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Towards easier realization of time-delayed feedback control of odd-number orbits

V. Flunkert* and E. Schöll
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We develop generalized time-delayed feedback schemes for the stabilization of periodic orbits with an odd
number of positive Floquet exponents, which are particularly well suited for experimental realization. We
construct the parameter regimes of successful control and validate these by numerical simulations and numerical
continuation methods. In particular, it is shown how periodic orbits can be stabilized with symmetric feedback
matrices by introducing an additional latency time in the control loop. Finally, we show using normal form
analysis and numerical simulations how our results could be implemented in a laser setup using optoelectronic
feedback.
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I. INTRODUCTION

Time-delayed feedback control has been proposed by
Pyragas [1] as a method of stabilizing unstable periodic orbits
(UPOs) in dynamical systems. Although the control scheme
is very simple, it has an intriguing feature: If the target orbit
is stabilized by the control, then the control force vanishes
on the target orbit, and therefore the orbit is stabilized but
otherwise unchanged. This remarkable property has drawn a
lot of attention [2–5] to the Pyragas control for two reasons:
First, the noninvasive stabilization of unstable states makes
it possible to study these states in experiments, i.e., unravel
dynamical behavior that is usually hidden [3,6,7]. Second,
noninvasive control means that the system is subject to small
control signals only. This is important whenever there are
limited resources, e.g., constraints due to a finite fuel tank
or limits on power consumptions, or when the system to be
controlled is fragile and one wants to avoid strong forcing, e.g.,
in neural applications. Although classical difference feedback
control is noninvasive too, the advantage of Pyragas control
is that the exact location of the target orbit or fixed point
does not need to be known. Additionally, Pyragas control is
particularly well suited for implementation in optical systems
via Fabry-Perot resonators.

For a dynamical system Ẋ = f (X) with X ∈ Rn and some
nonlinear function f , linear Pyragas control is introduced as

Ẋ(t) = f (X(t)) + K[X(t − τ ) − X(t)],

where K is a n × n feedback gain matrix, and τ is the
delay time. The control scheme utilizes the system history
to generate a control signal, which is fed back to the system in
a closed-loop fashion. The advantages of such a closed-loop
control scheme are apparent: There is no need for real time
computation of control signals, and no reference or target state
needs to be known. Instead, the system generates its own
control signal, and by choosing the parameters of the control
loop, e.g., delay time and feedback strengths, appropriately, the
system operates in the desired regime. In many experimental
situations it is relatively easy to introduce this kind of control.
The delay time τ has to be chosen as a multiple of the target
orbit’s period in order for the control to be noninvasive. It is
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then necessary to tune the control parameters, i.e., the matrix
K, such that the orbit is stabilized.

For more than a decade it was believed [8–12] that one
of the most common types of UPOs, so-called odd-number
orbits, could not be stabilized with the Pyragas method. These
odd-number orbits have an odd number of real unstable Floquet
multipliers and occur, for instance, in many of the most
fundamental bifurcations, such as subcritical Hopf bifurcations
and fold bifurcations of UPOs.

Recently it was shown that contrary to this common belief,
odd-number orbits can be stabilized, refuting the so-called
odd-number theorem [13]. This surprising turn resulted in a
renewed interest in Pyragas control in recent years [14–24].

In this work we extend and generalize the original coun-
terexample to the odd-number theorem and construct a class
of feedback schemes that are better suited for experimental
realizations. The paper is organized as follows: In Sec. II, we
briefly discuss the main ideas of the original counterexample.
Based on this discussion, we develop new control schemes in
Sec. III and validate these schemes with numerical methods.
Section IV then further extends the control to stabilization
with symmetric feedback matrices using an additional latency
time in the control loop. To demonstrate our proposed control
schemes, we apply them to a laser model in Sec. V using
normal form analysis and numerical simulations. Finally, we
summarize our results in Sec. VI.

II. REVIEW OF THE COUNTEREXAMPLE

In this section we briefly discuss the counterexample to
the alleged odd-number theorem introduced in Ref. [13]. It
consists of a subcritical Hopf bifurcation with a time-delayed
feedback term of Pyragas type:

d

dt
z = [μ + i + (1 + iγ )|z|2]z + b[z(t − τ ) − z(t)]. (1)

Here z ∈ C is the complex dynamical variable, μ ∈ R is
the normal form bifurcation parameter, the linear angular
frequency has been scaled to ω = 1, and γ ∈ R is the
nonisochronicity or shear parameter, which couples the phase
and the amplitude of the oscillator. The Pyragas control term
is given by b[z(t − τ ) − z(t)], where b ∈ C is the complex
feedback strength. For brevity, we omit the time argument of
dynamical variables where the meaning is clear.
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FIG. 1. Conversion of stability. (a) Subcritical Hopf bifurcation
according to Eq. (1) without control. The numbers in parentheses
denote the number of unstable dimensions of the fixed point. The
numbers in square brackets denote the number of unstable Floquet
multipliers of the periodic orbit. (b) If the stability of the fixed point
has been reversed and the position of the periodic orbit remains
unchanged, the periodic orbit must have become stable.

For μ < 0 an UPO with amplitude |z| = √−μ and period
T = 2π/(1 − γμ) exists [see Fig. 1(a)]. According to Pyragas
control the delay is chosen as an integer multiple of the
period τ = nT , n ∈ N, such that the control is noninvasive
in case of successful stabilization. Since Eq. (1) describes
an autonomous system, the UPO has a Floquet multiplier
equal to 1 corresponding to the Goldstone mode. The other
Floquet multiplier is real and has magnitude larger than 1,
because the periodic orbit (PO) is unstable. The UPO is thus
of odd-number type, and it would not be possible to stabilize it
with the feedback of Eq. (1) if the odd-number theorem were
correct.

One could try to analyze the PO’s stability using Floquet
theory and try to find appropriate control forces b. However,
the Floquet problem for delay differential equations is very
difficult to treat analytically. The idea in Ref. [13] to approach
the problem, nevertheless, is to construct conditions such that
the fixed point (FP) z = 0 is unstable (with two unstable
dimensions) for μ < 0 and stable for μ > 0 as is depicted
in Fig. 1(b). If one succeeds while preserving the location of
the PO, as is the case for noninvasive time-delayed feedback
control, then the subcritical Hopf bifurcation must have
become supercritical, and the PO is stable in the vicinity of
μ = 0. This was corroborated by showing that the UPO can
gain stability through collision with a stable delay-induced pe-
riodic orbit in a transcritical bifurcation, exchanging stability.

Thus by constructing conditions such that the FP changes
stability in the proper way, we can ensure stabilization of
the PO close to the bifurcation μ = 0. This is accomplished
with complex feedback gains b = b0e

iβ with nonzero feedback
phase β in Ref. [13] refuting the alleged odd-number theorem.

In the next section we will consider an alternative feedback,
which is closer to experimental situations, and use the
construction of the original counterexample to find parameters
for which stabilization is successful.

III. EXPERIMENTALLY RELEVANT
FEEDBACK MATRICES

As shown theoretically by the counterexample discussed
in the last section, the odd-number limitation does not hold,
and this has also been verified by recent experiments with
electronic circuits [23] and lasers [24].

However, the feedback scheme is not particularly well
suited for implementation in usual experimental situations.
One reason why the counterexample is not immediately appli-
cable is the special choice of the gain matrix. This gain matrix
conserves the S1 symmetry of the normal form, but in order to
realize this control matrix experimentally, one needs to have
access to two dynamical variables in the rotational plane of the
orbit, process these to generate the rotation phase β, and feed
the control signal back into the corresponding two dynamic de-
grees of freedom. This may be possible in certain situations, for
instance, when stabilizing an unstable mode of a laser, where
the optical phase can naturally introduce a rotation [18,24]
or in particular electronic setups [23]. But what happens, for
example, if we can control only one dynamical variable? We
will give some answers to this question in the following.

Consider a dynamical system with a bifurcation parameter
μ that undergoes a subcritical Hopf bifurcation at μ = 0
with the UPO lying (without loss of generality) on the
μ < 0 side. The center manifold theorem implies that close
to the bifurcation the uncontrolled system equations can be
transformed to the real normal form

d

dt

(
x

y

)
=

[
dμ + a r2 −(ω + cμ + b r2)

ω + cμ + b r2 dμ + a r2

] (
x

y

)
,

(2)

with r2 = x2 + y2 and real parameters a,b,c,d. We choose
d > 0 (the FP is stable or unstable for μ < 0 or μ > 0,
respectively) and a > 0 (the UPO lies on the μ < 0 side).
For simplicity we will assume ω > 0. The case ω < 0 is easily
recovered by exchanging the variables x ←→ y.

Although these equations can be simplified further to the
complex form of Eq. (1) by rescaling the bifurcation parameter,
the time, and the dynamical variables, we keep this real
form of the equations to allow for easier comparison with
experimental situations. In particular we calculate the normal
form coefficients ω, a, b, c, and d for a laser model in Sec. V.

In polar coordinates r , θ the equations are given by

d

dt
r = (dμ + a r2) r,

d

dt
θ = (ω + cμ + br2),

and the radius r and period T of the UPO can be read off

r =
√

−d

a
μ,

T = 2π

|ω + cμ + br2| = 2π∣∣ω + (
c − b d

a

)
μ

∣∣ .
Let us now consider linear Pyragas feedback with a general

coupling matrix Kij :

d

dt

(
x

y

)
=

[
dμ + a r2 −(ω + cμ + b r2)

ω + cμ + b r2 dμ + a r2

](
x

y

)

+
[

K11 K12

K21 K22

] (
x(t − τ ) − x(t)

y(t − τ ) − y(t)

)
. (3)

We follow the idea of Ref. [13] and analyze the stability of
the FP. Note that this refers only to local stability criteria.
Making the ansatz (x,y) = u eηt , where u is a constant vector,
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we obtain the transcendental characteristic equation χ (η) = 0
for the eigenvalues of the FP:

χ (η) := det

[
dμ − η + K11F (η) −ω − cμ + K12F (η),

ω + cμ + K21F (η) dμ − η + K22F (η).

]
,

where F (η) = (e−ητ − 1). Calculating the determinant yields

χ (η) = (dμ − η)2 + trK(dμ − η)F (η) + det K F (η)2

+ (ω + cμ)2 + κ(ω + cμ)F (η). (4)

Here we have introduced the parameter κ := K21 − K12,
which is a measure for the asymmetry of the feedback matrix
(κ = 0 for symmetric matrices) and will play a crucial role
in the following analysis. Note that when we recover the case
of negative ω by exchanging x and y as discussed above, κ

changes sign in the characteristic equation κ → −κ .
For the general case of an arbitrary coupling matrix K the

characteristic equation cannot be treated with the method of
Ref. [13]. However, the practically most relevant case, where
one measures a single variable u and applies the control to a
single variable v, is treatable. After the center manifold reduc-
tion (and normal form transformation) u and v are functions
of x and y, which we expand to the leading linear order

u = u(x,y) = u1 x + u2 y + · · · ,
v = v(x,y) = v1 x + v2 y + · · · .

Here we have omitted constant terms, since they would
disappear in the Pyragas feedback. The measured signal m is
given by the projection

m(t) =
(

u1

u2

)
·
(

x(t)

y(t)

)
,

and our control signal acts as

d

dt
x = · · · + v1[m(t − τ ) − m(t)],

d

dt
y = · · · + v2[m(t − τ ) − m(t)]

on the dynamical equations. This leads to the following gain
matrix:

K =
[

v1u1 v1u2

v2u1 v2u2

]
,

which has vanishing determinant, reflecting the fact that
the control acts only in one direction. With det K = 0 the
characteristic equation (4) simplifies to

0 = (dμ − η)2 + trK(dμ − η)F (η)

+(ω + cμ)2 + κ(ω + cμ)F (η). (5)

For this simpler equation it is now possible to carry out the
analysis. Since the system without control is invariant under
rotations, we can without loss of generality choose the v

vector to point in the x direction. With this choice the control
matrix is given by

K =
[

trK −κ

0 0

]
.

In the following we have to distinguish different cases,
due to different sign combinations of the various parameters.

In particular we have to distinguish between the increasing
period (IP) case

−(c − bd/a) < 0,

where the period of the UPO increases with increasing distance
from the bifurcation and the decreasing period (DP) case

−(c − bd/a) > 0,

where it decreases with increasing distance from the
bifurcation. Note that this distinction is not exactly the same
as soft (b < 0) and hard (b > 0) spring, which was discussed
in Ref. [21], because the parameter c, which changes the
period with the bifurcation parameter, can overrule the other
term bd/a, which changes the period with the amplitude of
the oscillations.

A. Stabilization conditions

The domain of κ depends on whether the period increases
or decreases with increasing distance from the bifurcation

κ > 0, if c − bd/a > 0 (IP case);

κ < 0, if c − bd/a < 0 (DP case).

In both cases the domain of control is close to the bifurcation
(lim μ → 0) bounded by

−ω
2n + 1

2n2
� κ � ω

2n − 1

2n2
, (6a)

trK � κω√
ω2 − 2κω

cot(πn
√

1 − 2κ/ω), (6b)

trK < −b

a
κ − ω

nπ
. (6c)

Figures 2 and 3 depict the control domain for the two cases.
The dotted blue line in Fig. 2 marks the stability domain of
the Pyragas orbit for a finite value of μ = −0.005 calculated

FIG. 2. (Color online) Control domain (shaded) for the case of
increasing period with κ > 0. The black curve and the tilted straight
line correspond to Eqs. (6b) and (6c), respectively. The dashed vertical
line marks the boundary corresponding to the right boundary in
Eq. (6a). The tilted line has a slope of −b/a. The dotted line shows
the exact stability domain of the target orbit for μ = 0.005 and is
calculated with the continuation software KNUT. Parameters: ω = 1,
n = 1, b/a = −6.
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FIG. 3. (Color online) Control domain (shaded) for the case of
decreasing period with κ < 0. The dashed curve and the tilted straight
line correspond to Eqs. (6b) and (6c), respectively. The dashed line
marks the boundary corresponding to the left boundary in Eq. (6a).
The tilted line has a slope of −b/a. Parameters: ω = 1, n = 1,
b/a = 6.

with the continuation software KNUT [25]. For small values
of μ the domain is well approximated by the analytic result
(shaded area).

As the two boundary curves Eqs. (6b) and (6c) intersect in
the point (κ,trK) = (0,−ω/nπ ) stabilization is not possible
with symmetric feedback matrices, because these have κ = 0.
It is easy to check that even in the case of more than one
input variable (det K �= 0) control is not possible with κ = 0,
because the Hopf curves are tangent to the τ axis at the Pyragas
points and do not cross the τ axis at these points. This includes
the result of Ref. [13], where feedback with zero rotation angle
does not allow for control. This imposes a severe limitation for
the experimental applicability, because the case κ = 0 occurs
when one can measure only a single variable and apply the
control signal to the dynamic equation of the same variable.
Due to the importance of this situation we will discuss a method
to overcome this restriction in the next section.

We can find conditions which ensure a nonempty control
domain. The right-hand side of Eq. (6b) is a convex function
of κ and has a slope of −1/(2πn) at the intersection point with
the other boundary [Eq. (6c)]. This other boundary (straight
line) has a slope of −b/a. The following conditions thus lead
to a nonempty control domain

−b

a
> − 1

2πn
for the IP case (κ > 0),

−b

a
< − 1

2πn
for the DP case (κ < 0).

From these two equations we can see that in the DP case
stabilization is possible only for hard springs (b > 0), whereas
in the IP case we are able to stabilize soft springs (b < 0) as
well as weakly hard springs [0 < b < 1/(2πn)].

B. Derivation of stabilization results

To derive the stabilization conditions, we construct param-
eters for which the FP is unstable with two unstable directions
on the μ < 0 side and stable for μ > 0 as discussed in the
previous section.

FIG. 4. (Color online) Hopf bifurcation line (solid) and Pyragas
curve (dashed and dotted) in the (μ,τ ) plane. The numbers in
parentheses and the corresponding shading denote the number of
unstable dimensions of the fixed point. The red circles and the white
squares depict points of the Hopf A and B series, respectively.

The basic idea to construct such parameters is as follows:
For τ = 0 the control term vanishes, and there is thus a Hopf
bifurcation at (μ,τ ) = (0,0). This Hopf bifurcation can be
continued in the (μ,τ ) plane for a given feedback matrix K as
shown in Fig. 4. On the other hand, Pyragas control chooses
the delay time to be an integer multiple of the orbit’s period
τ = nT , which results in the Pyragas curve in the (μ,τ )
plane as shown by the dashed line in Fig. 4 for n = 1. The
dotted line shows an (arbitrary) differentiable extension of
the Pyragas curve into the μ > 0 line, where the orbit does
not exist and the period is thus not defined. In the situation
sketched in Fig. 4, the Hopf and the Pyragas curve are oriented
such that along the Pyragas curve the desired exchange of
stability takes place: For μ < 0 the FP is twofold unstable
and for μ > 0 the FP is stable. How can we find parameters
for the control that lead to this geometric situation?

As a result of the noninvasiveness of the control, the Hopf
curve intersects the μ = 0 line at integer multiples of 2π/ω,
as we will see below. We call these Hopf points on the τ

axis the Hopf A series (red circles in Fig. 4). Note that the
Pyragas curves emanate from these points. We will hence also
refer to these points as Pyragas points. Additionally, there
are other crossing points, which we will call Hopf B series
(white squares in Fig. 4). Using these two series of Hopf
points and the slopes of the Hopf and Pyragas curve at these
points, we can construct parameters (feedback gain) such that
there is a change from (0) to (2) along the Pyragas curve,
where the numbers in parentheses denote the total number
of eigenvalues with Re(η) > 0 of the FP, i.e., the number of
unstable dimensions; see Fig. 4.

We thus have to find the following:
(1) The location of the Hopf points on the τ axis (Hopf A

and B points);
(2) The crossing direction of the Hopf eigenvalues at these

Hopf points when going up the τ axis, which determines
whether the unstable dimension of the FP increases or
decreases by 2;

(3) The slope of the Hopf curve and the Pyragas curve at
the Hopf A points.
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In the following we will refer to these stabilization
ingredients and the reader should keep Fig. 4 in mind during
the discussion.

(1) Location of Hopf points: To find the location of the
Hopf points on the τ axis, we insert η = i� into Eq. (5), set
μ = 0, and split the equation into real and imaginary parts:

0 = −�2 − κω + ω2 + κω cos(�τ ) − � trK sin(�τ ),

0 = � trK(1 − cos(�τ )) − κω sin(�τ ). (7)

In the following we will for simplicity consider � to be
positive. The complex conjugate solution is simply η = −i�.
Writing Eqs. (7) as(

�2 − ω2 + κω

−�trK

)
=

[
cos ξ sin ξ

− sin ξ cos ξ

] (
κω

−�trK

)
,

with ξ = �τ , it is obvious that there can be a solution only if
the two vectors have the same length

(�2 − ω2 + κω)2 + �2trK2 = κ2ω2 + �2trK2,

since the rotation matrix leaves the length of vectors invariant.
This gives the values for �2 on the τ axis

�2 = ω2, �2 = ω2 − 2κω.

With these � values we can calculate the rotation angle ξ and
the delay time τ values. In particular for �2 = ω2 we recover
the Pyragas points (alias A series) on the τ axis

τA
n = 2π n

ω
, �A = ω.

Inserting � = �B := √
ω2 − 2κω gives the B series. Note

that κ < ω/2 is necessary in order for Hopf B points to exist.
When calculating ξ (and τ ) for the Hopf B points we have to
take into account the different possible signs of κ and trK:

τB
n =

{
1

�B [ 2π n + ϕ ], if κ · trK � 0,

1
�B [ 2π n + (2π − ϕ) ], if κ · trK < 0,

(8)

with

ϕ = arccos

[
trK2(ω2 − 2κω) − ω2κ2

trK2(ω2 − 2κω) + ω2κ2

]
. (9)

The index is chosen such that n = 0 labels the first point in the
series, i. e., n = 0 is the lowest integer with τB

n > 0. The Hopf
B series is spread equidistantly on the τ axis with a distance

�τB = τB
n+1 − τB

n = 2π√
ω2 − 2κω

.

(2) Crossing direction of Hopf eigenvalue pair: The
crossing direction of the Hopf eigenvalues for Hopf points
on the τ axis is given by

sgn Re(∂τη) = sgn[−�2trK2 + �2(trK2 + 2κω) cos(�τ )

+�trK(κω − 2�2trK) sin(�τ )]. (10)

At the Pyragas points (� = �A, τ = τA
n ) this gives

sgn Re(∂τη)|A = sgn (κ).

The crossing direction of the Hopf eigenvalues at the Hopf B

points (� = �B , τ = τB
n ), on the other hand, is given by

sgn Re(∂τη)|B = sgn[2trK2κ2 − trK2κω − κω3]

= −sgn (κ) · sgn[ω3 + trK2(ω − 2κ)].

For the allowed κ values (κ < ω/2) the second term is positive,
and this expression reduces to

sgn Re(∂τη) = −sgn (κ),

and hence the crossing direction is opposite to that at the
Pyragas points.

(3) Slope of Hopf and Pyragas curve: By implicit differen-
tiation of the characteristic equation (5) with respect to μ, we
find the slope of the Hopf curve at the Pyragas points

∂

∂μ
τH

∣∣∣
τ=τA

n

= −2
d(nπ trK + ω) + cnπκ

ω2κ
. (11)

The slope of the Pyragas curve at μ = 0 is given by

∂

∂μ
τP = −2πn

ω2

(
c − bd

a

)
.

For the IP case the period of the orbit increases with
increasing distance from the bifurcation, and the Pyragas curve
emanates to the upper left from the Pyragas point. This is
the situation depicted in Fig. 4. For stabilization we need
a (2)-region above and a (0)-region below the nth Pyragas
point. This means the eigenvalue crossing directions has to be
positive at the A points and negative at the B points, i.e.,

κ > 0.

The Pyragas curve has to lie above the Hopf curve for μ < 0,

which means the slopes at μ = 0 have to obey ∂μτp < ∂μτH ,
which gives

trK < −b

a
κ − ω

πn
. (12)

Finally the ordering of the Hopf points has to be τB
n−1 � τA

n .
Inserting the calculated τ values [see Eq. (8)] gives two cases.

(1) For trK � 0 inserting the τ values gives

ϕ � 2π + 2π n

(
�B

ω
− 1

)
. (13)

Depending on the values of n, κ , and ω the right-hand side
may be negative, and the inequality can not be fulfilled since
ϕ ∈ [0,π ]. Stabilization is possible only if the right-hand side
is positive, i.e., if

κ � ω
2n − 1

2n2
.

Note that for n = 1 this coincides with our initial condition
κ < ω/2. For this valid κ-range, inserting ϕ from Eq. (9), the
inequality (13) gives a condition on the magnitude of trK

trK � κω

�B
cot(π n

√
1 − 2κ/ω).

(2) For trK < 0 we find

ϕ � 2π n

(
1 − �B

ω

)
. (14)
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Inserting ϕ then gives the same bound as above:

trK � κω

�B
cot(πn

√
1 − 2κ/ω);

however, in this case the κ domain is different, and the left-hand
side as well as the right-hand side are negative.

The condition for the Hopf point ordering, for the IP case
(with κ > 0), can thus be summarized by

κ � ω
2n − 1

2n2
,

trK � κω√
ω2 − 2κω

cot(πn
√

1 − 2κ/ω).

For the DP case the period of the orbit decreases with
increasing distance from the bifurcation, and the Pyragas
curve emanates to the lower left from the Pyragas point.
For stabilization we need a (0)-region above and a (2)-region
below the emanating Pyragas point. This means the eigenvalue
crossing directions has to be negative at the A points and
positive at the B points, i.e.,

κ < 0.

The Pyragas curve has to lie below the Hopf curve for μ < 0,

which means the slopes at μ = 0 have to obey ∂μτp > ∂μτH ,
which gives

trK < −b

a
κ − ω

nπ
. (15)

This is the same as condition (12), which is no contradiction,
since κ has opposite sign. Finally the ordering of the Hopf
points has to be τB

n � τA
n . A similar discussion as above shows

that there can only be a solution if

−ω
2n + 1

2n2
� κ

and that the boundary for trK is the same as above:

trK � κω√
ω2 − 2κω

cot(πn
√

1 − 2κ/ω).

IV. STABILIZATION WITH SYMMETRIC
FEEDBACK MATRICES

We will now discuss a method to stabilize the UPO with
symmetric feedback matrices (κ = 0). Consider the normal
form model from above for κ = 0, which was not controllable
before, with an additional latency time δ in the feedback

d

dt

(
x

y

)
=

[
dμ + a r2 −(ω + cμ + b r2)

ω + cμ + b r2 dμ + a r2

] (
x

y

)

+
[

trK 0

0 0

] (
x(t − τ − δ) − x(t − δ)

y(t − τ − δ) − y(t − δ)

)
. (16)

Proceeding as above we find the characteristic equation for the
eigenvalues of the FP:

χ (η) = (dμ − η)2 + trK(dμ − η)F (η) + (ω + cμ)2, (17)

where in this case F (η) = e−η(τ+δ) − e−ηδ . Below we present
and derive the stabilization conditions for this case. Effec-
tively the additional lag time makes the other component y

observable.

A. Stabilization conditions

We again distinguish the IP and DP case and define

m =
{+1 for c − bd/a > 0 (IP case)
−1 for c − bd/a < 0 (DP case). (18)

Close to the bifurcation (limit μ → 0), the domain of control
is bounded in the (δ,trK) plane by

|trK|δ < 1/ω, (19)

m trK sin(ωδ) < 0, (20)

ω

πn
< m trK

(
b

a
sin(ωδ) − cos(ωδ)

)
, (21)

|trK(ψ)| <

∣∣∣∣ X(ψ)2 − ω2

2X(ψ) sin ψ

∣∣∣∣ for δ(ψ) = ψ/X(ψ), (22)

where the last equation describes the boundary in parametric
form (parameter ψ > 0) with

X(ψ) := ω

n

(⌈
1

π
ψ

⌉
− 1

π
ψ − m + 1

2

)
+ ω < �B (23)

and �•� denotes the ceiling function. Condition (19) is only
sufficient so that the actual domain of control may be larger.
The other conditions describe exact boundaries of the domain
of control.

Figures 5 and 7 show the domain of control in the (δ,trK)
plane for the two cases. Figure 6 depicts the actual domain
of control for the IP case calculated with the continuation
software KNUT.

B. Derivation of stabilization results

(1) Location of Hopf points: To find the Hopf points, we
evaluate the real and imaginary part of 0 = χ (η) at μ = 0,
η = i� :

0 = −�2 + ω2 + �trK[sin(�δ) − sin(�δ + �τ )], (24a)

0 = �trK [cos(�δ) − cos(�δ + �τ )] . (24b)

0 1 2 3
δ/π

ω

−1.0

−0.5

0.0

0.5

1.0

tr
K

FIG. 5. (Color online) Control domain for the increasing period
case in the (δ,trK) plane. The shaded regions depict the domain of
control found analytically for the limit μ → 0. The curves and lines
depict the boundaries given by the following inequalities: vertical and
horizontal (blue) lines, (20); solid (red) curves, (21); dashed (green)
curves, (19); dashed dotted (black) curves, Eq. (22). Parameters: ω =
1, b/a = −2, c = 4, d = 1, n = 1.
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0 1 2
δ/π

ω

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

tr
K

FIG. 6. (Color online) Blowup of Fig. 5. The dotted line depicts
the domain of control for the periodic orbit calculated with KNUT. In
comparison the shaded region depicts the domain found analytically
for the limit μ → 0. Other curves as in Fig. 5. Note that the dashed
(green) line, which corresponds to the sufficient condition (19), is
not a necessary condition for the chosen parameters. The slight offset
between the numerical and analytical control domains stems from
the finite value of μ in the numerics. Parameters: ω = 1, b/a = −2,
c = 4, d = 1, n = 1, μ = 0.005.

The second equation yields

±�δ + 2πn = �δ + �τ.

The + sign gives the Hopf A series:

τA
n = 2πn

ω
, �A = ω.

The − sign gives the B series:

τB
n = 2πn

�B
− 2δ,

where �B is left to be determined. Inserting this expression
into Eq. (24a) gives a transcendental equation for �B :

0 = f (�) := �2 − ω2 − 2trK� sin(�δ). (25)

0 1 2 3
δ/π

ω

−1.0

−0.5

0.0

0.5

1.0

tr
K

FIG. 7. (Color online) Control domain for the decreasing period
case in the (δ,trK) plane. The shaded regions depict the domain of
control found analytically for the limit μ → 0. The curves and lines
depict the boundaries given by the following inequalities: vertical and
horizontal (blue) lines, (20); solid (red) curves, (21); dashed (green)
curves, (19); dashed dotted (black) curves, Eq. (22). Parameters: ω =
1, b/a = 2, c = −4, d = 1, n = 1.

FIG. 8. (Color online) Solutions �B of Eq. (25) vs latency δ.
The solid and dotted lines correspond to trK = 0.1 > 0 and trK =
−0.1 < 0, respectively. Parameters: ω = 1.

Although we cannot explicitly obtain �B(δ), we can obtain
a parametric representation. To do this we introduce a curve
parameter ψ = �δ. Solving 0 = f (�) for � then gives the
parametric solution:

�B = trK sin ψ +
√

ω2 + trK2 sin2 ψ, (26a)

δ = ψ

�B
= ψ

trK sin ψ +
√

ω2 + trK2 sin2 ψ
. (26b)

The �B values lie in in the interval

�B ∈ [�min,�max], with

�min = −trK +
√

ω2 + trK2,

�max = trK +
√

ω2 + trK2.

Figure 8 depicts the solutions �B versus δ. At the special
points

δ∗
k = π

ω
k, (k ∈ N0),

� = ω is always a solution of Eq. (25) and (some of) the Hopf
B points lie on the Pyragas points. Note that the labeling of
Hopf A and B points is different in this case:

τA
n = 2πn

ω
= 2π (n + k)

ω
− 2δ∗

k = τB
n+k. (27)

For simplicity we will now consider the case where Eq. (25)
has a single (positive) solution; i.e., we consider δ and |trK|
small enough such that the curve in Fig. 8 does not fold back.

ρmax

μ
μsub μsuper

FIG. 9. Schematic bifurcation diagram of the laser. At μsub the
lasing fixed point loses its stability in a subcritical Hopf bifurcation.
The unstable periodic orbit born at this bifurcation is the target orbit.
For a detailed discussion of this bifurcation scenario see Ref. [26].
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Implicit differentiation of Eq. (25) with respect to δ gives the
slope of the �B curve at δ = δ∗

k :

∂δ�
B
∣∣
δ=δ∗

k

= trKω

(−1)k − ωδ∗
k trK

.

We can find a sufficient condition that ensures a single solution
by requiring that the signs of the slopes at the δ∗

k values
alternate with k. This is the case if

|trK| δ < 1/ω. (28)

Note that since this condition is only sufficient, the correspond-
ing curve need not be a boundary of the control domain; i.e.,
the domain of control may in fact be larger, as we will see
below.

(2) Crossing direction of Hopf eigenvalue pair: To calculate
the crossing direction of the Hopf eigenvalue pair, we differ-
entiate Eq. (17) implicitly with respect to τ . This expression
evaluated at μ = 0, η = i� then gives the crossing direction:

sgnRe(∂τη) = sgn[−trK2 + trK2 cos(�τ ) + �trK2δ sin(�τ )

−2trK� sin(�τ + �δ)].

For the Hopf A series this gives

sgnRe(∂τη)|A = −sgn[trK sin(ωδ)].

For the Hopf B series we find

sgnRe(∂τη)|B = −sgn[trK sin(�Bδ)]

·sgn[−�+�trKδ cos(�Bδ)+ trK sin(�Bδ)]

= −sgn[trK sin(�Bδ)] · sgn[−f ′(�B)]

= sgn[(�B)2 − ω2] · sgn f ′(�B).

From Eq. (25) we find that f (0) = −ω2 and lim�→∞ f (�) =
∞, and because we consider the case of a single positive
solution 0 = f (�B) the slope f ′(�B) is positive. The single
solution �B oscillates with increasing δ around ω (see Fig. 8)
and is larger than ω if trK > 0 and δ ∈ (δ∗

k ,δ
∗
k+1) with even k

or if trK < 0 and δ ∈ (δ∗
k ,δ

∗
k+1) with odd k. Thus the crossing

direction is in fact opposite to that of the A series:

sgnRe(∂τη)|B = −sgnRe(∂τη)|A = sgn [trK sin(ωδ)] . (29)

(3) Slope of Hopf and Pyragas curve: The slope of the
Hopf curve at the Pyragas points can be calculated by implicit
differentiation of the characteristic equation with respect to μ.
Evaluated at the Pyragas points we find

∂

∂μ
τH = −2nπ trK(c − d cot(ωδ)) + 2dω/ sin(ωδ)

trKω2
. (30)

Putting the pieces together: For −(c − bd/a) < 0 the
period of the orbit increases with increasing distance from the
bifurcation, and the Pyragas curve emanates to the upper left
from the Pyragas point. For stabilization we need a (2)-region
above and a (0)-region below the nth Pyragas point. This means
the eigenvalue crossing direction has to be positive at the A

points and negative at the B points, i.e.,

trK sin(ωδ) < 0. (31)

The Pyragas curve has to lie above the Hopf curve for
μ < 0, i.e., the slopes at μ = 0 have to obey ∂μτp < ∂μτH .
This gives

b

a
< cot(ωδ) + ω

πntrK sin(ωδ)
,

which can be written as

trK

(
b

a
sin(ωδ) − cos(ωδ)

)
>

ω

πn
, (32)

taking into account Eq. (31).
There is at most one Hopf B point between two successive

A points, because

�τB = 2π

�B
>

2π

ω
= �τA.

To have a (0)-region below the Pyragas point, there has to
be exactly one such point in between, to compensate for
the increase in the number of unstable dimensions at the A

points. The Hopf B points start at τB
0 = −2δ, and thus the first

B point with positive τB is given by τB
k̃

, where k̃ is the smallest
integer with

k̃ · �τB > 2δ,

i. e.,

k̃ =
⌈

2δ

�τB

⌉
=

⌈
δ
�B

π

⌉
.

With this index the Hopf point ordering can be written as

τB
k̃

< τA
1 < τB

k̃+1 < τA
2 < · · · < τB

k̃+n−1 < τA
n .

It is sufficient to require τB
k̃+n−1

< τA
n because this condition

is the strictest. Thus we have⌈
δ
�B

π

⌉
− δ

�B

π
− 1 < n

(
�B

ω
− 1

)
.

Using the parametric representation with ψ = �Bδ [Eq. (26)]
gives

X(ψ) := ω

n

( ⌈
1

π
ψ

⌉
− 1

π
ψ − 1

)
+ ω < �B.

Inserting �B(ψ,trK) from Eq. (26) and solving for trK then
gives the boundary curve in parametric form

|trK(ψ)| <

∣∣∣∣ X(ψ)2 − ω2

2X(ψ) sin ψ

∣∣∣∣ , (33a)

δ(ψ) = ψ

X(ψ)
. (33b)

For −(c − bd/a) > 0 the period of the orbit decreases
with increasing distance from the bifurcation, and the Pyragas
curve emanates to the lower left from the Pyragas point. For
stabilization we need a (0)-region above and a (2)-region
below the emanating Pyragas point. This means the eigenvalue
crossing directions have to be negative at the A points and
positive at the B points, i.e.,

trK sin(ωδ) > 0. (34)
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The Pyragas curve has to lie below the Hopf curve for
μ < 0; i.e., the slopes at μ = 0 have to obey ∂μτp > ∂μτH ,
which gives

b

a
> cot(ωδ) + ω

πntrK sin(ωδ)
.

This finally gives the same condition as in the IP case
[Eq. (32)]:

trK

(
b

a
sin(ωδ) − cos(ωδ)

)
>

ω

πn
. (35)

There is at least one Hopf B point between two successive
A points, because

�τB = 2π

�B
<

2π

ω
= �τA.

To have a (2)-region below the Pyragas point, there has to be
exactly one such point in between. The Hopf B points start
at τB

0 = −2δ, and again the first B point with positive τB is
given by τB

k̃
, where k̃ is given as above by

k̃ =
⌈

2δ

�τB

⌉
=

⌈
δ
�B

π

⌉
.

The Hopf point ordering is then given by

τB
k̃

< τA
1 < τB

k̃+1 < τA
2 < · · · < τA

n < τB
k̃+n

.

It is sufficient to require τA
n < τB

k̃+n
, which yields⌈

δ
�B

π

⌉
− δ

�B

π
> n

(
�B

ω
− 1

)
.

Using again the parametric representation [Eq. (26)] we obtain
this time

X(ψ) := ω

n

( ⌈
1

π
ψ

⌉
− 1

π
ψ

)
+ ω > �B,

and with �B(ψ,trK) from Eq. (26) the boundary curve in
parametric form

|trK(ψ)| <

∣∣∣∣ X(ψ)2 − ω2

2X(ψ) sin ψ

∣∣∣∣ , (36a)

δ(ψ) = ψ

X(ψ)
. (36b)

Note that since we consider only the case where Eq. (25)
has a single solution [see Eq. (28)], all the conditions
we constructed are sufficient but not necessary. The actual
domains of control in Figs. 5 and 7 may in fact be larger.

V. APPLICATIONS TO LASERS

In the following we will discuss the stabilizing of a
subcritical Hopf orbit in a laser using optoelectronic feedback.
Consider the following dimensionless laser model [26–29] of
a laser with a passive dispersive reflector:

d

dt
ρ = Nρ,

T
d

dt
N = p − N − (1 + N )kμ(N ) ρ,

where N and ρ are the inversion and photon number in
dimensionless units, respectively, T is the ratio between carrier
and photon lifetime, and p is the injection current in excess of
the laser threshold.

The passive dispersive reflector is modeled by the function

kμ(N ) = Kμ + AW 2

4(N − μ)2 + W 2
,

where Kμ is chosen such that kμ(0) = 1:

Kμ = 1 − AW 2

4μ2 + W 2
.

This laser model shows sub- and supercritical Hopf bifurca-
tions [26] depending on the parameters.

Suppose now that there is a Hopf bifurcation at μ = μ∗.
To apply the discussion from the last section, we need to
bring the laser equations close to this Hopf bifurcation (small
�μ := μ − μ∗) into the normal form of Eq. (2):

d

dt

(
x

y

)
=

[
dμ + a r2 −(ω + cμ + b r2)

ω + cμ + b r2 dμ + a r2

](
x

y

)
;

i.e., we need to find the coefficients a, b, c, and d.
Let us first discuss the location of the Hopf bifurcation. The

Jacobian of the system is given by

J =
[

N ρ

− 1
T

(1+N )kμ(N ) − 1
T

[1+ρkμ(N )+ρ(1+N )k′
μ(N )]

]
.

At the lasing FP (ρ,N ) = (p,0) the Jacobian is given by

J =
[

0 p

− 1
T

− 1
T

[1 + p + p k′
μ(0)]

]
,

and the eigenvalues are

λ± = −γ ± i
√

ω2 − γ 2,

with

γ = 1

2T
[1 + p + p k′

μ(0)], ω =
√

p/T .

The function kμ depends on μ, which we will treat as a
bifurcation parameter. If for some value μ∗

k′
μ∗ (0) = −1 + p

p
,

then the real part of the eigenvalues vanishes (γ = 0), and a
Hopf bifurcation occurs. The values μ∗ where this happens
solve the implicit equation

8AW 2μ∗
(W 2 + 4μ2∗)2

= −1 + p

p
. (37)

The Jacobian then has the eigenvalues

λ± = ±iω.

From these eigenvalues we can already determine two of the
coefficients

d = ∂

∂μ
Re(λ±(μ))

∣∣
μ=μ∗

= − p

2T

∂

∂μ
k′
μ(0)

∣∣
μ=μ∗

= 4pAW 2(12μ2
∗ − W 2)

T (4μ2∗ + W 2)2
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and

c = ∂

∂μ
Im(λ+(μ))

∣∣∣
μ=μ∗

= ∂

∂μ

√
ω2 − γ 2

∣∣∣
μ=μ∗

=
−γ ∂

∂μ
γ√

ω2 − γ 2

∣∣∣
μ=μ∗

= 0,

where we have used γ = 0 at μ = μ∗ in the last equality.
To arrive at a normal form, we use the transformation

U =
[

p p

ω −ω

]
, U−1 =

[
1

2p
1

2ω
1

2p
−1
2ω

]
(38)

to define the new coordinates x and y according to(
x

y

)
= U−1

(
ρ − p

N

)
,

(
ρ

N

)
= U

(
x

y

)
+

(
p

0

)
.

In these new coordinates the dynamical equations are given by

d

dt

(
x

y

)
=

[
d�μ −ω

ω d�μ

] (
x

y

)
+

(
f (x,y)
g(x,y)

)
,

where f and g carry the nonlinear terms. We can then calculate
the other two coefficients using the well-known expressions
[30]

a = 1

16
[fxxx + fxyy + gxxy + gyyy] + 1

16ω
[fxy(fxx + fyy)

− gxy(gxx + gyy) − fxxgxx + fyygyy]

= 2 + (
2 − k(2)

μ∗

)
p − (

3 k(2)
μ∗ + k(3)

μ∗

)
p2

8T 2
,

and

b = 1

16
[gxxx + gxyy − fyyy − fxyy]

+ 1

48ω

[
fxxgxy + fxygyy − 2

(
f 2

xx + f 2
xy + g2

xy + 2g2
yy

)
− 5

(
f 2

yy + g2
xx + fxxfyy + gxxgyy + fxygxx − fyygxy

)]
= − 1

12ωT 3

[(
2 − k(2)

μ∗

)2
p3 + T + (

2 − k(2)
μ∗

)
(T + 4)p2

+ (T 2 + 2T + 4)p
]
,

where fxy = (∂x∂yf )(0,0), etc. Here, we have used the
expansion

kμ∗(N ) = 1 − 1 + p

p
N + k(2)

μ∗

2!
N2 + k(3)

μ∗

3!
N3.

We now consider a concrete example with the laser
parameters shown in Table I. With these typical values of
the parameters we can start to calculate the values of μ where
Hopf bifurcations take place, according to Eq. (37). Solving

TABLE I. Parameters of the Hopf laser model.

Parameter p A W T

Value 2.0 1.0 0.02 1000

TABLE II. Parameters of the normal form model describing the
laser close to the subcritical Hopf bifurcation.

Parameter Value

a 3.074 × 10−3

b −3.214 × 10−3

c 0.0
d 8.576 × 10−2

ω 4.472 × 10−2

this equation numerically we find two Hopf bifurcations

μsub ≈ −4.976 × 10−2, μsuper ≈ −7.5 × 10−4,

where μsub is a subcritical bifurcation and μsuper is a su-
percritical bifurcation. Figure 9 depicts the basic bifurcation
diagram. Using the laser parameters we can now calculate the
Hopf normal form parameters at the subcritical bifurcation
μ = μsub. The approximate values are given in Table II. From
the signs of a and d we see that it is indeed a subcritical Hopf
bifurcation with the stable FP lying to the left of the bifurcation
point (μ < μsub). Furthermore,

−(c − bd/a) ≈ −8.967 × 10−2 < 0

implies that we have the IP case.
To stabilize the subcritical Hopf orbit we now consider

delayed optoelectronic feedback of the form

d

dt
ρ = N ρ,

T
d

dt
N = p + σ (ρ(t − τ ) − ρ(t)) − N − (1 + N )kμ(N )ρ,

where the control signal is given by σ (ρτ − ρ). Optoelectronic
feedback can be realized [31] by measuring the intensity of
the laser with a photodiode and modulating the pump current
according to the delayed difference signal.

To find parameters σ for successful control we first need to
understand what the control term will become after the normal
form transformation. Since the normal form transformation
leaves linear terms invariant [30], we need only to take the

FIG. 10. (Color online) Domain of control for the Hopf normal
form with coefficients as in Table II. The intersection of the shaded
area with the trK = 0 line is the control interval [Eq. (40)].
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FIG. 11. Stabilization of the subcritical Hopf orbit in the laser
system. Top panel: Time series of the intensity ρ. Bottom panel:
Time series of the control signal. The laser parameters are as in
Table I. The distance to the bifurcation is �μ = μ − μsub = −0.001,

and the control amplitude is chosen as σ = −0.3354 in the control
interval.

linear transformation Eq. (38) into account. This gives the
control matrix in the normal form coordinates

K = U−1

[
0 0
σ
T

0

]
U =

[
1
2ωσ 1

2ωσ

− 1
2ωσ − 1

2ωσ

]
. (39)

The relevant control parameters are then given by

κ = −ω σ, trK = 0.

On the other hand, we can find the domain of control in
the (κ,trK) plane from the calculated Hopf normal form
coefficients as shown in Fig. 10. Using trK = 0 we can
calculate the control interval for κ explicitly:

κ ∈
[

− ω
a

πb
,ω

4n2 − 1

8n2

]
≈ [0.0136,0.0168] (40)

and the corresponding σ interval

σ ∈
[

− 4n2 − 1

8n2
,

a

πb

]
≈ [−0.375, −0.304]

for n = 1.
Figure 11 depicts the time series of the intensity and the

control signal using a feedback gain in the control interval,
which lead to successful stabilization of the subcritical periodic
orbit.

A very similar feedback can also be realized all-optically
by using polarization rotated optical feedback [32–35]. This is
achieved by rotating the polarization axis of the emitted light

by π/2 into the perpendicular orientation and reinjecting this
light into the laser. Due to the orthogonal polarization this in-
jected signal does not contribute to the lasing mode but is still
amplified and thus reduces the inversion. As a result one
obtains a feedback of the following form:

d

dt
ρ = N ρ,

T
d

dt
N = p − N − (1 + N )kμ(N )[ρ + σρ(t − τ )].

Through interference of a delayed and a nondelayed light
beam, it might then be possible to realize the Pyragas control
scheme with this method:

T
d

dt
N = p − N − (1 + N )kμ(N )[ρ + σ (ρ(t − τ ) − ρ(t))].

The advantage would be that the control works even for
very high oscillation frequencies beyond the bandwidth of
electronic circuits.

Pyragas control has in the past been successfully applied
experimentally. In most experimental implementations of
optoelectronic Pyragas feedback, however, the overall latency
in the control loop is very large. This makes successful
optoelectronic control less feasible, as compared to all-optical
control.

VI. SUMMARY

In summary, we have introduced a class of Pyragas
feedback schemes inspired by experimental conveniences
and possibilities. We have constructed feedback parameters
that allow for stabilization of odd-number orbits close to a
subcritical Hopf bifurcation. We have proposed an extended
control scheme using an additional latency time, which allows
for stabilization with symmetric feedback matrices, which was
impossible with previous feedback schemes. We demonstrated
the successful control in both cases by numerical simulations
and numerical continuation methods.

Furthermore, we showed how these control schemes can
be applied to laser systems using optoelectronic feedback and
how the constructed feedback parameters can be applied to
this system by identifying the normal form parameters of the
system close to the bifurcation.
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Lett. 105, 254101 (2010).
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