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17 This paper presents a method for using reset control as an alter-
18 native way of obtaining dissipation for a class of port-
19 Hamiltonian systems. One advantage of this approach is the sim-
20 plicity of its implementation, which requires only a velocity ob-
21 server. Another advantage is its robustness to modeling
22 uncertainties, since it can be calculated independently of the plant
23 structure. A gantry crane is selected as case study, yielding simu-
24 lation and experimental results that show the good performance
25 of this technique. [DOI: 10.1115/1.4005369]

26 1 Introduction

27 Reset control is a nonlinear-hybrid control strategy especially
28 suited for plants subject to linear fundamental limitations. It is well
29 known [1] that many control problems are subject to linearly
30 unsolvable trade-offs between competing objectives, such as band-
31 width versus robust stability. When properly tuned, a reset control
32 system is able to produce a fast step response with limited over-
33 shoot, in a way that no linear controller is able to achieve. The origi-
34 nal ideas can be dated back to the Clegg integrator [2] and to the
35 first order reset element [3], where the design was addressed using
36 Horowitz’s quantitative feedback theory. These controllers are sim-
37 ple first order systems subject to a reset rule: the state is set to zero
38 whenever the input crosses zero. In a subsequent contribution [4],
39 the resetting was generalized to an n-dimensional state, subject to
40 partial reset. These results showed the advantages of reset control,
41 but raised attention to the fact that resetting might produce instabil-
42 ity. Analysis and design results were presented based on the so-
43 called Hb stability test, which is a passivity related condition. More
44 recently, Refs. [5,6] have given extensions of the Hb condition to
45 time-delay systems, or to reset systems with unstable base linear dy-
46 namics [7]. The passivity-based interpretation of stability conditions
47 is presented in Ref. [8] and has been applied to teleoperation of sys-
48 tems with time delay in Ref. [9]. An application of reset to vibration
49 control was presented in Ref. [10]. In Ref. [11], an approach to reset
50 control was presented within the context of port-controlled Hamilto-
51 nian systems. The port-Hamiltonian framework [12] provides
52 powerful techniques for modeling physical systems and for design-

53ing control laws based on principles of energy and interchanged
54power. Control by interconnection [13], which is closely related to
55impedance control [14], makes use of this framework and exploits
56the possibilities of interconnection of physical systems.
57In this paper, we present a method for injecting dissipation, which
58is based on the port-controlled Hamiltonian approach. First, a contin-
59uous control law is designed based on potential energy shaping;
60then, reset is used to improve the bandwidth-versus-stability trade-
61off. The resetting event is based on a simple condition related to the
62maximum extracted energy. In this way, a robustly stable controller
63is obtained with fast and damped response.
64A gantry crane is selected as the case study to illustrate this
65approach. Cranes have the interesting property that, if a fast refer-
66ence tracking is forced, the payload swinging is excited. This is a
67fundamental limitation due to two open loop poles 6ix0 of the
68swinging dynamics (neglecting friction). A useful and simple idea
69for overcoming this limitation is to perform damping injection;
70here, instead of using the standard procedure in Ref. [12], we pro-
71pose the use of resetting. Simulations and experiments confirm the
72validity of the proposed strategy.
73The structure of this paper is as follows: first, the theoretical
74background is given in the Methods section, which includes Port-
75Controlled Hamiltonian Systems (Sec. 2.1), Interconnection and
76Damping Assignment-Passivity-Based Control (Sec. 2.2), Control
77by Interconnection (Sec. 2.3), and Reset Control (Sec. 2.4). In
78Secs. 2.1 and 2.2, the respective techniques are applied to a gantry
79crane as a case study. Then, in Sec. 3, we propose a procedure for
80damping by reset interconnection and apply it again to a gantry
81crane, providing simulation and experimental results. Finally,
82conclusions and guidelines for future work are given in Sec. 4.

832 Methods

842.1 Port-Controlled Hamiltonian Systems. The standard
85Euler–Lagrange equations are given as

d

dt

@L

@ _q

� �
� @L

@q
¼ s (1)

86where q ¼ q1;…; qnð Þ are generalized configuration coordinates
87for the n degrees of freedom. The Lagrangian is L¼ T�V, where
88T is the kinetic energy and V the potential energy; and
89s ¼ s1;…; snð Þ is the vector of generalized forces. In standard me-
90chanical systems, the kinetic energy is given by T ¼ 1

2
_q>MðqÞ _q,

91where M(q) is the n� n inertia matrix, which is symmetric and
92definite positive for all q. The vector of generalized momenta
93p ¼ p1;…; pnð Þ is defined for as p ¼ @L

@ _q ¼ MðqÞ _q. Defining the
94state vector as x¼ (q, p), the n second order Lagrangian equations
95(1) transform into the 2n first order equations

_q ¼ @H

@p

_p ¼ � @H

@q
þ s

(2)

96where the energy is given by the Hamiltonian function,

H ¼ 1

2
p>M�1ðqÞpþ VðqÞ

97The system (2) is an example of a Hamiltonian system with collo-
98cated inputs and outputs, which is given more generally in the fol-
99lowing form:

_q ¼ @H

@p

_p ¼ � @H

@q
þ BðqÞu

y ¼ B>ðqÞ @H

@p

100Here, B(q) is the input force matrix, with B(q)u representing
101the generalized forces resulting from the control inputs
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102 u ¼ u1;…; umð Þ. Normally, m< n, in which case we speak of an
103 under-actuated system. Using a more compact form, the 2n move-
104 ment equations can be denoted as [15]

_x ¼ ½JðxÞ � RðxÞ� @H

@x
þ GðxÞu

y ¼ G>ðxÞ @H

@x

(3)

105 where J(x)¼�JT(x) and RðxÞ ¼ RTðxÞ � 0 are, respectively, the
106 interconnection and damping matrices.

107 2.1.1 Case Study: Port-Hamiltonian Model of a Gantry
108 Crane. Let us model a 2 degrees of freedom gantry crane, such as
109 the one depicted in Fig. 1, in the way described by Eq. (3). The
110 Hamiltonian state coordinates are q¼ (r, q, h), p¼ (pr, pq, ph).
111 The cart with mass mc moves on the girder in the r direction under
112 the actuating force Fr, so its position coordinate is given by r. The
113 payload is represented by a point mass mb hanging from a rope
114 with variable length q. The payload and the cart are assumed to be
115 connected by a massless, rigid rope, and the mass of the payload
116 is assumed to be concentrated at a point. Adopting polar coordi-
117 nates, with h as the swing angle, the payload position is given by
118 r � qq̂ with q̂ ¼ ð� sin h; cos hÞT . Thus, the payload moves in the
119 q̂ direction under the actuating force Fq. The kinetic energy is
120 given by K ¼ 1

2
ðmc _pc; _pch i þ mb _pb; _pbh iÞ, where h�, �i means

121 scalar product, and the potential energy is V¼�mbgq cos h,
122 where g is the gravity acceleration. The Hamiltonian is

123 Hðq; pÞ ¼ 1
2
pTM�1ðqÞpþ VðqÞ, where MðqÞ ¼ @2K

@ _qi@ _qj
is the mass

124 matrix, and p is the momenta vector. As can be verified, H(q, p) is
125 not a strictly positive energy function for any desired equilibrium
126 point qd¼ (rd, qd, 0). The Hessian matrix of the uncontrolled plant
127 at the equilibrium point is thus

@2HðxÞ
@xi@xj

¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 gmcqd 0 0 0

0 0 0 2
mc

0 2
mcqd

0 0 0 0 2
mb

0

0 0 0 2
mcqd

0
2ðmc þ mbÞ

mcmbq
2
d

0
BBBBBBBBB@

1
CCCCCCCCCA

128 The movement equations can be derived easily, obtaining Eq. (3)
129 with

J ¼ 03 I3

�I3 03

� �
; R ¼ 03 03

03 03

� �
; G ¼

03�2

1 0

0 1

0 0

2
4

3
5

2
664

3
775 (4)

2.2 Interconnection and Damping Assignment-Passivity-
130Based Control. Let xd be a desired configuration in the state space
131for a plant described in the port-Hamiltonian framework as in
132Eq. (3). The control goal is to find a state feedback law u¼b(x) such
133that the dynamics of the resulting closed loop system is given by

_x ¼ ½JdðxÞ � RdðxÞ�
@Hd

@x

134where Jd(x) and Rd xð Þ � 0 are desired interconnection and damp-
135ing matrices, respectively. This desired energy function Hd(q, p)
136can be represented as

Hdðq; pÞ ¼
1

2
pTM�1

d ðqÞpþ VdðqÞ (5)

137The plant can be regulated to xd in a passive way if the desired
138energy function Hd(x) has a minimum in the state space. This pro-
139cedure is called interconnection and damping assignment (IDA),
140and it can be applied jointly with passivity-based control (PBC)
141[13]. In PBC, the control input is naturally decomposed into two
142terms, u¼ ues(q, p)þ udi(q, p), where

udiðq; pÞ ¼ �KvGT @Hd

@p
(6)

143with Kv � 0 responsible for damping injection. Energy shaping is

144obtained with ues ¼ ðGTGÞ�1GT
�
@V
@q �

@Vd

@q Þ as in Ref. [12].

1452.2.1 Case Study: IDA-PBC of a Gantry Crane. Let us now
146apply this procedure to our gantry crane. The energy function
147must be shaped in the r and q coordinates, which can be accom-
148plished by shaping the potential energy. The desired closed loop
149dynamics in Eq. (5) are chosen so that Md(q, p)¼M(q, p) and

VdðqÞ ¼
1

2
crðr � rdÞ2 þ cqðq� qdÞ2
� �

150with cx> 0, cq> 0 and where rd, qd with h¼ 0 defines the desired
151equilibrium point. The h configuration coordinate cannot be
152shaped with this procedure since it is not an actuated variable.
153After the shaping, the Hamiltonian exhibits the Hessian matrix

@2HdðxÞ
@xi@xj

¼

cr 0 0 0 0 0

0 cq 0 0 0 0

0 0 gmcqd 0 0 0

0 0 0 2
mc

0 2
mcqd

0 0 0 0 2
mb

0

0 0 0 2
mcqd

0
2ðmc þ mbÞ

mcmbq
2
d

0
BBBBBBBBB@

1
CCCCCCCCCA

154at the desired equilibrium point xd¼ (rd, qd, 0, 0, 0, 0).

1552.3 Control by Interconnection. Consider a port-controlled
156Hamiltonian system given by Eq. (3), regarded as a plant system
157to be controlled. Recall the well-known result that the standard
158feedback interconnection of two passive systems is again a pas-
159sive system [15]. A method to shape the energy function via inter-
160connection was first proposed and developed in Ref. [13]. The
161main idea of this method is to interconnect the plant system (3)
162with a source system given by

_n ¼ JcðnÞ
@Hc

@n
þ GcðnÞuc

yc ¼ G>c ðnÞ
@Hc

@n

(7)

163regarded as the controller system, via the standard feedback
164interconnectionFig. 1 2D overhead crane arrangement
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u ¼ �yc þ e

uc ¼ yþ ec

165 Assuming that there are no external disturbances (e¼ 0, ec¼ 0),
166 the closed loop takes the form

_x
_n

� �
¼ JðxÞ �GðxÞG>c ðnÞ

GcðnÞG>ðxÞ JcðnÞ

� � @H

@x
@Hc

@n

0
BB@

1
CCA

y

yc

� �
¼

GðxÞ 0

0 GcðnÞ

� � @H

@x
@Hc

@n

0
BB@

1
CCA

167 and the closed loop energy function is

Hclðx; nÞ ¼ HðxÞ þ HcðnÞ

2.4 Reset Control. A resetting differential equation consists
168 of three elements:

(1)169 A continuous-time dynamical equation, which governs the
170 motion of the system between resetting events.

(2)171 A difference equation, which governs the way the states are
172 instantaneously changed when a resetting event occurs.

(3)173 A criterion for determining when the states of the system
174 are to be reset.

175Thus, a resetting differential equation has the form

_xðtÞ ¼ f ðxðtÞÞ; ðt; xðtÞÞ 62 S

DxðtÞ ¼ qðxðtÞÞ; ðt; xðtÞÞ 2 S
(8)

176where t� 0, x tð Þ 2 Rn, f: R
n ! R

n is Lipschitz continuous and
177satisfies f(0)¼ 0; q: Rn ! Rn is such that q(0)¼ 0 and
178S 	 0;1½ Þ � Rn is the resetting set. We refer to the first equation
179in Eq. (8) as the continuous-time dynamics, and to the second
180equation in Eq. (8) as the resetting law. For our purposes, the fol-
181lowing result for the stability of the zero solution is needed.
182Theorem 1. Suppose there exists a continuously differentiable
183function V: R

n! [0,1) satisfying V(0)¼ 0, V(x)> 0, x= 0, and

@V

@x
f ðxÞ 
 0; x 62 S

Vðxþ qðxÞÞ � VðxÞ 
 0; x 2 S

(9)

184Then the zero solution of Eq. (8) is Lyapunov stable. Furthermore,
185if the inequality in Eq. (9) is strict for x= 0, then the zero solution
186is asymptotically stable [16].

1873 Damping by Reset Interconnection

188In this section, it is shown how, by interconnecting the plant to
189a reset controller, it is possible to achieve the desired damping
190injection effect. Instead of using Eq. (6), the dissipation is injected
191through an energy absorber device, characterized by a resetting
192oscillator. The controller system interconnected with the plant is
193given by Eq. (7), with the energy function being

Hc ¼
1

2
q>c Kcqc þ p>c M�1

c pc

� 	

194This controller corresponds physically to a mass–spring system,
195with Kc and Mc being the (constant, definite positive) virtual rigid-
196ity and mass controller matrices. Since it is a reset controller, its
197dynamic equations corresponding to Eq. (8) are

_qc ¼ M�1
c pc

_pc ¼ �Kcqc þ y; ðqc; pcÞ 62 S

uc ¼ Kcqc

Dqc ¼ �qc

Dpc ¼ �pc; ðqc; pcÞ 2 S

uc ¼ Kcqc

198Notice that, without taking reset into consideration, the controller
199does not include any energy-dissipating elements. The set S is
200characterized as those (qc, pc) for which

dHcðqc;pcÞ
dt < 0. As stated in

201Theorem 1, this resetting controller asymptotically stabilizes the

Fig. 2 Evolution of the crane states (simulation)

Fig. 3 Evolution of the controller energy flow (simulation)

Fig. 4 Experimental plant: the Inteco 3DCrane
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202 plant for V(x,n)¼Hd(x)þHc(n). Deriving along an orbit
203 _Vðx; nÞ ¼ _HdðxÞ þ _HcðnÞ and calculating the theorem conditions,
204 we obtain

ðx; nÞ 62 S) _Vðx; nÞ ¼ 0; ðlosslessÞ
ðx; nÞ 2 S) DVðx; nÞ ¼ �HcðnÞ < 0; 8n 6¼ 0

205 Notice that, since the flow is lossless, the first inequality in Eq. (9)
206 is not strict and we cannot prove asymptotic stability. However, in
207 practice, we have found that the dissipation is complete and as-
208 ymptotic stability is achieved, as intuitively expected. A rigorous
209 prove of this property deserves further research.

210 3.1 Case Study: Damping by Resetting for a Gantry
211 Crane. We show now how the procedure can be applied to our
212 case study. For the gantry crane, qc¼ (rc, qc) are the controller
213 configuration variables and pc ¼ ðprc

; pqc
Þ its momenta. The reset-

214 ting law is calculated with

dHc

dt
¼

2ððm22 _r � m12 _qÞprc1
þ ðm11 _q� m12 _rÞprc2

Þ
m11m22 � m2

12

(10)

215We perform simulations using the values mc¼ 1.155,
216mb¼ 0.5g¼ 9.8, Kr¼ 3; Kq¼ 2; Ksr

¼ 1; Ksq ¼ 1, with initial
217conditions r0¼ 0, q0¼ 1, h0¼p/4, pr¼ 0, pq¼ 0, ph¼ 0. The
218desired equilibrium point (rd¼ 2, qd¼ 2, h0¼ 0), and the control-
219ler parameters are

Kc ¼
2 0

0 1

� �
;Mc ¼

2 0

0 1

� �
(11)

220The simulation results in Fig. 2 show the good performance of
221the adopted solution. In Fig. 3, the evolution of the plant’s energy
222is plotted.
223It should be noticed that the use of dissipation injection as given
224in Eq. (6), that is,

Fig. 5 Evolution of the crane’s cart positions (experiments)

Fig. 6 Evolution of the controller energy flow (experiments)
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udi ¼
½2Kr
ðcos hph þ ðpr þ pq sin hÞqÞ

mcq
2Kq

mbmcq
ðmbph sinð2hÞ þ ðð2mc � mbð1� cosð2hÞÞpq þ 2mbpr sin hÞqÞ�

2
64

3
75

225 requires to know precise values for the momenta, entailing the
226 adoption of a full state observer. As can be concluded from the use
227 of the resetting controller, only the plant velocities ð _r; _qÞ are needed
228 for its implementation; thus, only a velocity observer is required
229 [17]. The dissipation injection as given by Eq. (11) has two tuning
230 parameters (Kr, Kq) while the resetting controller has a richer pa-
231 rameter space (Kc, Mc) to enhance transient characteristics.
232 The controller has also been applied to a real gantry crane, Inte-
233 co’s 3DCrane model (depicted in Fig. 4, see also http://www.inte-
234 co.com.pl/ for details). Experimental results can be found in
235 Fig. 5, where the evolution of the (r, q) coordinates (cart position
236 and cable length) are plotted both for the case that no reset is
237 applied (dashed lines) and for the resetted controller (solid lines).
238 The evolution of the controller’s energy is pictured in Fig. 6,
239 where the abrupt changes due to reset of the controller states can
240 be noticed.

241 4 Conclusions

242 In this paper, a new strategy for injecting dissipation into port-
243 controlled Hamiltonian systems has been designed. The controller
244 synthesis procedure is as follows: first, a physical controller is
245 developed, which is characterized as a port-Hamiltonian system
246 itself. This controller has in principle no damping terms, and it is
247 connected to the plant to be controlled in an energy-conserving
248 way. Dissipation is then achieved by resetting the controller states
249 every time that the controller’s energy is going to decrease. It has
250 been shown that the effect of this reset (and hence, nonlinear) con-
251 troller is equivalent to injecting damping to the plant at some
252 required moments, thus leading to performance improvements.
253 An advantage of this alternative way of performing damping
254 injection is the simplicity of its implementation.
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