSTEYNYDNPIFRDVVSTGTPAAGDNVTIRFQTNNPGPWFLHCHIDFHL LEIS FPATANARGAPHPFHLHGHTFAVVRSAGSSEYNYDNPIFRDVVSTGTP--GDNVTIRFQTNNPGPWELHCHIDFHL IEISFPATANA GAPHPFHLHGHTFAVVRSAGSSEYNYDNPIFRDVVSTGTP--GDNVTIRFETNNPGPWFLHCHIDFHL IEIS FPATANARGEPHPEHLHGHAFAVVRSAGSSVYNYDNPIFRDVVSTGOP--GDNVTIRFETNNPGPWFLHCHIDFHL EITFPATTAARGEHFFHLHGHVFAVVRSAGSTSYNYDDPVWRDVVSTGTPOAGDNVTIRFOTDNPGPWFLHCHIDFHL 401 379 400 400 379 400 379 401 401 401 401 401 401 401 00 00 00 978 80 00 00 00 00 00 00 00 00 7 39 % 7 39 % 78% 21% 1 76% P. cinnabarinus P. sanguineus T.versicolor T.Sp AH28-2 T.pubescens P.coccineus L.tigrinus C. Gallica T.hirsuta C.rigida T.trogii T. I-62 T.C30 TWd

IDENTIDAD

FIG. 10

HRPL

#### LISTA DE SECUENCIAS

|    | <110> cons                                                                                                                                   | ejo Sı     | ıperio     | r de Iı      | nvestig   | gacion    | es Cie     | entífica   | as (CS     | SIC)       |           |              |            |             |           |            |            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|-----------|-----------|------------|------------|------------|------------|-----------|--------------|------------|-------------|-----------|------------|------------|
| 5  | <120> Laca                                                                                                                                   | asa de     | alto p     | otenc        | ial red   | ox        |            |            |            |            |           |              |            |             |           |            |            |
|    | <130> 1641                                                                                                                                   | 1.761      |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
| 10 | <160>47                                                                                                                                      |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
|    | <170> Pate                                                                                                                                   | ntIn v     | ersion     | 3.5          |           |           |            |            |            |            |           |              |            |             |           |            |            |
| 15 | <210> 1                                                                                                                                      |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
|    | <211> 496<br><212> PRT                                                                                                                       | ,          |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
| 20 | <213> Secu                                                                                                                                   | iencia     | Artifi     | cial         |           |           |            |            |            |            |           |              |            |             |           |            |            |
|    | <220><br><221> MISC_FEATURE<br><222> (1)(496)<br><223> Secuencia modificada de la lacasa del basidiomiceto PM1.                              |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
| 25 | <222> (1)(496)<br><223> Secuencia modificada de la lacasa del basidiomiceto PM1.                                                             |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
|    |                                                                                                                                              |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
| 30 | <223> Secuencia modificada de la lacasa del basidiomiceto PM1.<br><400> 1<br>Ser Ile Gly Pro Val Ala Asp Leu Thr Ile Ser Asn Gly Ala Val Ser |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
|    | <400> 1                                                                                                                                      |            |            |              |           |           |            |            |            |            |           |              |            |             |           |            |            |
| 35 |                                                                                                                                              | Pro        | Asp        | Gly          | Phe<br>20 | Ser       | Arg        | Gln        | Ala        | Ile<br>25  | Leu       | Val          | Asn        | Asp         | Va1<br>30 | Phe        | Pro        |
|    |                                                                                                                                              | Ser        | Pro        | Leu          | IJe       | Thr       | Gly        | Asn        | Lys        | Gly        | Asp       | Arg          | Phe        | Gln         | Leu       | Asn        | Val        |
| 40 |                                                                                                                                              |            |            | 35           |           |           |            |            | 40         |            |           |              |            | 45          |           |            |            |
|    |                                                                                                                                              | Ile        | Asp<br>50  | Asn          | Met       | Thr       | Asn        | His<br>55  | Thr        | Met        | Leu       | Lys          | Ser<br>60  | Thr         | Ser       | IJe        | His        |
| 45 |                                                                                                                                              |            | His        | Gly          | Phe       | Phe       |            | His        | Gly        | Thr        | Asn       |              | Ala        | Asp         | Gly       | Pro        |            |
|    |                                                                                                                                              | 65         |            |              |           |           | 70         |            |            |            |           | 75           | _          |             |           |            | 80         |
| 50 |                                                                                                                                              | Phe        | Val        | Asn          | Gln       | Cys<br>85 | Pro        | Ile        | Ser        | Thr        | Gly<br>90 | His          | Ala        | Phe         | Leu       | Tyr<br>95  | Asp        |
|    |                                                                                                                                              | Phe        | Gln        | Val          |           | Asp       | Gln        | Ala        | Gly        | Thr<br>105 | Phe       | тгр          | Туr        | His         | Ser       | His        | Leu        |
| 55 |                                                                                                                                              |            | .1         | - 7          | 100       | _         |            | - 7        |            |            | - 7       | _            | -7         |             | 110       | _          | _          |
| 55 |                                                                                                                                              | Ser        | Thr        | G I n<br>115 | Tyr       | Cys       | Asp        | GIY        | Leu<br>120 | Arg        | GIY       | Pro          | Ile        | Va I<br>125 | Val       | Tyr        | Asp        |
| 60 |                                                                                                                                              | Pro        | G]n<br>130 | Asp          | Pro       | His       | Lys        | Ser<br>135 | Leu        | Tyr        | Asp       | Val          | Asp<br>140 | Asp         | Asp       | Ser        | Thr        |
| 00 |                                                                                                                                              |            |            | 1            |           | . 7       |            |            | _          |            |           | . 7 .        | _          | •           | 7         | e.]        | <b>D</b>   |
| (F |                                                                                                                                              | Va1<br>145 | Ile        | Thr          | Leu       | Ala       | Asp<br>150 | Trp        | туг        | His        | Leu       | A   a<br>155 | Ala        | Lys         | Val       | GTY        | Pro<br>160 |
| 65 |                                                                                                                                              | Ala        | Ala        | Pro          | Thr       |           | Asp        | Ala        | Thr        | Leu        |           | Asn          | Gly        | Leu         | Gly       | Arg<br>175 | Ser        |
|    |                                                                                                                                              |            |            |              |           | 165       |            |            |            |            | 170       |              |            |             |           | т, Э       |            |

|    | Ile        | Asn        | Thr        | Leu<br>180 | Asn        | Ala        | Asp        | Leu        | Ala<br>185 | Val        | Ile        | Thr        | Val        | Thr<br>190 | Lys        | Gly        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Lys        | Arg        | Tyr<br>195 | Arg        | Phe        | Arg        | Leu        | Val<br>200 | Ser        | Leu        | Ser        | Cys        | Asp<br>205 | Pro        | Asn        | Tyr        |
| 10 | Thr        | Phe<br>210 | Ser        | Ile        | Asp        | Gly        | His<br>215 | Ser        | Leu        | Thr        | Val        | Ile<br>220 | Glu        | Ala        | Asp        | Gly        |
| 15 | Va1<br>225 | Asn        | Leu        | Lys        | Pro        | G]n<br>230 | Thr        | Val        | Asp        | Ser        | Ile<br>235 | Gln        | I]e        | Phe        | Pro        | A]a<br>240 |
|    | Gln        | Arg        | Tyr        | Ser        | Phe<br>245 | Val        | Leu        | Asn        | Ala        | Asp<br>250 | Gln        | Asp        | Val        | Asp        | Asn<br>255 | Tyr        |
| 20 | Тгр        | Ile        | Arg        | Ala<br>260 | Leu        | Pro        | Asn        | Ser        | G]y<br>265 | Thr        | Arg        | Asn        | Phe        | Asp<br>270 | Gly        | Gly        |
| 25 | Val        | Asn        | Ser<br>275 | Ala        | Ile        | Leu        | Arg        | Туг<br>280 | Glu        | Gly        | Ala        | Ala        | Pro<br>285 | Val        | Glu        | Pro        |
| 30 | Thr        | Thr<br>290 | Thr        | Gln        | Thr        | Pro        | Ser<br>295 | Thr        | Gln        | Pro        | Leu        | Val<br>300 | Glu        | Ser        | Ala        | Leu        |
|    | Thr<br>305 | Thr        | Leu        | Glu        | G]y        | тhr<br>310 | Ala        | Ala        | Pro        | Gly        | Asn<br>315 | Pro        | Thr        | Pro        | Gly        | Gly<br>320 |
| 35 | Val        | Asp        | Leu        | Ala        | Leu<br>325 | Asn        | Met        | Ala        | Phe        | G]y<br>330 | Phe        | Ala        | Gly        | Gly        | Arg<br>335 | Phe        |
| 40 | Thr        | Ile        | Asn        | G]y<br>340 | Ala        | Ser        | Phe        | Thr        | Pro<br>345 | Pro        | Thr        | Val        | Pro        | Va1<br>350 | Leu        | Leu        |
| 45 | Gln        | Ile        | Leu<br>355 | Ser        | Gly        | Ala        | Gln        | Ser<br>360 | Ala        | Gln        | Asp        | Leu        | Leu<br>365 | Pro        | Ser        | Gly        |
|    | Ser        | Val<br>370 | Tyr        | Ser        | Leu        | Pro        | Ala<br>375 | Asn        | Ala        | Asp        | Ile        | Glu<br>380 | Ile        | Ser        | Leu        | Pro        |
| 50 | Ala<br>385 | Thr        | Ser        | Ala        | Ala        | Pro<br>390 | Gly        | Phe        | Pro        | Нis        | Pro<br>395 | Phe        | Нis        | Leu        | ніs        | Gly<br>400 |
| 55 | His        | Thr        | Phe        | Ala        | Va]<br>405 | Val        | Arg        | Ser        | Ala        | Gly<br>410 | Ser        | Ser        | ⊤hr        | туr        | Asn<br>415 | Tyr        |
| 60 | Ala        | Asn        | Pro        | Val<br>420 | Tyr        | Arg        | Asp        | Val        | Val<br>425 | Asn        | Thr        | Gly        | Ser        | Pro<br>430 | Gly        | Asp        |
|    | Asn        | Val        | Thr<br>435 | Ile        | Arg        | Phe        | Arg        | Thr<br>440 | Asp        | Asn        | Pro        | Gly        | Pro<br>445 | Тгр        | Phe        | Leu        |

|    |                                                         | ys His Ile<br>50 | Asp Phe Hi<br>45  |                        | Ala Gly Phe<br>460 | Thr Val Val        | Met          |
|----|---------------------------------------------------------|------------------|-------------------|------------------------|--------------------|--------------------|--------------|
| 5  | Ala G<br>465                                            | ilu Asp Ile      | Pro Asp Va<br>470 | ] Ala Ala <sup>-</sup> | Thr Asn Pro<br>475 | Val Pro Gln        | Ala<br>480   |
| 10 | Trp S                                                   | er Asp Leu       | Cys Pro Th<br>485 |                        | Ala Leu Ser<br>490 | Pro Asp Asp<br>495 | Gln          |
| 15 | <210> 2<br><211> 1488<br><212> DNA<br><213> Secuencia A | artificial       |                   |                        |                    |                    |              |
| 20 | <220><br><221> misc_feature<br><222> (1)(1488)          | e                |                   |                        |                    |                    |              |
| 25 | <222> (1)(1488)<br><223> Secuencia m<br><400> 2         | nodificada deriv | ada de la secuer  | ncia que codific       | a para la lacasa c | lel basidiomiceto  | PM1.         |
| 30 | agcattgggc d                                            | cagtcgcaga       | cctcaccatc        | tccaacggtg             | ctgtcagtcc         | cgatggtttc         | 60           |
| 50 | tctcggcagg d                                            | ccatcctggt       | caacgacgtc        | ttccccagto             | ccctcattac         | ggggaacaag         | 120          |
|    | ggtgatcgtt t                                            | tccaactcaa       | tgtcatcgac        | aacatgacca             | accacaccat         | gttgaagtcc         | 180          |
| 35 | accagtatcc a                                            | attggcacgg       | cttcttccag        | cacggcacca             | actgggccga         | cggccccgcc         | 240          |
|    | ttcgtgaacc a                                            | agtgcccgat       | ttctaccggg        | catgcgttco             | : tttacgactt       | ccaggtccct         | 300          |
|    | gaccaagctg g                                            | gtactttctg       | gtaccacagt        | cacttgtcca             | ctcaatactg         | tgacggtctc         | 360          |
| 40 | aggggtccga t                                            | ttgttgtcta       | tgaccctcaa        | gatccccaca             | agagccttta         | cgatgttgat         | 420          |
|    | gacgactcca d                                            | -                |                   |                        |                    |                    | 480          |
| 45 | gcggccccga d                                            |                  |                   |                        |                    | _                  | 540          |
|    | aacgccgatt t                                            |                  |                   |                        |                    |                    | 600          |
|    | tcgctgtcat g                                            |                  |                   |                        |                    |                    | 660          |
| 50 | gaggcggacg g                                            |                  |                   |                        |                    |                    | 720          |
|    | cagcggtact o                                            |                  |                   |                        |                    |                    | 780          |
| 55 | cttcccaact o                                            |                  |                   |                        |                    |                    | 840          |
| 55 | gaaggtgctg d                                            |                  |                   |                        |                    |                    | 900          |
|    | gagtccgccc 1                                            |                  |                   |                        |                    |                    | 960          |
| 60 | gtcgacctgg d                                            |                  |                   |                        |                    |                    | 1020         |
|    | gcgagcttca d                                            |                  |                   |                        |                    |                    | 1080<br>1140 |
|    | gcgcaggacc t                                            |                  |                   |                        |                    |                    | 1140         |
| 65 | atctccctcc o                                            |                  |                   |                        |                    |                    | 1200         |
|    | cacaccttcg (                                            | ccyccycgcg       | ταγεγέζους        | ccyccyacgi             | . αιααιιαίζε       | γαατιτηγις         | 1200         |

taccgcgacg tcgtcaacac gggctcgccc ggggacaacg tcacgatccg gttcaggacg1320gacaaccccg gcccgtggtt cctccactgc cacatcgact tccaccttga ggctgggttc1380acggtcgtca tggccgagga cattcccgac gtcgccgcta cgaacccggt cccgcaagca1440tggtcggatc tgtgcccgac ctatgatgcg ctctcgcctg acgaccag1488

10

5

<210> 3

<211> 585

<212> PRT

<sup>15</sup> <213> Secuencia Artificial

<220>

<221> MISC\_FEATURE

<sup>20</sup> <222> (1)..(585)

<223> Secuencia modificada del péptido señal de *Saccharomyces cerevisiae* seguida de la secuencia modificada de la lacasa del basidiomiceto PM1.

 $^{25}$  <400> 3

| 20 | Met<br>1   | Arg        | Phe        | Pro        | Ser<br>5   | Ile        | Phe        | Thr        | Ala        | Asp<br>10  | Leu        | Phe        | Ala        | Ala        | Ser<br>15  | Ser        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 30 | Ala        | Leu        | Ala        | Ala<br>20  | Pro        | Val        | Lys        | Thr        | Thr<br>25  | Thr        | Glu        | Asp        | Glu        | Thr<br>30  | Ala        | Gln        |
| 35 | Ile        | Pro        | Ala<br>35  | Glu        | Ala        | Val        | Ile        | Gly<br>40  | Tyr        | Ser        | Asp        | Leu        | Glu<br>45  | Gly        | Asp        | Phe        |
| 40 | Asp        | Va1<br>50  | Ala        | Val        | Leu        | Pro        | Phe<br>55  | Ser        | Asn        | Ser        | Thr        | Asn<br>60  | Asn        | Gly        | Leu        | Leu        |
| 45 | Phe<br>65  | Ile        | Asn        | Thr        | Thr        | Ile<br>70  | Ala        | Ser        | Ile        | Ala        | Ala<br>75  | Lys        | Glu        | Glu        | Gly        | Val<br>80  |
|    | Ser        | Leu        | Glu        | Lys        | Arg<br>85  | Glu        | ⊤hr        | Glu        | Ala        | Ser<br>90  | Ile        | Gly        | Pro        | Val        | Ala<br>95  | Asp        |
| 50 | Leu        | Thr        | Ile        | Ser<br>100 | Asn        | Gly        | Ala        | Val        | Ser<br>105 | Pro        | Asp        | Gly        | Phe        | Ser<br>110 | Arg        | Gln        |
| 55 | Ala        | Ile        | Leu<br>115 | Va1        | Asn        | Asp        | Val        | Phe<br>120 | Pro        | Ser        | Pro        | Leu        | I]e<br>125 | Thr        | Gly        | Asn        |
| 60 | Lys        | Gly<br>130 | Asp        | Arg        | Phe        | Gln        | Leu<br>135 | Asn        | Val        | Ile        | Asp        | Asn<br>140 | Met        | Thr        | Asn        | His        |
|    | Thr<br>145 | Met        | Leu        | Lys        | Ser        | Thr<br>150 | Ser        | Ile        | Нis        | Trp        | His<br>155 | Gly        | Phe        | Phe        | Gln        | His<br>160 |
| 65 | Gly        | Thr        | Asn        | Тгр        | A]a<br>165 | Asp        | Gly        | Pro        | Ala        | Phe<br>170 | Val        | Asn        | Gln        | Cys        | Pro<br>175 | Ile        |

|            | Ser        | Thr        | Gly        | His<br>180 | Ala               | Phe        | Leu        | Туr        | Asp<br>185 | Phe        | Gln        | Val        | Pro        | Asp<br>190 | Gln        | Ala        |
|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5          | Gly        | Thr        | Phe<br>195 | Trp        | Tyr               | His        | Ser        | ніs<br>200 | Leu        | Ser        | Thr        | Gln        | Туг<br>205 | Cys        | Asp        | Gly        |
| 10         | Leu        | Arg<br>210 | Gly        | Pro        | Ile               | Val        | Val<br>215 | Tyr        | Asp        | Pro        | Gln        | Asp<br>220 | Pro        | His        | Lys        | Ser        |
| 15         | Leu<br>225 | Tyr        | Asp        | Val        | Asp               | Asp<br>230 | Asp        | Ser        | ⊤hr        | Val        | Ile<br>235 | Thr        | Leu        | Ala        | Asp        | тгр<br>240 |
|            | Туг        | His        | Leu        | Ala        | Ala<br>245        | Lys        | Val        | Gly        | Pro        | Ala<br>250 | Ala        | Pro        | ⊤hr        | Ala        | Asp<br>255 | Ala        |
| 20         | Thr        | Leu        | Ile        | Asn<br>260 | Gly               | Leu        | Gly        | Arg        | Ser<br>265 | I]e        | Asn        | Thr        | Leu        | Asn<br>270 | Ala        | Asp        |
| 25         | Leu        | Ala        | Va1<br>275 | Ile        | Thr               | Val        | ⊤hr        | Lys<br>280 | Gly        | Lys        | Arg        | Туr        | Arg<br>285 | Phe        | Arg        | Leu        |
| 30         | Val        | Ser<br>290 | Leu        | Ser        | Cys               | Asp        | Pro<br>295 | Asn        | Tyr        | Thr        | Phe        | Ser<br>300 | Ile        | Asp        | Gly        | His        |
|            | Ser<br>305 | Leu        | ⊤hr        | Val        | Ile               | Glu<br>310 | Ala        | Asp        | Gly        | Val        | Asn<br>315 | Leu        | Lys        | Pro        | Gln        | Thr<br>320 |
| 35         | Val        | Asp        | Ser        | Ile        | Gln<br>325        | I]e        | Phe        | Pro        | Ala        | Gln<br>330 | Arg        | Туr        | Ser        | Phe        | Val<br>335 | Leu        |
| 40         | Asn        | Ala        | Asp        | G1n<br>340 | Asp               | Val        | Asp        | Asn        | Туг<br>345 | Тrр        | Ile        | Arg        | Ala        | Leu<br>350 | Pro        | Asn        |
| 45         | Ser        | Gly        | Thr<br>355 | Arg        | Asn               | Phe        | Asp        | Gly<br>360 | Gly        | Val        | Asn        | Ser        | Ala<br>365 | Ile        | Leu        | Arg        |
|            | Тyr        | Glu<br>370 | Gly        | Ala        | Ala               | Pro        | Val<br>375 | Glu        | Pro        | Thr        | Thr        | Thr<br>380 | Gln        | Thr        | Pro        | Ser        |
| 50         | Thr<br>385 | Gln        | Pro        | Leu        | Val               | Glu<br>390 | Ser        | Ala        | Leu        | Thr        | Thr<br>395 | Leu        | Glu        | Gly        | Thr        | Ala<br>400 |
| 55         | Ala        | Pro        | Gly        | Asn        | <b>Pro</b><br>405 | Thr        | Pro        | Gly        | Gly        | Val<br>410 | Asp        | Leu        | Ala        | Leu        | Asn<br>415 | Met        |
| 60         | Ala        | Phe        | Gly        | Phe<br>420 | Ala               | Gly        | Gly        | Arg        | Phe<br>425 | Thr        | Ile        | Asn        | Gly        | Ala<br>430 | Ser        | Phe        |
|            | Thr        | Pro        | Pro<br>435 | Thr        | Val               | Pro        | Val        | Leu<br>440 | Leu        | Gln        | I]e        | Leu        | Ser<br>445 | Gly        | Ala        | Gln        |
| / <b>-</b> |            |            |            |            |                   |            |            |            |            |            |            |            |            |            |            |            |

|    | Ser                                | Ala<br>450  | Gln        | Asp        | Leu        | Leu        | Pro<br>455 | Ser        | Gly        | Ser        | Val        | Tyr<br>460 | Ser        | Leu        | Pro        | Ala                |
|----|------------------------------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|
| 5  | Asn<br>465                         | Ala         | Asp        | Ile        | Glu        | Ile<br>470 | Ser        | Leu        | Pro        | Ala        | Thr<br>475 | Ser        | Ala        | Ala        | Pro        | G]y<br>480         |
| 10 | Phe                                | Pro         | His        | Pro        | Phe<br>485 | His        | Leu        | His        | Gly        | Ніs<br>490 | Thr        | Phe        | Ala        | Val        | Val<br>495 | Arg                |
| 15 | Ser                                | Ala         | Gly        | Ser<br>500 | Ser        | Thr        | Tyr        | Asn        | Tyr<br>505 | Ala        | Asn        | Pro        | Val        | Туг<br>510 | Arg        | Asp                |
|    | Va]                                | Val         | Asn<br>515 | Thr        | Gly        | Ser        | Pro        | Gly<br>520 | Asp        | Asn        | Val        | Thr        | Ile<br>525 | Arg        | Phe        | Arg                |
| 20 | Thr                                | Asp<br>530  | Asn        | Pro        | Gly        | Pro        | Тгр<br>535 | Phe        | Leu        | His        | Cys        | ніs<br>540 | Ile        | Asp        | Phe        | His                |
| 25 | Leu<br>545                         | Glu         | Ala        | Gly        | Phe        | тhr<br>550 | Val        | Val        | Met        | Ala        | Glu<br>555 | Asp        | I]e        | Pro        | Asp        | Va1<br>560         |
| 30 | Ala                                | Ala         | Thr        | Asn        | Pro<br>565 | Val        | Pro        | Gln        | Ala        | Тгр<br>570 | Ser        | Asp        | Leu        | Cys        | Pro<br>575 | Thr                |
|    | Tyr                                | Asp         | Ala        | Leu<br>580 | Ser        | Pro        | Asp        | Asp        | Gln<br>585 |            |            |            |            |            |            |                    |
| 35 | <210> 4<br><211> 1755<br><212> DNA |             |            |            |            |            |            |            |            |            |            |            |            |            |            |                    |
| 40 | <212> Divit<br><213> Secuenci      | a Artif     | ficial     |            |            |            |            |            |            |            |            |            |            |            |            |                    |
| 45 |                                    | 5)<br>a mod |            |            |            |            |            |            |            |            | ra el p    | éptido     | o seña     | l de Sa    | acchai     | romyces cerevisiae |
|    | y de la qu<br><400> 4              | ie cod      | пса р      | ara la     | lacasa     | i del b    | asidio     | micet      | o PM       | 1.         |            |            |            |            |            |                    |
| 50 | atgagatti                          | tc ct       | tcaa       | ittt       | tac        | tgct       | gat        | ttat       | tcgc       | ag c       | atco       | tccg       | c at       | tage       | tgct       | 60                 |
|    | ccagtcaaa                          | aa ct       | acaa       | icaga      | aga        | tgaa       | acg        | gcac       | aaat       | tc c       | ggct       | gaag       | c tg       | tcat       | cggt       |                    |
| 55 | tactcagat                          |             |            |            |            | _          | -          |            |            | -          |            |            |            |            |            |                    |
|    | aacggatta<br>tctctcgad             | -           |            |            |            |            |            |            |            |            |            |            |            |            |            |                    |
| 60 | aacggtgci                          | -           |            | _          | -          | -          | -          | _          |            |            |            |            |            |            |            |                    |
|    | cccagtcco                          | c to        | atta       | icggg      | gaa        | .caag      | ggt        | gato       | gttt       | cc a       | acto       | aatg       | t ca       | itcga      | caac       | 420                |

65atgaccaacc acaccatgtt gaagtccacc agtatccatt ggcacggctt cttccagcac480ggcaccaact gggccgacgg ccccgccttc gtgaaccagt gcccgatttc taccgggcat540

|    | acatteettt                        | acgacttcca        | aatccctaac     | caagetgota | ctttctoota      | ccacagtcac         | 600           |
|----|-----------------------------------|-------------------|----------------|------------|-----------------|--------------------|---------------|
|    |                                   | aatactgtga        |                |            |                 |                    | 660           |
| 5  |                                   | gcctttacga        |                |            |                 |                    | 720           |
| U  |                                   | ctgccaaagt        |                |            |                 |                    | 780           |
|    |                                   |                   |                |            |                 |                    | 840           |
| 10 |                                   | gcagcatcaa        |                |            |                 |                    |               |
|    |                                   | atcgcttccg        |                |            |                 |                    | 900           |
|    |                                   | actctctgac        |                |            |                 |                    | 960           |
| 15 | gtcgactcca                        | tccagatctt        | ccctgcccag     | cggtactcgt | ttgtgctcaa      | cgcagatcag         | 1020          |
|    | gatgtggaca                        | actactggat        | ccgtgccctt     | cccaactccg | ggaccaggaa      | cttcgacggc         | 1080          |
|    | ggcgttaact                        | ccgccatcct        | tcgctacgaa     | ggtgctgcgc | ccgttgagcc      | caccacgacc         | 1140          |
| 20 | cagacgccgt                        | cgacgcagcc        | tttggtggag     | tccgccctga | ccactctcga      | aggcaccgct         | 1200          |
|    | gcgcccggca                        | acccgacccc        | tggcggtgtc     | gacctggctc | tcaacatggc      | tttcggcttt         | 1260          |
| 25 | gccggcggca                        | ggttcaccat        | caacggcgcg     | agcttcaccc | cgcccaccgt      | ccccgtcctc         | 1320          |
| 25 | ctgcagatcc                        | tgagcggcgc        | gcagtcggcg     | caggacctcc | tcccctctgg      | aagtgtatac         | 1380          |
|    | tcgctccctg                        | cgaacgcgga        | cattgagatc     | tccctccccg | ccacctccgc      | cgccccggc          | 1440          |
| 30 | ttcccgcacc                        | ccttccactt        | gcacgggcac     | accttcgccg | tcgtgcgcag      | cgccggctcg         | 1500          |
|    | tcgacgtaca                        | actacgcgaa        | cccggtctac     | cgcgacgtcg | tcaacacggg      | ctcgcccggg         | 1560          |
|    | gacaacgtca                        | cgatccggtt        | caggacggac     | aaccccggcc | cgtggttcct      | ccactgccac         | 1620          |
| 35 | atcgacttcc                        | accttgaggc        | tgggttcacg     | gtcgtcatgg | ccgaggacat      | tcccgacgtc         | 1680          |
|    | gccgctacga                        | acccggtccc        | gcaagcatgg     | tcggatctgt | gcccgaccta      | tgatgcgctc         | 1740          |
|    | tcgcctgacg                        | accag             |                |            |                 |                    | 1755          |
| 40 | <210> 5                           |                   |                |            |                 |                    |               |
|    | <210> 5<211> 587                  |                   |                |            |                 |                    |               |
| 45 | <212> PRT                         |                   |                |            |                 |                    |               |
| 45 | <213> Secuencia A                 | Artificial        |                |            |                 |                    |               |
|    | <220>                             |                   |                |            |                 |                    |               |
| 50 | <221> MISC_FEA                    | TURE              |                |            |                 |                    |               |
|    | <222> (1)(587)                    |                   |                | ć          | -1 - (          | 1-1 f t            | C             |
|    | <223> Secuencia n<br>cerevisiae y | la lacasa del bas | sidiomiceto PM | l.         | ei pepudo senai | der factor alla de | saccnuromyces |
| 55 | <400> 5                           |                   |                |            |                 |                    |               |
|    |                                   |                   |                |            |                 |                    |               |

60

Met Arg Phe Pro Ser Ile Phe Thr Ala Asp Leu Phe Ala Ala Ser Ser 1 5 10 15 Ala Leu Ala Ala Pro Val Lys Thr Thr Thr Glu Asp Glu Thr Ala Gln 20 25 30 65 Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

|    | Asp Val<br>50  | Ala Val        | Leu Pro        | Phe Ser<br>55  | Asn Ser          | Thr Asn<br>60  | Asn Gly        | 'Leu Leu       |
|----|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|
| 5  | Phe Ile<br>65  | Asn Thr        | Thr Ile<br>70  | Ala Ser        | lle Ala          | Ala Lys<br>75  | Glu Glu        | Gly Val<br>80  |
| 10 | Ser Leu        | Glu Lys        | Arg Glu<br>85  | Thr Glu        | ı Ala Glu<br>90  | Phe Ser        | Ile Gly        | Pro Val<br>95  |
| 15 | Ala Asp        | Leu Thr<br>100 | Ile Ser        | Asn Gly        | Ala Val<br>105   | Ser Pro        | Asp Gly<br>110 | Phe Ser        |
|    | Arg Gln        | Ala Ile<br>115 | Leu Val        | Asn Asp<br>120 |                  | Pro Ser        | Pro Leu<br>125 | lle Thr        |
| 20 | Gly Asn<br>130 |                | Asp Arg        | Phe Glm<br>135 | i Leu Asn        | Val Ile<br>140 |                | Met Thr        |
| 25 | Asn His<br>145 | Thr Met        | Leu Lys<br>150 |                | Ser Ile          | His Trp<br>155 | His Gly        | Phe Phe 160    |
| 30 | Gln His        | Gly Thr        | Asn Trp<br>165 | Ala Asp        | Gly Pro<br>170   |                | Val Asn        | Gln Cys<br>175 |
|    | Pro Ile        | Ser Thr<br>180 | Gly His        | Ala Phe        | e Leu Tyr<br>185 | Asp Phe        | Gln Val<br>190 | Pro Asp        |
| 35 | Gln Ala        | Gly Thr<br>195 | Phe Trp        | Tyr His<br>200 |                  | Leu Ser        | Thr Gln<br>205 | Tyr Cys        |
| 40 | Asp Gly<br>210 |                | Gly Pro        | ile Val<br>215 | Val Tyr          | Asp Pro<br>220 |                | Pro His        |
| 45 | Lys Ser<br>225 | Leu Tyr        | Asp Val<br>230 |                | Asp Ser          | ⊤hr Val<br>235 | Ile Thr        | Leu Ala<br>240 |
|    | Asp Trp        | Tyr His        | Leu Ala<br>245 | Ala Lys        | Val Gly<br>250   |                | Ala Pro        | Thr Ala<br>255 |
| 50 | Asp Ala        | Thr Leu<br>260 | Ile Asn        | Gly Leu        | Gly Arg<br>265   | Ser Ile        | Asn Thr<br>270 | Leu Asn        |
| 55 | Ala Asp        | Leu Ala<br>275 | Val Ile        | Thr Val<br>280 |                  | Gly Lys        | Arg Tyr<br>285 | Arg Phe        |
| 60 | Arg Leu<br>290 |                | Leu Ser        | Cys Asp<br>295 | Pro Asn          | ⊤yr Thr<br>300 |                | 'Ile Asp       |
|    | Gly His<br>305 | Ser Leu        | Thr Val<br>310 |                | ı Ala Asp        | Gly Val<br>315 | Asn Leu        | Lys Pro<br>320 |
| 65 |                |                |                |                |                  |                |                |                |

|    | Gln        | ⊤hr        | Val        | Asp        | Ser<br>325 | Ile        | Gln        | Ile        | Phe        | Pro<br>330 | Ala        | Gln        | Arg        | Tyr        | Ser<br>335 | Phe        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Val        | Leu        | Asn        | Ala<br>340 | Asp        | Gln        | Asp        | Val        | Asp<br>345 | Asn        | Tyr        | Trp        | Ile        | Arg<br>350 | Ala        | Leu        |
| 10 | Pro        | Asn        | Ser<br>355 | Gly        | Thr        | Arg        | Asn        | Phe<br>360 | Asp        | Gly        | Gly        | Val        | Asn<br>365 | Ser        | Ala        | Ile        |
| 15 | Leu        | Arg<br>370 | Туr        | Glu        | Gly        | Ala        | Ala<br>375 | Pro        | Val        | Glu        | Pro        | Thr<br>380 | Thr        | Thr        | Gln        | Thr        |
|    | Pro<br>385 | Ser        | Thr        | Gln        | Pro        | Leu<br>390 | Val        | Glu        | Ser        | Ala        | Leu<br>395 | Thr        | Thr        | Leu        | Glu        | Gly<br>400 |
| 20 | Thr        | Ala        | Ala        | Pro        | Gly<br>405 | Asn        | Pro        | Thr        | Pro        | G]y<br>410 | Gly        | Val        | Asp        | Leu        | Ala<br>415 | Leu        |
| 25 | Asn        | Met        | Ala        | Phe<br>420 | Gly        | Phe        | Ala        | Gly        | G]y<br>425 | Arg        | Phe        | Thr        | Ile        | Asn<br>430 | Gly        | Ala        |
| 30 | Ser        | Phe        | тhr<br>435 | Pro        | Pro        | Thr        | Val        | Pro<br>440 | Val        | Leu        | Leu        | Gln        | 11e<br>445 | Leu        | Ser        | Gly        |
|    | Ala        | G]n<br>450 | Ser        | Ala        | Gln        | Asp        | Leu<br>455 | Leu        | Pro        | Ser        | Gly        | Ser<br>460 | Val        | Tyr        | Ser        | Leu        |
| 35 | Pro<br>465 | Ala        | Asn        | Ala        | Asp        | Ile<br>470 | Glu        | Ile        | Ser        | Leu        | Pro<br>475 | Ala        | Thr        | Ser        | Ala        | Ala<br>480 |
| 40 | Pro        | Gly        | Phe        | Pro        | ніs<br>485 | Pro        | Phe        | His        | Leu        | ніs<br>490 | Gly        | His        | Thr        | Phe        | Ala<br>495 | Val        |
| 45 | Val        | Arg        | Ser        | Ala<br>500 | Gly        | Ser        | Ser        | Thr        | Tyr<br>505 | Asn        | Туr        | Ala        | Asn        | Pro<br>510 | Val        | Tyr        |
|    | Arg        | Asp        | Val<br>515 | Val        | Asn        | Thr        | Gly        | Ser<br>520 | Pro        | Gly        | Asp        | Asn        | Val<br>525 | Thr        | Ile        | Arg        |
| 50 | Phe        | Arg<br>530 | Thr        | Asp        | Asn        | Pro        | G]y<br>535 | Pro        | Тrр        | Phe        | Leu        | ніs<br>540 | Cys        | His        | Ile        | Asp        |
| 55 | Phe<br>545 | His        | Leu        | Glu        | Ala        | G]y<br>550 | Phe        | Thr        | Val        | Val        | Met<br>555 | Ala        | Glu        | Asp        | I]e        | Pro<br>560 |
| 60 | Asp        | Val        | Ala        | Ala        | Thr<br>565 | Asn        | Pro        | Val        | Pro        | Gln<br>570 | Ala        | Тгр        | Ser        | Asp        | Leu<br>575 | Cys        |
|    | Pro        | Thr        | Tyr        | Asp<br>580 | Ala        | Leu        | Ser        | Pro        | Asp<br>585 | Asp        | Gln        |            |            |            |            |            |

<210>6

<211> 1761

<212> DNA

<sup>5</sup> <213> Secuencia Artificial

<220>

<221> misc\_feature

<sup>10</sup> <222> (1)..(1761)

<223> Secuencia modificada derivada de la secuencia que codifica para el péptido señal de *Saccharomyces cerevisiae* y de la que codifica para la lacasa del basidiomiceto PM1.

15 <400> 6

|    | atgagatttc | cttcaatttt | tactgctgat | ttattcgcag | catcctccgc | attagctgct | 60   |
|----|------------|------------|------------|------------|------------|------------|------|
| 20 | ccagtcaaaa | ctacaacaga | agatgaaacg | gcacaaattc | cggctgaagc | tgtcatcggt | 120  |
|    | tactcagatt | tagaagggga | tttcgatgtt | gctgttttgc | cattttccaa | cagcacaaat | 180  |
|    | aacggattat | tgtttataaa | tactactatt | gccagcattg | ctgctaaaga | agaaggggta | 240  |
| 25 | tctctcgaga | aaagagagac | tgaagctgag | ttcagcattg | ggccagtcgc | agacctcacc | 300  |
|    | atctccaacg | gtgctgtcag | tcccgatggt | ttctctcggc | aggccatcct | ggtcaacgac | 360  |
| 30 | gtcttcccca | gtcccctcat | tacggggaac | aagggtgatc | gtttccaact | caatgtcatc | 420  |
| 50 | gacaacatga | ccaaccacac | catgttgaag | tccaccagta | tccattggca | cggcttcttc | 480  |
|    | cagcacggca | ccaactgggc | cgacggcccc | gccttcgtga | accagtgccc | gatttctacc | 540  |
| 35 | gggcatgcgt | tcctttacga | cttccaggtc | cctgaccaag | ctggtacttt | ctggtaccac | 600  |
|    | agtcacttgt | ccactcaata | ctgtgacggt | ctcaggggtc | cgattgttgt | ctatgaccct | 660  |
|    | caagatcccc | acaagagcct | ttacgatgtt | gatgacgact | ccactgtaat | cactctcgcg | 720  |
| 40 | gattggtacc | acttggctgc | caaagtcggc | ccggcggccc | cgactgccga | tgctactctt | 780  |
|    | atcaacggcc | tcggtcgcag | catcaacacg | ctcaacgccg | atttggctgt | catcacggtc | 840  |
| 45 | acgaagggca | agcgctatcg | cttccgcctg | gtgtcgctgt | catgcgaccc | gaattacacg | 900  |
|    | ttcagcattg | atggtcactc | tctgaccgtc | atcgaggcgg | acggcgtgaa | tctcaagccc | 960  |
|    | cagactgtcg | actccatcca | gatcttccct | gcccagcggt | actcgtttgt | gctcaacgca | 1020 |
| 50 | gatcaggatg | tggacaacta | ctggatccgt | gcccttccca | actccgggac | caggaacttc | 1080 |
|    | gacggcggcg | ttaactccgc | catccttcgc | tacgaaggtg | ctgcgcccgt | tgagcccacc | 1140 |
|    | acgacccaga | cgccgtcgac | gcagcctttg | gtggagtccg | ccctgaccac | tctcgaaggc | 1200 |
| 55 | accgctgcgc | ccggcaaccc | gacccctggc | ggtgtcgacc | tggctctcaa | catggctttc | 1260 |
|    | ggctttgccg | gcggcaggtt | caccatcaac | ggcgcgagct | tcaccccgcc | caccgtcccc | 1320 |
| 60 | gtcctcctgc | agatcctgag | cggcgcgcag | tcggcgcagg | acctcctccc | ctctggaagt | 1380 |
|    | gtatactcgc | tccctgcgaa | cgcggacatt | gagatctccc | tccccgccac | ctccgccgcc | 1440 |
|    | cccggcttcc | cgcacccctt | ccacttgcac | gggcacacct | tcgccgtcgt | gcgcagcgcc | 1500 |
| 65 | ggctcgtcga | cgtacaacta | cgcgaacccg | gtctaccgcg | acgtcgtcaa | cacgggctcg | 1560 |

|    | cccgg                                | Igga            | ca a       | cgtc       | acga       | t cc       | ggtt       | cagg       | acg        | gaca       | acc        | ccgg       | cccg       | tg g       | ttcc       | tcca       | с          | 1620       |    |
|----|--------------------------------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | tgcca                                | cat             | cg a       | cttc       | cacc       | t tg       | aggc       | tggg       | ttc        | acgg       | tcg        | tcat       | ggcc       | ga g       | gaca       | ttcc       | с          | 1680       |    |
| 5  | gacgt                                | cgc             | cg c       | tacg       | aacc       | c gg       | tccc       | gcaa       | gca        | tggt       | cgg        | atct       | gtgc       | cc g       | acct       | atga       | t          | 1740       |    |
|    | gcgct                                | ctc             | gc c       | tgac       | gacc       | a g        |            |            |            |            |            |            |            |            |            |            |            | 1761       |    |
| 10 | <210> 7<br><211> 498<br><212> PR7    |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| 15 | <213> Sec<br><220>                   |                 | a Arti     | ficial     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| 20 | <221> MIS<br><222> (1).<br><223> Sec | .(498<br>cuenci | )<br>ia mo |            |            | la se      | cuenci     | ia de l    | la laca    | asa de     | l basi     | idiomi     | ceto l     | PM1        | con 2      | amino      | oácidos    | extra en e | el |
|    | <400> 7                              |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| 25 |                                      | Glu<br>1        | Phe        | Ser        | Ile        | Gly        | Pro        | Val        | Ala        | Asp        | Leu<br>10  | Thr        | Ile        | Ser        | Asn        | G]y<br>15  | Ala        |            |    |
| 30 |                                      | -               | Ser        | Pro        | Asp<br>20  | Gly        | Phe        | Ser        | Arg        | G]n<br>25  |            | I]e        | Leu        | Val        | Asn<br>30  |            | Val        |            |    |
| 25 | I                                    | Phe             | Pro        | Ser<br>35  |            | Leu        | Ile        | Thr        | G]y<br>40  |            | Lys        | Gly        | Asp        | Arg<br>45  |            | Gln        | Leu        |            |    |
| 35 | ,                                    | Asn             | Va1<br>50  |            | Asp        | Asn        | Met        | Thr<br>55  |            | His        | Thr        | Met        | Leu<br>60  |            | Ser        | Thr        | Ser        |            |    |
| 40 |                                      |                 |            | Trp        | His        | Gly        |            |            | Gln        | His        | Gly        | Thr        |            | Trp        | Ala        | Asp        |            |            |    |
| 45 |                                      | 65<br>Bro       | ∧]a        | Pho        | Val        | ٨٥٥        | 70<br>cln  | CVS        | Pro        | αΓτ        | Sor        | 75<br>Thr  | clv        | ніс        | ۸la        | Pho        | 80<br>Leu  |            |    |
|    |                                      |                 |            |            |            | 85         |            |            |            |            | 90         |            |            |            |            | 95         |            |            |    |
| 50 |                                      | Tyr             | Asp        | Phe        | G]n<br>100 | Val        | Pro        | Asp        | Gln        | Ala<br>105 | Gly        | Thr        | Phe        | тгр        | туг<br>110 | His        | Ser        |            |    |
| 55 | ł                                    | His             | Leu        | Ser<br>115 | Thr        | Gln        | туr        | Cys        | Asp<br>120 | G]y        | Leu        | Arg        | Gly        | Pro<br>125 | I]e        | Val        | Val        |            |    |
|    |                                      | Tyr             | Asp<br>130 | Pro        | Gln        | Asp        | Pro        | His<br>135 | Lys        | Ser        | Leu        | Tyr        | Asp<br>140 | Val        | Asp        | Asp        | Asp        |            |    |
| 60 |                                      | Ser<br>145      | Thr        | Val        | Ile        | Thr        | Leu<br>150 | Ala        | Asp        | Trp        | Tyr        | His<br>155 | Leu        | Ala        | Ala        | Lys        | Val<br>160 |            |    |
| 65 |                                      | Gly             | Pro        | Ala        | Ala        | Pro<br>165 | Thr        | Ala        | Asp        | Ala        | Thr<br>170 | Leu        | Ile        | Asn        | Gly        | Leu<br>175 | Gly        |            |    |

|    | Arg S        | Ser I        |            | Asn<br>180 | Thr        | Leu        | Asn        | Ala        | Asp<br>185 | Leu        | Ala        | Val        | IJe        | Thr<br>190 | Val        | Thr        |
|----|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Lys (        |              | _ys<br>L95 | Arg        | ⊤yr        | Arg        | Phe        | Arg<br>200 | Leu        | Val        | Ser        | Leu        | Ser<br>205 | Cys        | Asp        | Pro        |
| 10 | Asn T<br>2   | Гуг Т<br>210 | ſhr        | Phe        | Ser        | Ile        | Asp<br>215 | Gly        | His        | Ser        | Leu        | Thr<br>220 | Val        | Ile        | Glu        | Ala        |
| 15 | Asp (<br>225 | Gly N        | /al .      | Asn        | Leu        | Lys<br>230 | Pro        | Gln        | Thr        | Val        | Asp<br>235 | Ser        | Ile        | Gln        | Ile        | Phe<br>240 |
| 15 | Pro A        | Ala G        | Gln        | Arg        | туг<br>245 | Ser        | Phe        | Val        | Leu        | Asn<br>250 | Ala        | Asp        | Gln        | Asp        | Va]<br>255 | Asp        |
| 20 | Asn 1        | Гуr Т        |            | 11e<br>260 | Arg        | Ala        | Leu        | Pro        | Asn<br>265 | Ser        | Gly        | Thr        | Arg        | Asn<br>270 | Phe        | Asp        |
| 25 | Gly (        |              | /al<br>275 | Asn        | Ser        | Ala        | I]e        | Leu<br>280 | Arg        | Tyr        | Glu        | Gly        | Ala<br>285 | Ala        | Pro        | Val        |
| 30 | Glu F<br>2   | Pro 1<br>290 | Thr '      | Thr        | Thr        | Gln        | Thr<br>295 | Pro        | Ser        | Thr        | Gln        | Pro<br>300 | Leu        | Val        | Glu        | Ser        |
| 90 | Ala L<br>305 | _eu T        | Гhr і      | Thr        | Leu        | Glu<br>310 | Gly        | Thr        | Ala        | Ala        | Pro<br>315 | Gly        | Asn        | Pro        | Thr        | Pro<br>320 |
| 35 | Gly G        | ∃ly V        | /al .      | Asp        | Leu<br>325 | Ala        | Leu        | Asn        | Met        | Ala<br>330 | Phe        | Gly        | Phe        | Ala        | Gly<br>335 | Gly        |
| 40 | Arg F        | рhe Т        |            | 1]e<br>340 | Asn        | Gly        | Ala        | Ser        | Phe<br>345 | Thr        | Pro        | Pro        | Thr        | Va1<br>350 | Pro        | Val        |
| 45 | Leu L        |              | G]n<br>355 | I]e        | Leu        | Ser        | Gly        | Ala<br>360 | Gln        | Ser        | Ala        | Gln        | Asp<br>365 | Leu        | Leu        | Pro        |
| 10 | Ser G        | 51y S<br>370 | Ser '      | Val        | ⊤yr        | Ser        | Leu<br>375 | Pro        | Ala        | Asn        | Ala        | Asp<br>380 | I]e        | Glu        | Ile        | Ser        |
| 50 | Leu F<br>385 | Pro A        | Ala '      | Thr        | Ser        | Ala<br>390 | Ala        | Pro        | Gly        | Phe        | Pro<br>395 | His        | Pro        | Phe        | His        | Leu<br>400 |
| 55 | His G        | 5]y⊦         | lis        | Thr        | Phe<br>405 | Ala        | Val        | Val        | Arg        | Ser<br>410 | Ala        | Gly        | Ser        | Ser        | тhr<br>415 | Tyr        |
| 60 | Asn T        | Гyr A        |            | Asn<br>420 | Pro        | Val        | Туr        | Arg        | Asp<br>425 | Val        | Val        | Asn        | Thr        | Gly<br>430 | Ser        | Pro        |
|    | Gly A        |              | Asn<br>435 | Val        | Thr        | Ile        | Arg        | Phe<br>440 | Arg        | Thr        | Asp        | Asn        | Pro<br>445 | Gly        | Pro        | Trp        |

|    | Ph                                                                  | e Leu<br>45( | ı His<br>) | Cys        | His        | Ile        | Asp<br>455 | Phe        | His        | Leu        | Glu        | A]a<br>460 |            | Phe        | : Thr      | Val                |
|----|---------------------------------------------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|
| 5  | Va<br>46                                                            |              | : Ala      | ı Glu      | Asp        | I]e<br>470 | Pro        | Asp        | Val        | Ala        | Ala<br>475 | Thr        | Asr        | Pro        | va]        | Pro<br>480         |
| 10 | Gli                                                                 | n Ala        | ı Trp      | ) Ser      | Asp<br>485 |            | Cys        | Pro        | Thr        | Tyr<br>490 |            | Ala        | Leu        | l Ser      | Pro<br>495 | Asp                |
|    | As                                                                  | o Glr        | ו          |            |            |            |            |            |            |            |            |            |            |            |            |                    |
| 15 | <210> 8<br><211> 502<br><212> PRT                                   |              |            |            |            |            |            |            |            |            |            |            |            |            |            |                    |
| 20 | <213> Secuenc                                                       | ia Arti      | ficial     |            |            |            |            |            |            |            |            |            |            |            |            |                    |
| 25 | <220><br><221> MISC_F<br><222> (1)(502<br><223> Secuenc<br>amino te | )<br>ia mod  | lificad    | a a pai    | tir de     | la laca    | sa del     | basid      | liomic     | eto PI     | M1 co      | n una      | cola d     | le 6 ar    | ninoác     | idos en el extremo |
| 30 | <400> 8                                                             |              |            |            |            |            |            |            |            |            |            |            |            |            |            |                    |
|    | Glu<br>1                                                            | Thr          | Glu        | Ala        | Glu<br>5   | Phe        | Ser        | Ile        | Gly        | Pro<br>10  | Val        | Ala        | Asp        | Leu        | Thr<br>15  | IJe                |
| 35 | Ser                                                                 | Asn          | Gly        | A]a<br>20  | Val        | Ser        | Pro        | Asp        | Gly<br>25  | Phe        | Ser        | Arg        | Gln        | Ala<br>30  | Ile        | Leu                |
| 40 | Val                                                                 | Asn          | Asp<br>35  | Val        | Phe        | Pro        |            | Pro<br>40  | Leu        | Ile        | Thr        | Gly        | Asn<br>45  | Lys        | Gly        | Asp                |
| 45 | Arg                                                                 | Phe<br>50    | Gln        | Leu        | Asn        | Val        | Ile<br>55  | Asp        | Asn        | Met        | Thr        | Asn<br>60  | His        | Thr        | Met        | Leu                |
|    | Lys<br>65                                                           | Ser          | Thr        | Ser        | IJe        | His<br>70  | Тгр        | His        | Gly        | Phe        | Phe<br>75  | Gln        | His        | Gly        | Тhr        | Asn<br>80          |
| 50 | Trp                                                                 | Ala          | Asp        | Gly        | Pro<br>85  | Ala        | Phe        | Val        | Asn        | Gln<br>90  | Cys        | Pro        | I]e        | Ser        | Thr<br>95  | Gly                |
| 55 | His                                                                 | Ala          | Phe        | Leu<br>100 | Tyr        | Asp        | Phe        | Gln        | Va]<br>105 | Pro        | Asp        | Gln        | Ala        | Gly<br>110 | Thr        | Phe                |
| 60 | Trp                                                                 | Tyr          | ніs<br>115 | Ser        | His        | Leu        | Ser        | Thr<br>120 | Gln        | Тyr        | Cys        | Asp        | G]y<br>125 | Leu        | Arg        | Gly                |
|    | Pro                                                                 | I]e<br>130   | Val        | Val        | Туr        | Asp        | Pro<br>135 | Gln        | Asp        | Pro        | His        | Lys<br>140 | Ser        | Leu        | Тyr        | Asp                |
| 65 | Va1<br>145                                                          |              | Asp        | Asp        | Ser        | Thr<br>150 | Val        | Ile        | Thr        | Leu        | Ala<br>155 | Asp        | тrр        | Tyr        | His        | Leu<br>160         |

|    | Ala        | Ala        | Lys        | Val        | Gly<br>165 | Pro        | Ala        | Ala        | Pro        | Thr<br>170 | Ala        | Asp        | Ala        | Thr        | Leu<br>175 | Ile        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Asn        | Gly        | Leu        | Gly<br>180 | Arg        | Ser        | Ile        | Asn        | Thr<br>185 | Leu        | Asn        | Ala        | Asp        | Leu<br>190 | Ala        | Val        |
| 10 | Ile        | Thr        | Val<br>195 | Thr        | Lys        | Gly        | Lys        | Arg<br>200 | Tyr        | Arg        | Phe        | Arg        | Leu<br>205 | Val        | Ser        | Leu        |
| 15 | Ser        | Cys<br>210 | Asp        | Pro        | Asn        | Tyr        | Thr<br>215 | Phe        | Ser        | Ile        | Asp        | G]y<br>220 | Нis        | Ser        | Leu        | Thr        |
|    | Va]<br>225 | Ile        | Glu        | Ala        | Asp        | G]y<br>230 | Val        | Asn        | Leu        | Lys        | Pro<br>235 | Gln        | Thr        | Val        | Asp        | Ser<br>240 |
| 20 | Ile        | Gln        | Ile        | Phe        | Pro<br>245 | Ala        | Gln        | Arg        | Туr        | Ser<br>250 | Phe        | Val        | Leu        | Asn        | Ala<br>255 | Asp        |
| 25 | Gln        | Asp        | Val        | Asp<br>260 | Asn        | Туr        | Trp        | IJe        | Arg<br>265 | Ala        | Leu        | Pro        | Asn        | Ser<br>270 | Gly        | Thr        |
| 30 | Arg        | Asn        | Phe<br>275 | Asp        | Gly        | Gly        | Val        | Asn<br>280 | Ser        | Ala        | I]e        | Leu        | Arg<br>285 | ⊤yr        | Glu        | Gly        |
|    | Ala        | Ala<br>290 | Pro        | Val        | Glu        | Pro        | Thr<br>295 | Thr        | ⊤hr        | Gln        | Thr        | Pro<br>300 | Ser        | Thr        | Gln        | Pro        |
| 35 | Leu<br>305 | Val        | Glu        | Ser        | Ala        | Leu<br>310 | Thr        | Thr        | Leu        | Glu        | Gly<br>315 | Thr        | Ala        | Ala        | Pro        | Gly<br>320 |
| 40 | Asn        | Pro        | Thr        | Pro        | Gly<br>325 | Gly        | Val        | Asp        | Leu        | Ala<br>330 | Leu        | Asn        | Met        | Ala        | Phe<br>335 | Gly        |
| 45 | Phe        | Ala        | Gly        | Gly<br>340 | Arg        | Phe        | Thr        | Ile        | Asn<br>345 | Gly        | Ala        | Ser        | Phe        | Thr<br>350 | Pro        | Pro        |
|    | Thr        | Val        | Pro<br>355 | Val        | Leu        | Leu        | Gln        | Ile<br>360 | Leu        | Ser        | Gly        | Ala        | Gln<br>365 | Ser        | Ala        | Gln        |
| 50 | Asp        | Leu<br>370 | Leu        | Pro        | Ser        | Gly        | Ser<br>375 | Val        | ⊤yr        | Ser        | Leu        | Pro<br>380 | Ala        | Asn        | Ala        | Asp        |
| 55 | Ile<br>385 | Glu        | Ile        | Ser        | Leu        | Pro<br>390 | Ala        | Thr        | Ser        | Ala        | Ala<br>395 | Pro        | Gly        | Phe        | Pro        | ніs<br>400 |
| 60 | Pro        | Phe        | His        | Leu        | Ніs<br>405 | Gly        | His        | Thr        | Phe        | Ala<br>410 | Val        | Val        | Arg        | Ser        | Ala<br>415 | Gly        |
|    | Ser        | Ser        | Thr        | Туг<br>420 | Asn        | Туr        | Ala        | Asn        | Pro<br>425 | Val        | Туr        | Arg        | Asp        | Val<br>430 | Val        | Asn        |

|          |                                                 | Thr                             | Gly                                   | Ser<br>435                            | Pro                            | Gly                             | Asp                                   | Asn                            | Val<br>440                            | Thr                                   | Ile                            | Arg                      | Phe                            | Arg<br>445              | Thr                     | Asp                     | Asn                      |
|----------|-------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|---------------------------------|---------------------------------------|--------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| 5        | ļ                                               | Pro                             | Gly<br>450                            | Pro                                   | Тгр                            | Phe                             | Leu                                   | His<br>455                     | Cys                                   | His                                   | Ile                            | Asp                      | Phe<br>460                     | His                     | Leu                     | Glu                     | Ala                      |
| 10       |                                                 | Gly<br>465                      | Phe                                   | Thr                                   | Val                            | Val                             | Met<br>470                            | Ala                            | Glu                                   | Asp                                   | Ile                            | Pro<br>475               | Asp                            | Val                     | Ala                     | Ala                     | Thr<br>480               |
| 15       |                                                 | Asn                             | Pro                                   | Val                                   | Pro                            | Gln<br>485                      | Ala                                   | Тгр                            | Ser                                   | Asp                                   | Leu<br>490                     | Cys                      | Pro                            | Thr                     | ⊤yr                     | Asp<br>495              | Ala                      |
|          |                                                 | Leu                             | Ser                                   | Pro                                   | Asp<br>500                     | Asp                             | Gln                                   |                                |                                       |                                       |                                |                          |                                |                         |                         |                         |                          |
| 20       | <210> 9<br><211> 89                             |                                 |                                       |                                       |                                |                                 |                                       |                                |                                       |                                       |                                |                          |                                |                         |                         |                         |                          |
| 25       | <212> PRT<br><213> Secu                         |                                 | a Artii                               | ficial                                |                                |                                 |                                       |                                |                                       |                                       |                                |                          |                                |                         |                         |                         |                          |
| 30       | <220><br><221> SIGI<br><222> (1)(<br><223> Sagu | (89)                            |                                       |                                       |                                |                                 | ~                                     | 1.1.0                          |                                       |                                       |                                |                          |                                |                         |                         |                         |                          |
|          | <223> Secu                                      | lencia                          | a mod                                 | Inficad                               | a del f                        | peptid                          | o sena                                | de S                           | accha                                 | ramyc                                 | ces cer                        | revisia                  | e.                             |                         |                         |                         |                          |
| 35       | <400> 9                                         | lencia                          | a mod                                 | ifficad                               | a del j                        | peptid                          | o sena                                | l de S                         | accha                                 | ramyc                                 | ces cei                        | revisia                  | e.                             |                         |                         |                         |                          |
| 35       | <400> 9                                         |                                 |                                       |                                       | a del j<br>Pro                 |                                 |                                       |                                |                                       |                                       |                                |                          |                                | Ala                     | Ala                     | Ser<br>15               | Ser                      |
| 35<br>40 | <400> 9                                         | 4et<br>1                        | Arg                                   | Phe                                   | _                              | Ser<br>5                        | Ile                                   | Phe                            | Thr                                   | Ala                                   | Asp<br>10                      | Leu                      | Phe                            |                         |                         | 15                      |                          |
|          | <400> 9                                         | Met<br>1<br>Ala                 | Arg<br>Leu                            | Phe<br>Ala                            | Pro<br>Ala                     | Ser<br>5<br>Pro                 | Ile<br>Val                            | Phe<br>Lys                     | Thr<br>Thr                            | Ala<br>Thr<br>25                      | Asp<br>10<br>Thr               | Leu<br>Glu               | Phe<br>Asp                     | Glu                     | Thr<br>30               | 15<br>Ala               | Gln                      |
| 40       | <400> 9                                         | Met<br>Ala<br>Ile               | Arg<br>Leu<br>Pro                     | Phe<br>Ala<br>Ala<br>35               | Pro<br>Ala<br>20               | Ser<br>5<br>Pro<br>Ala          | Ile<br>val<br>val                     | Phe<br>Lys<br>Ile              | Thr<br>Thr<br>Gly<br>40               | Ala<br>Thr<br>25<br>Tyr               | Asp<br>10<br>Thr<br>Ser        | Leu<br>Glu<br>Asp        | Phe<br>Asp<br>Leu              | Glu<br>Glu<br>45        | Thr<br>30<br>Gly        | 15<br>Ala<br>Asp        | G]n<br>Phe               |
| 40<br>45 | <400> 9                                         | Met<br>1<br>Ala<br>Ile<br>Asp   | Arg<br>Leu<br>Pro<br>Val<br>50        | Phe<br>Ala<br>Ala<br>35<br>Ala        | Pro<br>Ala<br>20<br>Glu        | Ser<br>5<br>Pro<br>Ala<br>Leu   | Ile<br>Val<br>Val<br>Pro              | Phe<br>Lys<br>Ile<br>Phe<br>55 | Thr<br>Thr<br>Gly<br>40<br>Ser        | Ala<br>Thr<br>25<br>Tyr<br>Asn        | Asp<br>10<br>Thr<br>Ser<br>Ser | Leu<br>Glu<br>Asp<br>Thr | Phe<br>Asp<br>Leu<br>Asn<br>60 | Glu<br>Glu<br>45<br>Asn | Thr<br>30<br>Gly<br>Gly | 15<br>Ala<br>Asp<br>Leu | Gln<br>Phe<br>Leu        |
| 40<br>45 | <400> 9                                         | Met<br>Ala<br>Ile<br>Asp<br>Phe | Arg<br>Leu<br>Pro<br>Val<br>50<br>Ile | Phe<br>Ala<br>Ala<br>35<br>Ala<br>Asn | Pro<br>Ala<br>20<br>Glu<br>Val | Ser<br>Pro<br>Ala<br>Leu<br>Thr | Ile<br>Val<br>Val<br>Pro<br>Ile<br>70 | Phe<br>Lys<br>Ile<br>Phe<br>55 | Thr<br>Thr<br>Gly<br>40<br>Ser<br>Ser | Ala<br>Thr<br>25<br>Tyr<br>Asn<br>Ile | Asp<br>10<br>Thr<br>Ser<br>Ser | Leu<br>Glu<br>Asp<br>Thr | Phe<br>Asp<br>Leu<br>Asn<br>60 | Glu<br>Glu<br>45<br>Asn | Thr<br>30<br>Gly<br>Gly | 15<br>Ala<br>Asp<br>Leu | Gln<br>Phe<br>Leu<br>Val |

65 <213> Secuencia Artificial

<220> <221> sig\_peptide <222> (1)..(267) <sup>5</sup> <223> Secuencia modificada a partir de la secuencia que codifica para el péptido señal del factor alfa de Saccharomyces cerevisiae. <400> 10 10 atgagatttc cttcaatttt tactgctgat ttattcgcag catcctccgc attagctgct 60 ccagtcaaaa ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tactcagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 15 aacggattat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta 240 tctctcgaga aaagagagac tgaagct 267 20 <210>11 <211>67 <sub>25</sub> <212> DNA <213> Secuencia Artificial <220> 30 <223> Cebador directo para la amplificación de la lacasa de PM1. <400>11 60 ctctatactt taacgtcaag gagaaaaaac tataggatcc ccaacatggc caagttccaa 35 67 tctctcc <210>12 <211>68 40 <212> DNA <213> Secuencia Artificial <220> 45 <223> Cebador inverso para la amplificación de la lacasa de PM1. <400>12 60 gacataacta attacatgat gcggccctct agatgcatgc tcgagctcac tggtcgtcag 50 68 gcgagagc <210>13 55 <211>23 <212> DNA <213> Secuencia Artificial 60 <220> <223> Cebador directo para la amplificación de la lacasa de PM1 sin el péptido señal. <400>13 65

gcgaattcag cattgggcca gtc

|    | <210> 14                                                                                              |    |
|----|-------------------------------------------------------------------------------------------------------|----|
|    | <211> 33                                                                                              |    |
| _  | <212> DNA                                                                                             |    |
| 5  | <213> Secuencia Artificial                                                                            |    |
|    | <220>                                                                                                 |    |
|    | <223> Cebador inverso para la amplificación de la lacasa de PM1 sin el péptido señal.                 |    |
| 10 |                                                                                                       |    |
|    | <400> 14                                                                                              |    |
|    | atggcggccg cttactggtc gtcaggcgag agc                                                                  | 33 |
| 15 | <210> 15                                                                                              |    |
|    | <211> 39                                                                                              |    |
|    | <212> DNA                                                                                             |    |
|    | <213> Secuencia Artificial                                                                            |    |
| 20 | 220                                                                                                   |    |
|    |                                                                                                       |    |
|    | <223> Cebador directo para la amplificación de la lacasa PM1 con el péptido señal del factor alfa.    |    |
| 25 | <400> 15                                                                                              |    |
|    | ataggatcca tgagatttcc ttcaattttt actgctgtt                                                            | 39 |
|    | <210> 16                                                                                              |    |
| 30 | <211> 22                                                                                              |    |
|    | <212> DNA                                                                                             |    |
|    | <213> Secuencia Artificial                                                                            |    |
| 35 |                                                                                                       |    |
|    | <220>                                                                                                 |    |
|    | <223> Cebador inverso para la amplificación de la lacasa de PM1 con el péptido señal del factor alfa. |    |
| 40 | <400> 16                                                                                              |    |
| 10 | tcaatgtccg cgttcgcagg ga                                                                              | 22 |
|    | <210> 17                                                                                              |    |
| 45 | <211> 17                                                                                              |    |
| 45 | <212> DNA                                                                                             |    |
|    | <213> Secuencia Artificial                                                                            |    |
|    |                                                                                                       |    |
| 50 | <220>                                                                                                 |    |
|    | <223> Cebador directo para la amplificación de la primera generación.                                 |    |
|    | <400> 17                                                                                              |    |
| 55 | cctctatact ttaacgtcaa gg                                                                              | 22 |
|    | <210> 18                                                                                              |    |
|    | <210> 18<br><211> 20                                                                                  |    |
| 60 | <211>20<br><212> DNA                                                                                  |    |
|    | <213> Secuencia Artificial                                                                            |    |
|    |                                                                                                       |    |
| 65 | <220>                                                                                                 |    |
| 05 | <223> Cebador inverso para la amplificación de la primera generación.                                 |    |
|    |                                                                                                       |    |

|    | <400> 18                                                            |    |
|----|---------------------------------------------------------------------|----|
|    | gggagggcgt gaatgtaagc                                               | 20 |
| 5  | <210> 19                                                            |    |
|    | <211>43                                                             |    |
|    | <212> DNA<br><212> Samanaja Artificial                              |    |
| 10 | <213> Secuencia Artificial                                          |    |
|    | <220>                                                               |    |
|    | <223> Cebador inverso para la PCR1 para el mutante revertido S454F. |    |
| 15 | <400> 19                                                            |    |
|    | cgtgaaccca gcctcaaggt ggaagtcgat gtggcagtgg agg                     | 43 |
| 20 | <210> 20                                                            |    |
|    | <211>43                                                             |    |
|    | <212> DNA<br><213> Secuencia Artificial                             |    |
| 25 | <213> Secuencia Attinciai                                           |    |
|    | <220>                                                               |    |
|    | <223> Cebador directo para la PCR2 del mutante revertido S454F.     |    |
| 30 | <400> 20                                                            |    |
|    | cctccactgc cacatcgact tccaccttga ggctgggttc acg                     | 43 |
|    | <210> 21                                                            |    |
| 35 | <211> 39                                                            |    |
|    | <212> DNA                                                           |    |
|    | <213> Secuencia Artificial                                          |    |
| 40 | <220>                                                               |    |
|    | <223> Cebador inverso para la PCR1 del mutante S224G.               |    |
| 15 | <400> 21                                                            |    |
| 45 | gtctggggct tgagattcac gccgtccgcc tcgatgacg                          | 39 |
|    | <210> 22                                                            |    |
| 50 | <211> 39                                                            |    |
|    | <212> DNA                                                           |    |
|    | <213> Secuencia Artificial                                          |    |
| 55 | <220>                                                               |    |
|    | <223> Cebador directo para la PCR2 del mutante S224G.               |    |
|    | <400> 22                                                            |    |
| 60 | cgtcatcgag gcggacggcg tgaatctcaa gccccagac                          | 39 |
|    | <210> 23                                                            |    |
| 65 | <211> 37                                                            |    |
| 05 | <212> DNA<br><213> Secuencia Artificial                             |    |
|    |                                                                     |    |

|    | <220><br><223> Cebador inverso para la PCR1 del mutante D281E.   |    |
|----|------------------------------------------------------------------|----|
| 5  | <400> 23<br>gctcaacggg cgcagcacct tcgtagcgaa ggatggc             | 37 |
| 10 | <210> 24<br><211> 37<br><212> DNA<br><213> Secuencia Artificial  |    |
| 15 | <220><br><223> Cebador directo para la PCR2 del mutante D281E.   |    |
| 20 | <400> 24<br>gccatccttc gctacgaagg tgctgcgccc gttgagc             | 37 |
| 25 | <210> 25<br><211> 39<br><212> DNA<br><213> Secuencia Artificial  |    |
| 30 | <220><br><223> Cebador inverso para la PCR1 del mutante P393H.   |    |
| 35 | <400> 25<br>gcaagtggaa ggggtggtgg aagccggggg cggcggagg           | 39 |
| 40 | <210> 26<br><211> 39<br><212> DNA<br><213> Secuencia Artificial  |    |
| 45 | <220><br><223> Cebador directo para la PCR2 del mutante P393H.   |    |
| 50 | <400>26<br>cctccgccgc ccccggcttc caccacccct tccacttgc            | 39 |
| 55 | <210> 27<br><211> 19<br><212> DNA<br><213> Secuencia Artificial  |    |
| 60 | <220><br><223> Cebador directo para la PCR1 del mutante Aalfa9D. |    |
| 65 | <400> 27<br>ggtaattaat cagcgaagc<br><210> 28<br><211> 38         | 19 |

|    | <212> DNA<br><213> Secuencia Artificial                                   |    |
|----|---------------------------------------------------------------------------|----|
| 5  | <220><br><223> Cebador inverso para la PCR1 del mutante Aalfa9D.          |    |
| 10 | <400> 28<br>gaggatgctg cgaataaatc atcagtaaaa attgaagg                     | 38 |
| 15 | <210> 29<br><211> 38<br><212> DNA<br><213> Secuencia Artificial           |    |
| 20 | <220><br><223> Cebador directo para la PCR2 del mutante Aalfa9D.          |    |
|    | <400> 29                                                                  |    |
| 25 | ccttcaattt ttactgatga tttattcgca gcatcctc                                 | 38 |
| 30 | <210> 30<br><211> 38<br><212> DNA<br><213> Secuencia Artificial           |    |
| 35 | <220><br><223> Cebador inverso para la PCR1 del mutante Aalfa9D-Dalfa10V. |    |
|    | <400> 30                                                                  |    |
| 40 | gaggatgctg cgaaaacatc atcagtaaaa attgaagg<br><210> 31<br><211> 38         | 38 |
| 45 | <212> DNA<br><213> Secuencia Artificial                                   |    |
| 50 | <220><br><223> Cebador directo para la PCR2 del mutante Aalfa9D-Dalfa10v. |    |
|    | <400> 31                                                                  |    |
|    | ccttcaattt ttactgatgt tttattcgca gcatcctc                                 | 38 |
| 55 | <210> 32<br><211> 38                                                      |    |
|    | <212> DNA                                                                 |    |
| 60 | <213> Secuencia Artificial                                                |    |
| ~~ | <220><br><223> Cebador inverso para la PCR1 del mutante Dalfa10v.         |    |
| 65 |                                                                           |    |

<400> 32 gaggatgctg cgaaaacatc atcagtaaaa attgaagg 38 5 <210> 33 <211>38 <212> DNA 10 <213> Secuencia Artificial <220> <223> Cebador directo para la PCR2 del mutante Dalfa10v. 15 <400> 33 ccttcaattt ttactgatgt tttattcgca gcatcctc 38 20 <210> 34 <211>78 25 <212> PRT <213> Basidiomycete PM1 <400>3430 Ile Glu Ile Ser Leu Pro Ala Thr Ser Ala Ala Pro Gly Phe Pro His 1 10 15 35 Pro Phe His Leu His Gly His Thr Phe Ala Val Val Arg Ser Ala Gly 20 25 30 Ser Ser Thr Tyr Asn Tyr Ala Asn Pro Val Tyr Arg Asp Val Val Ser 35 40 45 40 Thr Gly Ser Pro Gly Asp Asn Val Thr Ile Arg Phe Arg Thr Asp Asn 50 55 60 45 Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu 65 70 75 50 <210> 35 <211>78 <212> PRT 55 <213> Trametes C30 <400> 35 60 Ile Glu Ile Ser Leu Pro Ala Thr Ser Ala Ala Pro Gly Phe Pro His Pro Phe His Leu His Gly His Thr Phe Ala Val Val Arg Ser Ala Gly 20 25 30 65

|    |                                               | Ser       | Ser         | Thr<br>35 | Туr       | Asn      | ⊤yr       | Ala       | Asr<br>40 | ı Pro     | val       | Tyr       | Arg       | Asp<br>45 | Val       | Val       | Ser |
|----|-----------------------------------------------|-----------|-------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| 5  |                                               | Thr       | • Gly<br>50 | Ser       | Pro       | Gly      | Asp       | Asn<br>55 | val       | Тhr       | ' Ile     | e Arg     | Phe<br>60 | e Arg     | Thr       | • Asp     | Asn |
| 10 |                                               | Pro<br>65 | o Gly       | Pro       | Trp       | Phe      | Leu<br>70 | His       | Cys       | ; His     | :I]e      | Asp<br>75 | Phe       | His       | Leu       | I         |     |
| 15 | <210> 36<br><211> 78<br><212> PR<br><213> Tra |           | trogii      |           |           |          |           |           |           |           |           |           |           |           |           |           |     |
| 20 | <400> 36                                      |           |             |           |           |          |           |           |           |           |           |           |           |           |           |           |     |
| 25 |                                               | Ile<br>1  | Glu         | Ile       | Ser       | Leu<br>5 | Pro       | Ala       | Thr       | Ala       | Ala<br>10 | Ala       | Pro       | Gly       | Phe       | Pro<br>15 | His |
|    |                                               | Pro       | Phe         | His       | Leu<br>20 | His      | Gly       | His       | Thr       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ala       | Gly |
| 30 |                                               | Ser       | Ser         | Thr<br>35 | Туr       | Asn      | Tyr       | Glu       | Asn<br>40 | Pro       | Val       | Tyr       | Arg       | Asp<br>45 | Val       | Val       | Ser |
| 35 |                                               | Thr       | G]y<br>50   | Ser       | Pro       | Gly      | Asp       | Asn<br>55 | Val       | Thr       | Ile       | Arg       | Phe<br>60 | Arg       | Thr       | Asp       | Asn |
| 40 |                                               | Pro<br>65 | Gly         | Pro       | Тгр       | Phe      | Leu<br>70 | His       | Cys       | His       | Ile       | Asp<br>75 | Phe       | His       | Leu       |           |     |
| 45 | <210> 37<br><211> 78<br><212> PR<br><213> Co  |           | sis gai     | llica     |           |          |           |           |           |           |           |           |           |           |           |           |     |
|    | <400> 37                                      |           |             |           |           |          |           |           |           |           |           |           |           |           |           |           |     |
| 50 |                                               | Ile<br>1  | Glu         | I]e       | Ser       | Leu<br>5 | Pro       | Ala       | Thr       | Thr       | Ala<br>10 | Ala       | Pro       | Gly       | Phe       | Pro<br>15 | His |
| 55 |                                               | Pro       | Phe         | His       | Leu<br>20 | His      | Gly       | His       | Ala       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ala       | Gly |
| 60 |                                               | Ser       | Ser         | Thr<br>35 | Tyr       | Asn      | Tyr       | Glu       | Asn<br>40 | Pro       | Val       | Туr       | Arg       | Asp<br>45 | Val       | Val       | Ser |
|    |                                               | Thr       | Gly<br>50   | Ser       | Pro       | Gly      | Asp       | Asn<br>55 | Val       | Thr       | Ile       | Arg       | Phe<br>60 | Arg       | Thr       | Asp       | Asn |
| 65 |                                               | Pro<br>65 | Gly         | Pro       | Trp       | Phe      | Leu<br>70 | His       | Cys       | His       | Ile       | Asp<br>75 | Phe       | His       | Leu       |           |     |

<210> 38 <211> 78

<212> PRT

5 <213> Coriolopsis rigida

<400> 38

| 10 |                                     | Ile<br>1  | Glu       | IJe       | Ser       | Leu<br>5 | Pro       | Ala       | Thr       | Ala       | Ala<br>10 | Ala       | Pro       | Gly       | Phe       | Pro<br>15 | His       |
|----|-------------------------------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 15 |                                     | Pro       | Phe       | His       | Leu<br>20 | His      | Gly       | His       | Thr       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ser       | Gly       |
|    |                                     | Gln       | Gln       | Thr<br>35 | Tyr       | Asn      | Tyr       | Ala       | Asn<br>40 | Pro       | Val       | Tyr       | Arg       | Asp<br>45 | Val       | Val       | Ser       |
| 20 |                                     | Thr       | Gly<br>50 | Ser       | Pro       | Gly      | Asp       | Asn<br>55 | Val       | Thr       | Ile       | Arg       | Phe<br>60 | Arg       | Thr       | Asp       | Asn       |
| 25 | <210> 39<br><211> 80                | Pro<br>65 | Gly       | Pro       | Trp       | Phe      | Leu<br>70 | His       | Cys       | His       | Ile       | Asp<br>75 | Phe       | His       | Leu       |           |           |
| 30 | <212> PRT<br><213> Tran             |           | sp. Ał    | 428-2     |           |          |           |           |           |           |           |           |           |           |           |           |           |
| 35 | <400> 39                            | Ile<br>1  | Glu       | IJe       | Ser       | Phe<br>5 | Pro       | Ala       | Thr       | Ala       | Ala<br>10 | Ala       | Pro       | Gly       | Ala       | Pro<br>15 | His       |
| 40 |                                     | Pro       | Phe       | His       | Leu<br>20 | His      | Gly       | His       | Ala       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ala       | Gly       |
|    |                                     | Ser       | ⊤hr       | Va1<br>35 | Tyr       | Asn      | Tyr       | Asp       | Asn<br>40 | Pro       | Ile       | Phe       | Arg       | Asp<br>45 | Val       | Val       | Ser       |
| 45 |                                     | Thr       | Gly<br>50 | Thr       | Pro       | Ala      | Ala       | G]y<br>55 | Asp       | Asn       | Val       | Thr       | 11e<br>60 | Arg       | Phe       | Arg       | Thr       |
| 50 | <210> 40                            | Asp<br>65 | Asn       | Pro       | Gly       | Pro      | Тгр<br>70 | Phe       | Leu       | His       | Cys       | ніs<br>75 | Ile       | Asp       | Phe       | His       | Leu<br>80 |
| 55 | <211> 80<br><212> PRT<br><213> Tran |           | versic    | olor      |           |          |           |           |           |           |           |           |           |           |           |           |           |
|    | <400> 40                            |           |           |           |           |          |           |           |           |           |           |           |           |           |           |           |           |
| 60 |                                     | I]e<br>1  | Glu       | IJe       | Ser       | Phe<br>5 | Pro       | Ala       | Thr       | Ala       | Ala<br>10 | Ala       | Pro       | Gly       | Ala       | Pro<br>15 | His       |
| 65 |                                     | Pro       | Phe       | His       | Leu<br>20 | His      | Gly       | His       | Ala       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ala       | Gly       |

|    |                                               | Ser       | • Thr       | Val<br>35 | Tyr       | Asn      | Tyr               | Asp       | Asn<br>40 | Pro       | o Ile     | e Phe     | e Arg     | JASP<br>45 | Val       | Va]       | Ser         |
|----|-----------------------------------------------|-----------|-------------|-----------|-----------|----------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-------------|
| 5  |                                               | Thr       | - Gly<br>50 | Thr       | Pro       | Ala      | . Ala             | Gly<br>55 | Asp       | Asr       | n Val     | Thr       | Ile<br>60 | e Arg      | Phe       | e Arg     | j Thr       |
| 10 |                                               | Asp<br>65 | o Asm       | Pro       | Gly       | Pro      | Trp<br>70         | Phe       | Leu       | His His   | ; Cys     | His<br>75 | Ile       | e Asp      | Phe       | e His     | E Leu<br>80 |
| 15 | <210> 41<br><211> 80<br><212> PR<br><213> Tra |           | pubes       | cens      |           |          |                   |           |           |           |           |           |           |            |           |           |             |
| 20 | <400> 41                                      |           |             |           |           |          |                   |           |           |           |           |           |           |            |           |           |             |
| 25 |                                               | Ile<br>1  | Glu         | Ile       | Ser       | Phe<br>5 | Pro               | Ala       | Thr       | Thr       | A]a<br>10 | Ala       | Pro       | Gly        | Ala       | Pro<br>15 | His         |
| 25 |                                               | Pro       | Phe         | His       | Leu<br>20 | His      | Gly               | His       | Ala       | Phe<br>25 | Ala       | Val       | Val       | Arg        | Ser<br>30 | Ala       | Gly         |
| 30 |                                               | Ser       | ⊤hr         | Val<br>35 | Tyr       | Asn      | Туr               | Asp       | Asn<br>40 | Pro       | Ile       | Phe       | Arg       | Asp<br>45  | Val       | Val       | Ser         |
| 35 |                                               | Thr       | Gly<br>50   | Thr       | Pro       | Ala      | Ala               | Gly<br>55 | Asp       | Asn       | Val       | Thr       | Ile<br>60 | Arg        | Phe       | Arg       | Thr         |
| 40 |                                               | Asp<br>65 | Asn         | Pro       | Gly       | Pro      | Тгр<br>70         | Phe       | Leu       | His       | Cys       | His<br>75 | Ile       | Asp        | Phe       | His       | Leu<br>80   |
|    | <210> 42<br><211> 80<br><212> PR              |           |             |           |           |          |                   |           |           |           |           |           |           |            |           |           |             |
| 45 | <213> Tra<400> 42                             | metes     | hirsu       | a         |           |          |                   |           |           |           |           |           |           |            |           |           |             |
| 50 | <+002 +2                                      | Ile<br>1  | Glu         | Ile       | Ser       | Phe<br>5 | Pro               | Ala       | Thr       | Ala       | A]a<br>10 | Ala       | Pro       | Gly        | Ala       | Pro<br>15 | His         |
| 55 |                                               | Pro       | Phe         | His       | Leu<br>20 | His      | Gly               | His       | Thr       | Phe<br>25 | Ala       | Val       | Val       | Arg        | Ser<br>30 | Ala       | Gly         |
| 60 |                                               | Ser       | Thr         | Val<br>35 | Tyr       | Asn      | Tyr               | Asp       | Asn<br>40 | Pro       | Ile       | Phe       | Arg       | Asp<br>45  | Val       | Val       | Ser         |
| 50 |                                               | Thr       | G]y<br>50   | Thr       | Pro       | Ala      | Ala               | G1y<br>55 | Asp       | Asn       | Val       | Thr       | 11e<br>60 | Arg        | Phe       | Asp       | Thr         |
| 65 |                                               | Asn<br>65 | Asn         | Pro       | Gly       | Pro      | Т <b>гр</b><br>70 | Phe       | Leu       | His       | Cys       | His<br>75 | Ile       | Asp        | Phe       | His       | Leu<br>80   |

<210>43 <211> 80 <212> PRT <213> Trametes sp. 1-62 5 <400> 43 Ile Glu Ile Ser Phe Pro Ala Thr Ala Ala Ala Pro Gly Val Pro His 1 5 10 15 10 Pro Phe His Leu His Gly His Thr Phe Ala Val Val Arg Ser Ala Gly 20 25 30 15 Ser Thr Glu Tyr Asn Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser 35 40 45 Thr Gly Thr Pro Ala Ala Gly Asp Asn Val Thr Ile Arg Phe Gln Thr 50 55 60 20Asn Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu 65 70 75 80 25 <210>44 <211>78 <212> PRT 30 <213> Pycnoporus coccineus <400>4435 Ile Glu Ile Ser Phe Pro Ala Thr Ala Asn Ala Pro Gly Ala Pro His 1 5 10 15 Pro Phe His Leu His Gly His Thr Phe Ala Val Val Arg Ser Ala Gly 20 25 30 40 Ser Ser Glu Tyr Asn Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser 35 40 45 45 Thr Gly Thr Pro Gly Asp Asn Val Thr Ile Arg Phe Gln Thr Asn Asn 50 55 60 50 Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu 65 70 75 <210>45 55 <211>78 <212> PRT <213> Pycnoporus sanguineus 60 <400>45 Ile Glu Ile Ser Phe Pro Ala Thr Ala Asn Ala Pro Gly Ala Pro His 1 5 10 15 65 Pro Phe His Leu His Gly His Thr Phe Ala Val Val Arg Ser Ala Gly 20 25 30

|    |                                                | Ser       | ' Ser       | Glu<br>35 | Tyr        | Asn      | Туr       | Asp       | Asn<br>40 | Pro       | I]e       | Phe       | Arg       | Asp<br>45 | val       | Val       | Ser       |
|----|------------------------------------------------|-----------|-------------|-----------|------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 5  |                                                | Thr       | - Gly<br>50 | Thr       | ' Pro      | Gly      | Asp       | Asr<br>55 | ı Val     | Thr       | I]e       | Arg       | Phe<br>60 | Glu       | ı Thr     | ' Asn     | ı Asn     |
| 10 |                                                | Pro<br>65 | o Gly       | Pro       | o ⊤rp      | Phe      | Leu<br>70 | His       | s Cys     | His       | Ile       | Asp<br>75 | Phe       | His       | i Leu     | 1         |           |
| 15 | <210> 46<br><211> 78<br><212> PRT<br><213> Pyc |           | rus cin     | naba      | rinus      |          |           |           |           |           |           |           |           |           |           |           |           |
| 20 |                                                | Ile<br>1  | Glu         | Ile       | Ser        | Phe<br>5 | Pro       | Ala       | Thr       | Ala       | Asn<br>10 | Ala       | Pro       | Gly       | Phe       | Pro<br>15 | His       |
| 25 |                                                | Pro       | Phe         | His       | Leu<br>20  | His      | Gly       | His       | Ala       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ala       | Gly       |
| 30 |                                                | Ser       | Ser         | Va1<br>35 | Tyr        | Asn      | Tyr       | Asp       | Asn<br>40 | Pro       | I]e       | Phe       | Arg       | Asp<br>45 | Val       | Val       | Ser       |
| 35 |                                                |           | 50          |           | Pro<br>Trp | -        |           | 55        |           |           | _         |           | 60        | _         |           | Asn       | Asn       |
| 40 | <210> 47<br><211> 80<br><212> PRT              |           | ,           |           |            |          |           |           |           |           |           |           |           |           |           |           |           |
| 45 | <213> Len<br><400> 47                          | tinus     | trigini     | AS        |            |          |           |           |           |           |           |           |           |           |           |           |           |
| 50 |                                                | Ile<br>1  | Glu         | Ile       | Thr        | Phe<br>5 | Pro       | Ala       | Thr       | Thr       | Ala<br>10 | Ala       | Pro       | Gly       | Ala       | Pro<br>15 | His       |
|    |                                                | Pro       | Phe         | His       | Leu<br>20  | His      | Gly       | His       | Val       | Phe<br>25 | Ala       | Val       | Val       | Arg       | Ser<br>30 | Ala       | Gly       |
| 55 |                                                | Ser       | Thr         | Ser<br>35 | Tyr        | Asn      | Туг       | Asp       | Asp<br>40 | Pro       | Val       | Тгр       | Arg       | Asp<br>45 | Val       | Val       | Ser       |
| 60 |                                                | Thr       | Gly<br>50   | Thr       | Pro        | Gln      | Ala       | Gly<br>55 | Asp       | Asn       | Val       | Thr       | Ile<br>60 | Arg       | Phe       | Gln       | Thr       |
| 65 |                                                | Asp<br>65 | Asn         | Pro       | Gly        | Pro      | Тгр<br>70 | Phe       | Leu       | His       | Cys       | His<br>75 | I]e       | Asp       | Phe       | Нis       | Leu<br>80 |



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

- (2) N.º solicitud: 201030723
- 2 Fecha de presentación de la solicitud: 17.05.2010
- 3 Fecha de prioridad:

#### INFORME SOBRE EL ESTADO DE LA TECNICA

5 Int. Cl. : Ver Hoja Adicional

#### DOCUMENTOS RELEVANTES

| Categoría                                                                |                                                                                                                                                                   | Documentos citados                                                                                                                                                                                              | Reivindicaciones<br>afectadas |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| А                                                                        | WO 2009127702 A2 (NOVOZYME todo el documento.                                                                                                                     | S A/S) 22.10.2009,                                                                                                                                                                                              | 1-23                          |  |  |  |
| А                                                                        | WO 9838287 A1 (NOVO NORDISH<br>todo el documento.                                                                                                                 | ( A/S) 03.09.1998,                                                                                                                                                                                              | 1-23                          |  |  |  |
| А                                                                        | WO 9533836 A1 (NOVO NORDISk<br>todo el documento.                                                                                                                 | K BIOTECH, INC.; NOVO NORDISK A/S) 14.12.1995,                                                                                                                                                                  | 1-23                          |  |  |  |
| A                                                                        |                                                                                                                                                                   | opment of new laccases by directed evolution: functional and<br>S (10 Enero 2008) Vol. 72, N°.1, páginas 25-34;<br>97-0134; todo el documento.                                                                  | 1-23                          |  |  |  |
| A                                                                        | stability" Current Opinion in Structu                                                                                                                             | ected evolution of proteins for heterologous expression and<br>ral Biology (13 Enero 2005) Vol. 15, N°. 1, páginas 50-56;<br>SN 0959-440X; todo el documento.                                                   | 1-23                          |  |  |  |
| X:d<br>Y:d<br>n                                                          | l<br>egoría de los documentos citados<br>e particular relevancia<br>e particular relevancia combinado con ot<br>nisma categoría<br>efleja el estado de la técnica | O: referido a divulgación no escrita<br>ro/s de la P: publicado entre la fecha de prioridad y la de pr<br>de la solicitud<br>E: documento anterior, pero publicado después d<br>de presentación de la solicitud |                               |  |  |  |
| El presente informe ha sido realizado<br>para todas las reivindicaciones |                                                                                                                                                                   |                                                                                                                                                                                                                 |                               |  |  |  |
| Fecha                                                                    | de realización del informe<br>21.09.2011                                                                                                                          | <b>Examinador</b><br>M. M. García Coca                                                                                                                                                                          | Página<br>1/4                 |  |  |  |

CLASIFICACIÓN OBJETO DE LA SOLICITUD

C12N9/02 (2006.01) C12N15/52 (2006.01) C12N15/62 (2006.01) C12N15/81 (2006.01)

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)

C12N

Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

INVENES, EPODOC

Fecha de Realización de la Opinión Escrita: 21.09.2011

Declaración

| Novedad (Art. 6.1 LP 11/1986)            | Reivindicaciones 1-23<br>Reivindicaciones | SI<br>NO |
|------------------------------------------|-------------------------------------------|----------|
| Actividad inventiva (Art. 8.1 LP11/1986) | Reivindicaciones 1-23<br>Reivindicaciones | SI<br>NO |

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

#### Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

#### 1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

| Documento | Número Publicación o Identificación                                                                                                                                                                                                              | Fecha Publicación |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| D01       | WO 2009127702 A2 (NOVOZYMES A/S)                                                                                                                                                                                                                 | 22.10.2009        |
| D02       | WO 9838287 A1 (NOVO NORDISK A/S)                                                                                                                                                                                                                 | 03.09.1998        |
| D03       | WO 9533836 A1 (NOVO NORDISK BIOTECH, INC.; NOVO<br>NORDISK A/S)                                                                                                                                                                                  | 14.12.1995        |
| D04       | FESTA GIOVANNA, et al. "Development of new laccases by directed evolution: functional and computational analyses" PROTEINS (10 Enero 2008) Vol. 72, N°. 1, páginas 25-34; DOI: 10.1002/prot.21889; ISSN: 1097-0134.                              |                   |
| D05       | ROODVELDT CINTIA et al. "Directed evolution of proteins for<br>heterologous expression and stability" Current Opinion in<br>Structural Biology (13 Enero 2005) Vol. 15, N°. 1, páginas 50-56;<br>DOI: 10.1016/j.sbi.2005.01.001; ISSN 0959-440X. |                   |

# 2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

El objeto de la invención, tal y como se recoge en las reivindicaciones 1-23, es un polinucleótido que codifica para una variante de la lacasa del basidiomicete PM1, la propia lacasa modificada (con un mayor potencial redox), la construcción génica, la célula hospedadora y el cultivo celular que comprenden dicho polinucleótido. También es objeto de la invención el método de obtención de la lacasa y el uso tanto de los polinucleótidos, de la célula hospedadora y del cultivo, para la obtención de la lacasa.

#### Novedad y Actividad Inventiva

Los documentos D01, D02 y D03 divulgan lacasas modificadas que tienen mejoradas sus propiedades funcionales. En el documento D01 se utilizan distintos métodos para obtener las propiedades deseadas, basados en la sustitución de determinados aminoácidos. En el documento D02 el método para el diseño de dichas enzimas se basa en el análisis de la estructura tridimensional de la enzima y posteriormente identificar un aminoácido o una parte estructural de la enzima que al ser modificado, altere sus características funcionales, mientras que en el documento D03 el método utilizado se basa en el cultivo de la célula huésped modificada con la construcción génica en presencia de cobre.

Los documentos D04 y D05 divulgan el desarrollo de nuevas lacasas por el método de evolución dirigida, identificándose unas variantes mutagénicas con propiedades catalíticas mejoradas respecto a las variantes nativas.

Ninguno de los documentos del estado de la técnica anterior a la solicitud, tomados solos o en combinación revelan la invención definida en las reivindicaciones 1-23, ya que ningún documento anterioriza la lacasa de alto potencial redox de la invención. Además, en los documentos citados no hay sugerencias que dirijan al experto en la materia hacia la invención definida en dichas reivindicaciones. Así, la invención contenida en las reivindicaciones 1-23 es con referencia a los documentos D01-D05 nueva y se considera que implica actividad inventiva (art. 6.1 y 8.1 Ley 11/1986 de Patentes).