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We analyze multi-longitudinal-mode semiconductor lasers experimentally. We show that the intensity of
each mode displays large amplitude oscillations but obeys a highly organized antiphase dynamics leading to an
almost constant total intensity output. For each mode, regular switching is observed in the megahertz range,
while the optical frequency as a function of time follows a well defined sequence from blue to red. Using a
multimode theoretical model, we identify that four-wave mixing is the dominant mechanism at the origin of the
observed dynamics. The asymmetry of the susceptibility function of semiconductor materials allows us to
explain the optical frequency sequence.
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I. INTRODUCTION

The performance of optical systems using semiconductor
lasers for communications or measurements is limited by
power fluctuations. At a fundamental level, the two main
sources of power fluctuations have been assigned to mode
partition and mode hopping for multimode lasers. Mode par-
tition explains anticorrelated fluctuations between the main
mode and weak side modes[1,2]. Its result is the enhance-
ment of the individual mode intensity noise, while the noise
of the total output remains relatively small. It has also been
demonstrated that mode partition noise limits information
transmission at any rate[3]. Recently, it was shown that
mode partition can be spectrally asymmetric[4] and can
even affect quantum noise partition[5]. Mode hopping has
been observed and described as sudden drop-offs of the main
mode output power, associated with the excitation of a side
mode. It results in irregular switching between the main
mode and a side mode, although the total intensity remains
nearly constant[6]. Since it is detrimental for applications
that semiconductor lasers naturally emit in several longitudi-
nal modes, the problem of multimode operation has been
actively discussed, and both mode partition and mode hop-
ping have been successfully interpreted via stochastic theo-
ries as noise-induced phenomena originating from spontane-
ous emission and mode coupling[7–10].

In this paper we report, for the first time to our knowl-
edge, on the existence of deterministic nonlinear dynamics in
a free-running multimode semiconductor laser. The main dy-
namical effects found in a set of experiments realized with
different lasers are(i) there are periodic intensity fluctua-
tions, in the megahertz range, of each modal output;(ii ) there
is compensation in the total output, which remains practi-

cally constant in time;(iii ) the switching sequence follows
the modal optical frequencies from blue to red; when the
reddest mode switches off, the sequence restarts from the
bluest mode. These effects are robust against a change of the
control parameters which mostly affects the number of oscil-
lating modes. For example, on increasing the pump current,
the property of regular mode switching is maintained and the
total intensity remains constant independently of the num-
bers of oscillating modes up to seven. For larger numbers of
oscillating modes, the fluctuations persist, but they can lose
regularity in phase and amplitude.

These experimental results cannot be explained in the
frame of the stochastic theory that was previously used for
mode-hopping or mode-partition studies. In order to explain
the observations, we consider a multimode model that in-
cludes the optical susceptibility of quantum-well semicon-
ductor media[11] and four-wave-mixing processes among
the laser modes. A simpler phenomenological model allows
clear identification of the dominant mechanisms. The nu-
merical results obtained with both models qualitatively re-
produce all the experimentally observed features.

II. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 1. We tested sev-
eral 850 nm, quantum-well, edge-emitting lasers of two
models: Roithner™ RTL8510MG and SDL™ 5400C. The
separation between two consecutive longitudinal modes is
130 GHz for the first laser type and 60 GHz for the second.
The laser package temperature was stabilized to 0.01 °C and
the laser current was controlled with a very stable(to
0.001 mA) power supply. The lasers operate on a variable
number of longitudinal modes, depending on the pumping
current and on temperature. We have explored injection cur-
rentsI th, I ,1.8I th and temperatures from 15 °C to 25 °C: in
this range of control parameters the number of active modes
varies from one to seven. The total intensity output of
the lasers is monitored with an avalanche photodiode
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(2 GHz bandwidth), and a scanning Fabry-Pérot interferom-
eter is used to determine the number of oscillating modes.
Part of the beam is sent to a monochromator having two
separate output slits. Each slit can be moved in order to
select a central frequency. The width of the slits has been set
to filter a frequency band of 30 GHz around the selected
central frequency. This setting allows for filtering a single
longitudinal mode at the slit output for both types of lasers
tested. A fast avalanche photodiode detector(2 GHz band-
width) is placed behind each slit. After proper positioning of
the slits, real-time monitoring of two different longitudinal
modal intensities is possible. The two timeseries are recorded
on a LeCroy Wavepro digital scope(2 GHz analog band-
width, 8 GHz digital bandwidth). The power spectra of the
signals are monitored using an Agilent E4403B spectrum
analyzer. Since there is no delay between the two optoelec-
tronic paths of modal detection, we can directly compare the
dynamics of each mode with the one recorded in the same
acquisition.

When the modal dynamics is regular, we are able to re-
construct the real-time dynamics of all the modes in a sig-
nificant time window. We fix the first slit in order to filter one
of the main active longitudinal modes, while the second slit
is repositioned at each acquisition in order to filter a different
longitudinal mode. In this way the time series of each active
mode is acquired together with the corresponding time series
of the mode filtered by the first slit. Since this mode is al-
ways present in all the acquisitions we call it the reference
mode. We build an algorithm that identifies time segments of
the reference mode that are recurrent in all the acquisitions.
Due to the high degree of correlation between the modes,
time segments of different modes(and therefore obtained in
different acquisitions) may be compared provided that the
corresponding time segments of the reference mode are iden-
tical in all the acquisitions. The reliability of this method of
comparison is assessed by the duration of the recurrent time
segments identified, which is a consequence of the regularity

of modal dynamics. We have retained only those time seg-
ments whose duration is at least 300 ns, corresponding ap-
proximately to four periods of the modal switching sequence.
In this time window we are able to reconstruct the real-time
dynamics of all the active modes. The intensity of each mode
and the total intensity output as a function of time are shown
in Fig. 2. Figure 3(left panel) shows the corresponding op-
tical spectrum of the laser: each active mode is labeled in
order to trace its dynamics in Fig. 2. In the right panel of Fig.
3 we plot the power spectra of the reference mode and of the
total intensity: the extinction in the total intensity of the fre-
quency peak relative to the modal switching is larger than
−40 dB. No significant difference between the power spectra
of the different modal amplitudes was observed.

The results of Figs. 2 and 3 are qualitatively the same for
different parameters and for different numbers of modes. We
always noticed the almost complete extinction(larger than
−40 dB) of the modal switching frequency in the total inten-
sity and a switching sequence that progresses from the blue
side of the optical spectrum to the red side. The frequency of
the modal switching tends to increase with pumping current
and with the number of active modes but it remains in the
range 5–15 MHz. On changing parameters, the regularity of
the sequence can decrease as a consequence of an increasing
statistical dispersion of the switching pulse amplitude.

Figure 4 shows a simple situation with only two dominat-
ing modes. This situation is useful because the real-time dy-
namics can be shown without any reconstruction. Again we
can remark the clean antiphase switching, its regularity, and
the extinction of the switching frequency peak in the total
output intensity. Figures 2–4 were obtained using the laser
type Roithner RTL8510MG. Similar dynamics was observed
using the laser SDL 5400C.

FIG. 1. Experimental setup: LD, laser diode; C, collimator; OI,
optical isolator; BS, beam splitter; L, lens; APD, avalanche photo-
diode 2 GHz; FP, Fabry-Pérot interferometer; D, detector; S, oscil-
loscope; DS, digital oscilloscope; SA, spectrum analyzer.

FIG. 2. Modal intensity behavior. The modesa– f detected are
shown from the bluest to the reddest(from bottom to top) and can
be related to the labels in the optical spectrum of Fig. 3. At the top
we plot the total intensity output(gray line). We have displaced
vertically the intensity traces of modesb– f by opportune offset
(15 mV for b, 30 mV for c, and so on, by multiples of 15 mV) to
avoid overlapping the five traces. The total intensity has been dis-
placed by an offset of 80 mV. The laser pump is about 60% over
the threshold and the temperature is 19 °C.
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III. BASIC EQUATIONS

Theoretical analysis of multimode operation in lasers
have shown that antiphase dynamics might arise from the
standing-wave interference pattern of the forward and back-
ward fields which creates a periodic distribution of the gain
in the active medium[12,13]. Based on those previous re-
sults, we construct a model appropriate for semiconductor
lasers. We start from the traveling-wave equations for the
slowly varying amplitudes of the forward and backward op-
tical fieldsE± and the Bloch equation for the carrier density
N, which read

]tE±sz,td ± vg]zE±sz,td = GP±sz,td − kiE±, s1d

]tNsz,td = J − giNsz,td −
1

2
sE+

* P+ + E−
* P− + c.c.d + D]z

2N,

s2d

where vg is the group velocity in the waveguide,G is the
optical confinement factor to the active region,ki are the
internal losses,J= I / seVad is the density of carriers injected
into the active region per unit time due to the pumping cur-

rent,gi is the rate of spontaneous recombination of carriers,
and D is the ambipolar diffusion coefficient. The boundary
conditions for these equations read

E+s0,td = r1E−s0,td, s3d

E−sL,td = r2e
2ikpLE+sL,td, s4d

]zN = 0 for z= 0,L, s5d

where L is the total cavity length,r1,2 are the amplitude
reflection coefficients from the front and rear facets(mea-
sured from the inside to the outside), and kp is the optical
carrier wave vector, defined askp=vp/cn, wherevp is the
optical carrier frequency andn is the effective index of the
waveguide.

The above equations are coupled by the nonlinear polar-
ization of the active medium induced by each of the waves,
P±, which is connected to the fields and carrier density by the
optical susceptibility of the active medium,

FIG. 3. Left: Optical spectrum of the laser emission relative to Fig. 2. Frequency increases from right to left. Right: Power spectra of the
total intensity output(gray line) and of the modal intensity labeledc in Fig. 2. We used a microwave amplifier of 20 dB at the input of the
spectrum analyzer.

FIG. 4. Left: Modal behavior in case of two active modes, and total intensity output(top trace). The laser pump is about 50% over the
threshold and the temperature is 22.4 °C. The second modal intensity trace is displaced vertically with an offset of 6 mV and the total
intensity trace is displaced with an offset of 8 mV. Right: Power spectrum of the total intensity(lower trace) and of one of the two active
modes(we have removed the 20 dB amplifier present in the case of Fig. 3).
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P±sz,td =
vgvp

2cn
xSvp + i

]tE±sz,td
E±sz,td

,Nsz,tdDE±sz,td, s6d

which is determined at the instantaneous frequency of the
fields.

A first useful rescaling is

E → ÎgiE8, s7d

J → giNeq, s8d

x0 → Svgvp

2cn
D−1

x08, s9d

which gives

]tE±sz,td ± vg]zE±sz,td = GP±sz,td − kiE±sz,td, s10d

gi
−1]tNsz,td = Neq− Nsz,td −

1

2
sE+

* P+ + E−
* P− + c.c.d +

D

gi

]z
2N.

s11d

We then expand the fields on the pseudo-orthogonal base of
the cavity modes,

E+sz,td = o
j

Ajstdeisqjz−v j td, s12d

E−sz,td =
1

r1
o

j

Ajstde−isqjz+v j td, s13d

where the wave vectorsqj are determined by the boundary
conditions

qj = j
p

L
+ ikend, s14d

kend=
1

2L
lnsr1r2d. s15d

In the limit of the perfect cavity,qj are real and then the basis
is orthogonal. We will for simplicity assume modal orthogo-
nality, although in this case the coupling among the modes is
reduced due to neglect of the overlap of their spatial profiles
[14,15].

For the modal frequencies we take

v j = vgqj ,

i.e., those determined by the dispersion relation of the cold
cavity. We note that

Dv = vg
p

L
, s16d

Dq =
p

L
, s17d

which describe the mode spacing in the device.

These equations form a base for development of multi-
mode models in the following sections. We discuss two pos-
sible approaches leading to similar numerical results in our
range of interest. The key element of both is the appearance
of four-wave-mixing terms resulting from the intermode
beating.

IV. PHENOMENOLOGICAL MODEL

Construction of a deterministic model has to take into
account all the experimental observations reported here
while remaining consistent with previous descriptions of
mode partition and mode hopping. The main problem is to
identify the relevant terms describing the mode coupling and
the carrier population dynamics. The constant total intensity
output indicates that modal anticorrelations are nearly perfect
and therefore it suggests that the medium is homogeneously
broadened and uniformly interacting with the field. This as-
sumption is reinforced by the fact that material diffusion is
strong in semiconductors and should wash out the effect of
spatial hole burning induced by the boundary conditions of a
Fabry-Pérot cavity. However, the observation of regular an-
tiphase pulsations in the modal outputs is in conflict with this
assumption because it requires a population spatial grating.
Therefore we use here rate equations that couple the modal
fields Amstd to the nonlinear modal free-carrier averages
Fmstd. Such coupling can be interpreted as a remaining of the
grating in the carrier density created by the standing waves
of the field [16]. We constrain the cross-coupling parameter
bnm to be very close to unity to reflect the strong diffusion.
Furthermore, we assume identical modal gains and losses
because the gain bandwidth is between one and two orders of
magnitude larger than the frequency separation among the
modes. This is sufficient to induce antiphase dynamics,
which has been shown to occur if a certain degree of modal
degeneracy is reached[13].

We are aware of the strong simplifications we are making
at this stage, but it is worthwhile to notice that this phenom-
enological model has the objective of identifying the neces-
sary terms to describe the observed dynamics, remaining
compatible with already known results. The same problem
arises for almost all models of multimode lasers. Rate equa-
tion models have proved most useful for lasers. One of them
is the sAm,Fmd model involving 2N equations ifN cavity
modes are lasing. It is the model used in this section. It has
been the support for practically all the research on intracavity
second harmonic generation[13,17–19]. For completeness,
let us mention that a result based on the numerical integra-
tion of the partial differential equations will give little infor-
mation about the physical mechanism generating the type of
instabilities observed experimentally[20].

It is also known that spectral hole burning and carrier
heating contribute to the reduction of the gain for each mode.
We model it as an additional weak contribution to the satu-
ration in the modal field equations[21].

The resulting model, however, is perfectly symmetric un-
der the permutation of any pair of modes. Thus, if modes can
switch according to one time sequence, the model built so far
predicts that all modal permutations of that sequence are
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equally probable switching sequences[13]. Numerical inte-
gration confirmed that there is no spontaneous symmetry
breaking leading to a frequency switching from the blue to
the red side of the optical spectrum. To account for the ob-
served symmetry breaking a third nonlinearity is included in
the model. It is the four-wave mixing resulting from the ex-
pansion of the nonlinear gain in terms of population pulsa-
tion [22,23].

The free-carrierNsz,td can be written as

Nsz,td = N0sz,td + o
n

N

fNnsz,tdexpsinDvtd + c.c.g, s18d

whereDv is the modal separation. Adiabatic elimination of
Nnsz,td gives

Nnsz,td =
N0

nDvgi
−1o

p

n−1

sLn + Ln+p
* dcncn+p Ap Ap+n

* s19d

and an equation forN0sz,td that reads

gi
−1dN0

dt
= J − N0 − N0o

n

N

c n
2uAnu2 ResLnd, s20d

where cn is a cavity eigenfunction and 1/Lm=1−isvm

−v0d /g'. In first approximationLm=1, which is used in this
section.

The modal material polarization can be written asPmstd
=Pm

s1dstd+Pm
s3dstd, where Pm

s1d and Pm
s3d are the first and the

third order contributions. The first orderPm
s1dstd is given by

[23]

Pm
s1dstd = i E x„N0std…Amc m

2 dz = ixm„N0std…Am, s21d

wherex(N0std)=x8(N0std)+ ix9(N0std) is the first order con-
tribution to the optical susceptibility of the active medium
andxm(N0std)=ex(N0std)c m

2 dz.
Using Eq.(19), the third order modal material polariza-

tion Pm
s3dstd gives the four-wave-mixing terms:

Pm
s3dstd = o

k,p

gi Ak Ap Ak+p−m
*

isp − mdDv
E xs3d

„N0std…cmckcpck+p−mdz,

s22d

where
xs3d

„N0std… = x9„N0std…]Nx„N0std…

= x9„N0std…s− 1 + iad]Nx9„N0std…
is the third order contribution to the optical susceptibility and
a=]Nx8(N0std) /]Nx9(N0std) is the linewidth enhancement
factor.

After normalization, the equations describing the modal
fields have the structure:

2
dAm

dt
= sixm − 1dAm + o

k,p
upmnkpmAk Ap Ak+p−m

* . s23d

The coefficient in front of the four-wave-mixing term in-
troduces the required asymmetry. Not least important is that
four-wave mixing does not affect the total output, since it
induces energy redistribution among the modes of the field.

We also introduce the modal free-carrier averagesFmstd
,RefeN0stdcm

2 dzg. Note that Fmstd are spatial harmonics,
different from the temporal harmonicsNmstd. The equations
describing the modal carrier averages are given by

h
dFm

dt
= J − FmS1 + o

k

N

bmkuAku2D , s24d

where J is the pump normalized to its threshold value,h
=k /gi. Spatial grating is accounted for by the cross-coupling
coefficients 0øbi j ø1. The mode indicesk, m, and p vary
from 1 to N, the number of oscillating modes, operating at
optical frequenciesvm.

Let us now discuss the parameters in Eqs.(23) and (24).
The restriction on the double sum in Eq.(23) is 1øk+p
−møN. As already explained[21], to account for spectral
hole burning and carrier heating, the modal gainsFm
=Resixmd in the field equations have been replaced by

Fm⇒gmFms1−eon
Nb̃mnuAnu2d wheregm is the semiconductor

linear gain profile,b̃mm=bmm=1, and b̃mn=s4/3dbmn. The

factor 4/3 for the normalized cross-coupling constantb̃mn
suggests a strong mode coupling. It has been defined and
successfully used for the description of mode hopping[6,24].
This effect is not included in the modal gain equations be-
cause we verified numerically that this addition does not lead
to any qualitative modification of the results due to the long
carrier lifetimeh@1.

The mode coupling coefficients are

upmnkpm=
gi

isp − mdDv
E xs3d

„N0std…cmckcpck+p−mdz

.
is1 − iadgi

sp − mdDv
E x9„N0std…]Nx9„N0std…

3cmckcpck+p−mdz,

with

upm=
is1 − iadgi

sp − mdDv
=

is

sp − mdh
s1 − iad,

wheres=k /Dv. We neglect the spatial dependencies in the
four-wave-mixing terms. This means that the spatial factor
nkpm=ex9(N0std)]Nx9(N0std)cmckcpck+p−mdz has been ap-
proximated by 1. The validity of that simplification has been
checked numerically. Thea factor has been introduced in the
traditional way: neither modal nor intensity dependence is
included. Although, in the literature, the introduction of thea
factor in the linear gain has been known to lead to two dif-
ferent sets of equations[10], this difference does not play
any significant role in our model, and thea factor in the
linear gain could even be neglected. Instead, the coefficient
in front of the four-wave-mixing term accounts for symmetry
breaking leading to a modal switching sequence from the
blue to the red side of the optical spectrum. It is worth noting
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that a negative sign of thea factor, as happens in the case of
quantum dot lasers, will reverse the modal switching se-
quence from the red to the blue wavelength.

We have also assumedgm=1 so that the number of oscil-
lating modes is not determined by gain or loss considerations
but set arbitrarily. We have verified numerically that using
weakly peaked gain profiles determines the number of
modes, but does not affect the dynamical response of the
laser.

The parameters used for the numerical simulations of Eqs.
(23) and(24)with four modes shown in Fig. 5 are chosen to
match the experimental results:J=1.5, a=2, h=1000, b
=0.975,s=0.35. The gain saturation coefficiente=0.05 is
derived from [7]. The oscillations have 100% modulation
amplitude. They are timed regularly, and only one switching
sequence from the bluest mode to the reddest mode is ob-
served. The asymmetry of the model results in asymmetric
pulsations. This effect is provided by the modulation of the
carrier density at the beat optical frequency induced by the
four-wave mixing in Eqs.(23) and(24). This agrees with the
analysis in[25] where it was shown that four-wave mixing
induces an enhancement of the gain for longer wavelengths.

V. THEORETICAL MODEL

In this section we obtain a model based on the basic equa-
tions presented in Sec. III. We project the polarization over
the modes of the perfect cavity, i.e.,

P+sz,td = o
j

Bjstdeisqjz−v j td. s25d

For this purpose, we assume that—due to the large mode
spacing as compared to the carrier lifetime—only the lowest
beat note of the modes will be of importance in the dynamics
of the carrier density, so that we consider

Nsz,td = N0std + N1stdeisDqz−Dvtd + N1
*stdeisDvt−Dqzd. s26d

In fact, the amplitude of thenth beat note is of the order of
f1+snDv /gid2g−1/2; hence we consider only the terms with
n=0 andn=1 because for typical semiconductor laser diodes
Dv /gi @1, sincegi ,109 s−1, while the longitudinal mode
spacingDv is of the order of 100 GHz. This approximation
is equivalent to that in[26], since only the slow spatial grat-
ing in the carrier density(as represented byN1) is dynami-
cally included; the fast spatial grating(at half the optical
wavelength) is neglected since it is strongly washed out by
diffusion.

At this point, we perform a Taylor expansion of the sus-
ceptibility in both theV andN variables around the optical
carrier frequencyvp andN0, respectively; hence we have

P+sz,td = xSvp + i
]tE+sz,td
E+sz,td

,Nsz,tdDE+sz,td, s27d

.x„vp,Nsz,td…E+sz,td

+ i]Vx„vp,Nsz,td…]tE+sz,td, s28d

.fU + sN1e
iF + N1

*e−iFdVgE+

+ fU8 + sN1e
iF + N1

*e−iFdV8gi]tE+, s29d

where U;x(vp,N0std), V;]Nx(vp,N0std), U8;]Vx(vp,
N0std), V8;]V]Nx(vp,N0std), andF;Dqz−Dvt, and analo-
gously we obtain the equation forP−.

Inserting in Eq.(26) the expansion of the field in cavity
modes(12) and, after summation of the different terms, we
obtain

Bj = x j Aj + x̂ j−1Aj−1N1 + x̂ j+1Aj+1N1
* , s30d

with

x j ; xSvp + v j + i
dt Aj

Aj
,N0D . xsvp + v j,N0d, s31d

x̂ j ; ]Nx j , s32d

where we have considered that the modal amplitudes change
slowly as compared to the modal frequency, so that the sus-
ceptibility corresponding to each mode can be computed at
the cavity frequencyv j. As can be seen from Eq.(30), the
inclusion of the spatiotemporal beat notes in the carrier den-
sity [i.e., the inclusion of the slow population grating of Eq.
(26)] leads to the appearance of four-wave-mixing terms,
since the polarization at the frequency of modej now in-
volves a contribution of the modesj ±1. Therefore, in this
approach, the spatial grating term appears together with the
four-wave-mixing term and the two effects cannot be sepa-
rated.

Inserting Eqs.(12), (13), and(22), into Eq.(2), we obtain
the dynamical equations forN0 andN1,

gi
−1]tN0 = Neq− N0 − o

j

sAj
*Bj + c.c.d, s33d

FIG. 5. Numerical results for four modes, and total intensity
output. I1 corresponds to the reddest mode. To help comparison
with the experimental data, a cavity round trip timetp=10 ps has
been assumed to fix the physical time scale.
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gi
−1]tN1 = − F1 +

D

gi

Dq2 − i
Dv

gi
GN1 − o

j

sAj
*Bj+1 + AjBj−1

* d,

s34d

while the evolution of the modal amplitudes is simply given
by

]t Aj = ksfBj − Ajd, s35d

with f =G /k. Since typical values of the diffusion coefficient
are D,50 cm2/s, and the cavity length is of the order of
0.3 mm, the effect of the diffusion term in the equation for
N1 is negligible, so we drop it.

It is worth remarking that the same terms in Eqs.
(33)–(35) appear for a multimode unidirectional ring laser. In
such a case the details of the derivation change but the final
equations are formally equivalent, since, in both configura-
tions, modal coupling arises from slow spatiotemporal varia-
tion of carrier density. Thus, in principle, we can expect the
same type of multimode dynamics in either Fabry-Pérot or
unidirectional ring lasers.

A very last step is to eliminate the coefficientx08 in front
of x; this can be done by defining the new variables and the

new parameterf̃ as

x → x08x̃, s36d

Aj →
Aj
˜

Îx0
8
, s37d

f → f̃

x08
, s38d

which yields

f̃ = x0

Gvpvg

2cnk
. s39d

At this point, a specification for the optical susceptibility
has to be given in order to close the problem. We consider
the analytical approximation to the susceptibility of a semi-
conductor medium with quantum-well(QW) structure devel-
oped in[11], which reads

xsV,Nd = ix0FlnS1 −
b

u + i
D − 2 lnS1 −

N/Nt

u + i
DG , s40d

u =
V − V0

g'

, s41d

wherex0 determines the material gain,"V0 is the energy of
the lowest optical transition,Nt is the transparency carrier
density, andg' is the inverse of the polarization dephasing
time.

The model is thus given by Eqs.(33)–(35), together with
Eqs. (30) and (40). The numerical simulations were per-
formed using the parametersDv / s2pd=102 GHz, k

=100 GHz, f̃ =7, gi=1 GHz, andgi /g'=10−4. We consider
20 modes distributed under the gain curve, although only a
few of them are active, and we label them in order of in-
creasing modal frequency, i.e., the higher the index the bluer
the mode. The sequence of dynamical behaviors encountered
as the injection current is increased is summarized in Fig. 5.
At threshold, which corresponds toNeq=1.14, the device
starts to emit in a single mode(the one labeled as no. 12), but
when the current level reachesNeq=2.635, then secondary
modes start lasing. Slightly above this current value, the total
intensity shows the typical mode beating at very high fre-
quency but the modal intensities are constant in time; hence
pure multimode emission occurs. However, upon further in-
creasing the current toNeq=2.71 a bifurcation occurs such
that the intensity of every active mode starts to oscillate in
antiphase at low frequency, leaving the total output power
constant. Depending on parameter values, this oscillation
may start with small amplitude and reach 100% modulation
depth through a sequence of secondary bifurcations as the
current is increased, or directly develop this large amplitude
cycle. In both cases, however, the total intensity remains es-
sentially constant(the relative oscillation being smaller than
0.1%), and the optical frequency follows a well defined se-
quence progressing from the blue to the red side of the spec-
trum. We choose current parameter values such that the os-
cillations already start with 100% modulation depth, as seen
in the experiment(see Fig. 6). Further increase of the current
provokes more modes to become active and participate in the
dynamics, and the oscillation period continuously decreases
as the injection current is increased(see Fig. 7), but no no-
ticeable qualitative changes are observed until the periodicity
becomes spoiled.

The origin and characteristics of such oscillations appear
closely related to both the four-wave-mixing or population-
grating term and the properties of the susceptibility response
of semiconductor media.

On one hand, we have checked that by enforcingN1;0
and thus suppressing the population-grating or four-wave-
mixing term, the antiphase square-wave-like oscillations of
modal powers disappear, although multimode operation is

FIG. 6. Numerical results for the intensities of modes no. 11
(top), no. 12(middle), and no. 13(bottom) for a current injection
Neq=2.8.
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still possible. Therefore, as found previously in the phenom-
enological approach, the population-grating contribution
(which, in the present approach, cannot be separated from
the four-wave-mixing effect) is crucial for the dynamics. In
order to control the accuracy of our model we have verified
that the inclusion of the higher order terms arising from the
second beat note does not modify the observed dynamics,
but only changes the bifurcation points slightly. We have also
checked that the adiabatic elimination ofN1 leads also to the
same kind of dynamics, again with a small displacement of
the bifurcation points, confirming that the inclusion of
population-grating or four-wave-mixing term is essential for
the development of the antiphase oscillations of the modal
powers.

On the other hand, the dynamical properties of such an
oscillatory regime are characteristic of an asymmetric gain
spectrum as provided by the optical susceptibility of QW
lasers. We have verified that a two-level-model susceptibility
does not lead to the observed dynamics, although it allows
for multimode operation. When we artificially break the
spectral symmetry of the optical response of a two-level sys-
tem, the square-wave switching occurs again. Moreover, we
have also seen that the sense of the modal sequence is im-
posed by the relative sign of the derivatives of the real and
imaginary parts of the susceptibility respect to the carrier
density: in real semiconductor media, the index decreases
when the gain increases, thus leading to a progression from
blue to red; by artificially reversing the sign of the index
change, the sense of the progression is reversed. Thus, the
asymmetry of the optical response in semiconductor media
imposes a well-defined sense for the progression of the
modal dynamics.

VI. SUMMARY AND CONCLUSIONS

The most intriguing and relevant result presented in this
article is the observation of a purely deterministic multimode

instability with characteristics not reported before. We have
demonstrated experimentally that for different free-running
multi-longitudinal-mode semiconductor lasers, the modal
outputs display large amplitude antiphase oscillations that
leave constant the total intensity emitted by the laser. Modal
oscillations are in the megahertz range; thus the frequency is
much smaller than all frequencies associated with the semi-
conductor material or the laser cavity round trip. The oscil-
lations are essentially periodic at low pump current values.
Such periodicity is progressively destroyed at relatively
strong currents.

Our theoretical explanation for the observed dynamics is a
four-wave-mixing or population-grating phenomenon, result-
ing from the interaction among longitudinal modes. The the-
oretical results are in good agreement with the experimental
observations. The appearance of dynamical modal switching
requires enhanced four-wave-mixing influence, which di-
rectly depends on the differential gain. For smaller differen-
tial gain the effect can disappear. This allows us to tackle the
question of why these highly organized modal dynamics
were not previously observed. It must be noted that classical
studies of modal dynamics in semiconductor lasers were per-
formed a long time ago, before the development of QW ac-
tive regions. These systems provide a larger differential gain
than their bulk counterparts, thus leading to enhanced four-
wave-mixing effects due to the larger values ofx̂ in Eq. (30).
Indeed, our numerical results indicate that for smaller differ-
ential gain, the current value for the onset of such oscilla-
tions rapidly increases and might even disappear, although
the detailed analysis of the bifurcation scenario and its para-
metric dependencies are currently under investigation.

Furthermore we have shown that a simple phenomeno-
logical model, which includes the population-grating and
four-wave-mixing term, may also account for the experimen-
tal observations. Further work will be necessary to under-
stand the characteristics and properties of the bifurcation se-
quence leading to this motion and its evolution to a more
complicated dynamics.

Note added.Recently, a numerical analysis of a multi-
mode semiconductor laser model has shown some common
features with our observations[27].
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FIG. 7. Period of the oscillation as a function of the injection
current.
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