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Exact solution of a stochastic protein dynamics model with delayed degradation
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We study a stochastic model of protein dynamics that explicitly includes delay in the degradation. We rigorously
derive the master equation for the processes and solve it exactly. We show that the equations for the mean values
obtained differ from others intuitively proposed and that oscillatory behavior is not possible in this system. We
discuss the calculation of correlation functions in stochastic systems with delay, stressing the differences with
Markovian processes. The exact results allow us to clarify the interplay between stochasticity and delay.
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I. INTRODUCTION

Due to the small number of some of the molecules involved
and to the uncontrolled environment, biochemical processes
inside a cell usually need to be described by stochastic models
[1,2]. Some important basic processes (such as transcription,
translation, and specific degradation) are indeed compound
multistage reactions involving a large number of steps of
similar duration, and in principle, due to the central limit
theorem, the time to complete such processes should follow
nearly a Gaussian distribution, rather than exponential, with
a well-defined characteristic delay time [3]. A description
including delay is then needed to obtain a reduced model
for this kind of processes. It is well known that delay can
change qualitatively the dynamical behavior, allowing, for
example, the appearance of oscillations in the evolution of the
number of molecules [4–6], and there has been great interest
in delay-induced oscillations in biological systems.

Stochastic processes that include delay are analytically
difficult due to their non-Markovian character. Most theoretical
studies consider a Langevin approach (stochastic differential
equations) [8,9] or systems in discrete time [10] (where delay
can be accounted for by increasing the number of variables).
None of these approaches is completely suitable for describing
chemical reactions inside a cell since the former neglects the
inherently discrete nature of the molecule levels and the latter
considers an arbitrary discretization of time (see [7] for a recent
analysis of the accuracy of the chemical Langevin equation).
In some cases, the discreteness can be a major source of
fluctuations [11].

In this work we develop a rigorous derivation of the stochas-
tic description of a protein dynamics model that includes delay
in the degradation and solve it exactly. We find that the exact
solution for the probabilities leads to equations for the mean
values that do not comply with simple intuitive arguments
and that oscillatory behavior does not exist (while it is usually
believed to be present in this type of system [12]). This clarifies
and warns us about the derivation of dynamical equations
describing the evolution of the concentrations in cases in which
delay plays a role. The exact solution is especially valuable for
small system sizes, where approximated schemes typically
fail. Due to the low number of molecules inside cells, this
regime may be biologically relevant. Our solution extends
the results of reference [13] in which the authors consider
a particular case that allows for a Markovian description in
terms of suitably defined dynamical variables, while such

a Markovian reduction has not been achieved in the more
complete case studied here.

This paper is organized as follows: in the next section we
define the model, and in Sec. III we derive the corresponding
master equation. In Sec. IV we solve the master equation
and derive the probabilities and the (macroscopic) equations
for the mean values in the case of constant rates. Some
technical details are left for the Appendix. In Sec. V we
discuss the details of the derivation of the master equation
for the conditional probabilities and derive, again in the case
of constant rates, the correlation functions of the process.
Finally, in Sec. VI we end with a brief discussion of the
results.

II. MODEL

Proteins usually degrade through complex proteolytic
pathways that involve several different steps (such as tagging,
binding of auxiliary proteins, recognition by protease, and
destruction) [14]. As discussed before, it is then natural to
consider a time delay in this process. As a simple model for
the dynamics of the number of molecules of a protein X we
consider

∅
C

−→ X, X

γ

−→ ∅, X

β

=⇒
τ

∅, (1)

where, for simplicity and to isolate the effect of delay
in degradation, the transcription and translation steps have
been lumped into a single stochastic process that occurs at
a rate C. This approximation represents accurately protein
production only when the product of the mRNA lifetime
and the translation rate is small [15], but including the two
transcription and translation steps is straightforward, and the
role of delay in this compound process should be essentially the
same as in the one considered here. The delayed degradation
(indicated by a double arrow) is modeled as a reaction that is
initiated at a rate β and completed at a time τ after initiation
(giving rise to the destruction of the protein). We assume a fixed
time delay in this degradation process since this assumption
allows for a complete analysis; this approximation is valid
when this degradation process is tightly regulated or when
it is composed of many steps (the total time should then be
Gaussian with a relative standard deviation of 1/

√
m, with

m being the fixed number of steps); in the general case in
which the magnitude of the delay is stochastically distributed,
its effect typically decreases [16]. In addition to delayed
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degradation, we consider also instantaneous degradation at
a rate γ (which can take into account processes such as
nonselective degradation, proteins going to the membrane or
outside the cell, dilution due to cell growth, etc.). This model of
protein dynamics was proposed in Ref. [12], and it was thought
that it can lead to periodic oscillations, although the recent
analysis of [13,17] in a particular limit showed otherwise. To
completely describe the process, one has to specify if a protein
that initiates delayed degradation at time t (and thus will
disappear at t + τ ) can also disappear before the completion
of this reaction through instantaneous degradation at a rate γ ′,
which is not necessarily equal to γ . The process is equivalent
to the following two-variable system:

∅
C

−→ XA, XA

γ

−→ ∅, XA

β

−→ XI , XI
=⇒
τ

∅, XI

γ ′
−→ ∅,

(2)

where we have split the proteins into two types: XI are
“tagged” molecules that will die precisely at a time τ after
being tagged (if still present), and XA are nontagged particles
(so X = XA ∪ XI ). In principle, we allow the rates to depend
on nA, the number of XA particles, but not on nI , the number
of XI particles, which are considered to be “inert.” One has
to include an extra variable because delayed degradation is
a “consuming reaction” [18] since as soon as one particle
initiates this reaction the number of particles that can initiate
it decreases by 1, and so the state of the system changes both
when the reaction is initiated and when it is finished, after a
time τ . In a recent work [13], the stochastic description was
studied in the particular case when tagged proteins cannot
undergo instantaneous degradation, γ ′ = 0. It turns out that
this particular case allows for a Markovian description in terms
of suitably defined dynamical variables. Our treatment allows
us to pose and solve a non-Markovian problem, and it can be
of interest to other processes not allowable to a Markovian
description.

III. MASTER EQUATION

To derive the master equation of the process, we start with
the following identity, which is valid for any stochastic process
(with a numerable set of states; otherwise, the sum should be
replaced by an integral):

P (n,t + �t) =
∑
n′

P (n,t + �t ; n′,t), (3)

where P (n,t) is the probability of being at state n at time
t and P (n,t ; n′,t ′) is the joint probability of being at state
n at time t and at state n′ at time t ′. In most cases of
interest, P (n,t + �t ; n′,t) is O(�t0) or O(�t) only for a
small number of n′ (usually depending on n), whereas it is
of higher order o(�t) for all the rest. Writing explicitly the
terms O(�t0) and O(�t), dividing by �t , and taking the limit
�t → 0, one can obtain the master equation of the process
[differential equation for P (n,t)]. For Markovian processes
one can write the joint probabilities as P (n,t + �t ; n′,t) =
P (n′,t)P (n,t + �t |n′,t), and the conditional probabilities
can be readily derived from the rules of the process, and
one obtains in this way a closed equation for the one-time
probability P (n,t). For non-Markovian ones, in general, the

equation for the one-time probability will depend on higher
order joint probability densities P (n,t ; n1,t1; . . . ; nm,tm). In
some cases (as in the one considered here) it is possible
to explicitly write the joint probability densities that ap-
pear in the master equation and obtain a closed equation
for P (n,t).

In our process, n has two components (nA and nI ), and the
only terms O(�t0) and O(�t) that appear in Eq. (3) are as-
sociated with the following elementary processes schematized
in Eq. (2).

(1) The first step is the birth of an XA particle from the
reservoir: (nA − 1,nI ) → (nA,nI ), with probability C�t . The
contribution to the right-hand side (rhs) of Eq. (3) is P (nA −
1,nI ,t)C�t .

(2) Second is the death of an XA particle: (nA + 1,nI ) →
(nA,nI ), with probability γ (nA + 1)�t . The contribution to
the rhs of Eq. (3) is P (nA + 1,nI ,t)γ (nA + 1)�t .

(3) Next is infection of an XA particle: (nA + 1,nI − 1) →
(nA,nI ), with probability β(nA + 1)�t . The contribution to
the rhs of Eq. (3) is P (nA + 1,nI − 1,t)β(nA + 1)�t .

(4) Then death of an XI particle occurs: (nA,nI + 1) →
(nA,nI ). This might occur by two different reasons: (4a) death
by instantaneous decay at rate γ ′ with probability γ ′(nI +
1)�t , where the contribution to the rhs of Eq. (3) is P (nA,nI +
1,t)γ ′(nI + 1)�t , and (4b) death after time τ after infection,
which is the only non-Markovian contribution. In order to
account for this case and according to the previous discussion,
we need to write the corresponding contribution to the rhs of
Eq. (3) as∑

n′
A,n′

I

P
(
nA,nI ,t + �t ; nA,nI + 1,t ;S; In′

A,n′
I

)
, (4)

where In′
A,n′

I
= {n′

A − 1,n′
I + 1,t − τ + �t ; n′

A,n′
I ,t − τ } de-

notes the event in which there were n′
A and n′

I particles at time
t − τ and one particle got tagged during the time interval
(t − τ ; t − τ + �t) and S denotes that the particle tagged
during that time interval survived up to time t . We use now the
series of conditional probabilities:

P
(
nA,nI ,t + �t ; nA,nI + 1,t ;S; In′

A,n′
I

)
= P

(
nA,nI ,t + �t |nA,nI + 1,t ;S; In′

A,n′
I

)
×P

(
nA,nI + 1,t |S; In′

A,n′
I

)
P

(
S|In′

A,n′
I

)
P

(
In′

A,n′
I

)
. (5)

Now, P (nA,nI ,t + �t |nA,nI + 1,t ;S; In′
A,n′

I
) = 1, as the par-

ticle that was tagged in (t − τ,t − τ + �t) and survived up to t

dies with probability 1 during (t,t + �t) according to the rules
of the process. The conditional probability of the second line
on the rhs is the probability that there are nA,nI + 1 particles
at time t given that there were n′

A,n′
I particles at time t − τ

and one XA particle was tagged in (t − τ,t − τ + �t) and
survived up to time t . Since the presence of the tagged particle
does not influence the dynamics of births, deaths, and infection
of other particles (remember that we have assumed that XI are
“inert” particles such that the different rates do not depend
on the number of XI particles), this conditional probability
can be simply obtained by considering the process in which
the dynamics of the tagged particle is decoupled from the
rest of the particles, i.e., as if removing that particle from the
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dynamical process. This leads to

P
(
nA,nI + 1,t |S; In′

A,n′
I

) = P (nA,nI ,t |n′
A − 1,n′

I ,t − τ + �t). (6)

Furthermore, as all XI present at t − τ have died before t [except the one tagged during (t − τ,t − τ + �t)], this conditional
probability is, in fact, independent of n′

I and, for translational invariance, depends only on the time difference τ , so we can write it
as P (nA,nI ,t |n′

A − 1,t − τ ). The next term, P (S|In′
A,n′

I
), corresponds to the survival probability during a time interval of length

τ , or e−γ ′τ . Finally, P (In′
A,n′

I
) is the infection probability βn′

A�tP (n′
A,n′

I ,t − τ ). Collecting all the terms, the contribution to the
rhs of Eq. (3) is

∑
n′

A
P (nA,nI ,t |n′

A − 1,t − τ + �t)βn′
AP (n′

A,t − τ )e−γ ′τ�t .
(5) None of the above processes occur in the interval (t,t + �t): (nA,nI ) → (nA,nI ).

P (nA,nI ,t + �t ; nA,nI ,t) = P (nA,nI ,t + �t |nA,nI ,t)P (nA,nI ,t)

=
[

1 − C�t − (γ + β)nA�t − γ ′nI�t −
∑
n′

A,n′
I

P
(
nA,nI ,t + �t ;S; In′

A,n′
I

∣∣nA,nI ,t
)]

P (nA,nI ,t)

= [1 − C�t − (γ + β)nA�t − γ ′nI�t]P (nA,nI ,t) −
∑
n′

A,n′
I

P
(
nA,nI ,t + �t ; nA,nI ,t ;S; In′

A,n′
I

)
.

(7)

Treating the last term in the same way as in case (4b), one obtains that the contribution to the rhs of Eq. (3) is

P (nA,nI ,t + �t ; nA,nI ,t) = [1 − C�t − (γ + β)nA�t − γ ′nI�t]P (nA,nI ,t)

−
∑
n′

A

P (nA,nI − 1,t |n′
A − 1,t − τ )βn′

AP (n′
A,t − τ )e−γ ′τ�t. (8)

After adding up all contributions to the rhs of Eq. (3), dividing by �t , and taking the limit �t → 0, we obtain the master equation
of the process:

dP (nA,nI ,t)

dt
= (

E−1
A − 1

)
CP (nA,nI ,t) + (EA − 1)γ nAP (nA,nI ,t)

+ (
EAE−1

I − 1
)
βnAP (nA,nI ,t) + (EI − 1)γ ′nIP (nA,nI ,t)

+ (EI − 1)
∞∑

n′
A=0

P (nA,nI − 1,t |n′
A − 1,t − τ )βn′

AP (n′
A,t − τ )e−γ ′τ , (9)

where EA,I are step operators, Ek
A,I f (nA,I ) = f (nA,I + k), and P (nA,t) = ∑

nI
P (nA,nI ,t) is the marginal probability. As

written, this is an equation for the one-time probability and has to be supplemented with the appropriate initial conditions. The
evolution equation for the conditional probability P (nA,nI ,t |n0

A,n0
I ,t0) will be considered in Sec. V. For Markovian processes

this equation would be the same as Eq. (9) conditioning all appearing probabilities to (n0
A,n0

I ,t0), but for non-Markovian processes
this is not necessarily the case.

The next step is to calculate the conditional probability appearing in Eq. (9). Let P ∗(nA,nI ,t |n0
A,n0

I ,0) be the probability that
there are nA particles of XA type and nI particles of XI type at time t given the initial condition that there were n0

A and n0
I

particles at time t = 0 and under the condition that particles cannot die through delayed degradation. The key point is to note that

P (nA,nI ,t |n′
A,t − τ ) = P ∗(nA,nI ,τ |n′

A,0,0). (10)

This is so because, as noted before, all XI particles present at any time die before an interval of length τ passes and their presence
does not influence the dynamics of births, deaths, and infections of other particles. Note that this equality is only valid as written,
as in general P (nA,nI ,t |n′

A,t − t ′) 
= P ∗(nA,nI ,t
′|n′

A,0,0), with the equality only occurring for t ′ = τ . For t ′ < τ not all the
tagged particles present at t − t ′ have died at t ; for t ′ > τ some of the particles tagged after t − t ′ may have died trough delayed
degradation before t . Therefore, we need to compute P ∗(nA,nI ,t |n′

A − 1,0,0) [we simplify the notation to P ∗(nA,nI ,t |n′
A − 1)],

which follows the same master equation (9) without the last term. For the sake of completeness, we write down the final system
of equations:

dP (nA,nI ,t)

dt
= (

E−1
A − 1

)
CP (nA,nI ,t) + (EA − 1)γ nAP (nA,nI ,t) + (

EAE−1
I − 1

)
βnAP (nA,nI ,t)

+ (EI − 1)γ ′nIP (nA,nI ,t) + (EI − 1)
∞∑

n′
A=0

P ∗(nA,nI − 1,τ |n′
A − 1)βn′

AP (n′
A,t − τ )e−γ ′τ , (11)

dP ∗(nA,nI ,t |n′
A − 1)

dt
= (

E−1
A − 1

)
CP ∗(nA,nI ,t |n′

A − 1) + (EA − 1)γ nAP ∗(nA,nI ,t |n′
A − 1)

+ (
EAE−1

I − 1
)
βnAP ∗(nA,nI ,t |n′

A − 1) + (EI − 1)γ ′nIP
∗(nA,nI ,t |n′

A − 1). (12)

051121-3



L. F. LAFUERZA AND R. TORAL PHYSICAL REVIEW E 84, 051121 (2011)

The process defined by Eq. (12) is a standard Markovian
process for which exact and approximate schemes have been
developed to find its solution. The function P ∗(nA,nI ,τ |n′

A −
1), obtained by solving Eq. (12) with the appropriate ini-
tial condition P ∗(nA,nI ,0|n′

A − 1) = δnA,n′
A−1δnI ,0, can be re-

placed in Eq. (11) and proceed to solve for P (nA,nI ,t). A very
convenient procedure is to derive a differential equation for the
generating function G(sA,sI ,t) ≡ ∑

nA,nI
s
nA

A s
nI

I P (nA,nI ,t) in
terms of the corresponding generating function of the process
without delay degradation G∗(sA,sI ,t); see the Appendix for
details. Note that the active variables XA follow an independent
dynamics, as can be seen from the rules of the process (the
presence of XI molecules does not alter at all the dynamics
of XA) or, from a more formal point of view, by noticing that,
as derived from Eq. (11), the marginal probabilities for the
numbers nA, P (nA,t), follow a closed master equation of a
birth-death process:

dP (nA,t)

dt
= (

E−1
A − 1

)
CP (nA,t) + (EA − 1)γ nAP (nA,t).

(13)

IV. SOLUTION IN THE CASE OF CONSTANT RATES

Up to now, we have been rather general. The only assump-
tion needed is that the rates can depend only on the number of
active particles nA. We now provide the exact solution in the
case of constant rates. In this case P ∗ corresponds to a simple
birth-death Poisson process. As shown in the Appendix, it
turns out that if the initial condition P (nA,nI ,0) follows a
Poisson distribution (which includes the case that starts with
no molecules at all at t = 0) then the generating function
at arbitrary time is G(sA,sI ,t) = exA(t)(sA−1)+xI (t)(sI −1). This
shows that the joint probability of nA and nI is the product
of independent Poisson distributions, with mean values and
variances 〈nA(t)〉 = σ 2

nA
(t) = xA(t), 〈nI (t)〉 = σ 2

nI
(t) = xI (t).

It follows that the total number of X particles, n = nA + nI ,
also obeys at all times a Poisson distribution with parameter
x(t) = xA(t) + xI (t). If we start with an initial condition
different from the Poisson-distributed one, the time-dependent
solution is not Poissonian, but this form is recovered in the
steady state with mean values 〈nA,I 〉st . The mean values satisfy
differential equations including delay terms:

dxA(t)

dt
= C − axA(t),

(14)
dxI (t)

dt
= −γ ′xI (t) + β[xA(t) − e−γ ′τ xA(t − τ )],

with a ≡ β + γ . The solution with initial condition xA(t �
0) = 0, xI (t = 0) = 0 is

xA(t) = C

a
(1 − e−at ),

(15)

xI (t) =
⎧⎨
⎩

Cβ

a−γ ′
[

1−e−γ ′ t
γ ′ − 1−e−at

a

]
, 0 � t � τ,

Cβ

a

[
1−e−γ ′τ

γ ′ + (1−eτ (a−γ ′ ))
a−γ ′ e−at

]
, t � τ.

The steady-state values are 〈nA〉st = C/a, 〈nI 〉st = Cβ(1 −
e−γ ′τ )/(aγ ′).

It is important to note that it is not possible to write a closed
equation for the evolution of the total number of particles
x(t) = xA(t) + xI (t). In the case γ = γ ′ we arrive at ẋ(t) =
C − γ x(t) − βe−γ ′τ xA(t − τ ), and in the case γ ′ = 0 we get
ẋ(t) = C − γ xA(t) − βxA(t − τ ), which differs in both cases
from the closed result ẋ(t) = C − γ x(t) − βx(t − τ ) used in
Ref. [12]. A different process that leads to this closed form
of the rate equations corresponds to delayed production and
linear negative feedback:

0
C−βn

=⇒
τ

X, X

γ

−→ 0. (16)

However, in this case the creation rate C − βn may become
negative, and so the process is ill defined [16].

V. TIME CORRELATIONS

We now turn to the calculation of the time correlations. For
this, we will write a master equation for the conditional proba-
bility P (nA,nI ,t |n0

A,n0
I ,t0) and derive evolution equations for

the conditional averages 〈nA,I ,t |n0
A,n0

I ,t0〉. As noted before,
for a Markovian process, P (n,t) and P (n,t |n0,t0) satisfy
identical master equations but with different initial conditions.
For non-Markovian processes, however, in principle one has to
specify the whole history before t0. In our system, the problem
is that the dynamics from t0 depends on when the n0

I particles
were created. We are mainly interested in the steady state.
The term that causes difficulties is the one corresponding to
delayed degradation. To obtain the proper contribution to the
master equation and in the line of the previous arguments, we
take a starting point similar to Eq. (5):

P
(
nA,nI ,t + �t ; nA,nI + 1,t ;S; I

∣∣n0
A,n0

I ,t0
)

= 1 × P
(
nA,nI + 1,t

∣∣S; I; n0
A,n0

I ,t0
)
P

(
S; I

∣∣n0
A,n0

I ,t0
)
,

(17)

with I = ⋃
n′

A,n′
I
In′

A,n′
I

being the event in which a particle was
tagged during the interval (t − τ,t − τ + �t), independent of
the number of particles present at that time.

One has to distinguish the intervals t − t0 < τ and t − t0 >

τ . In the former, following the reasoning of Eq. (6), we see
that the first conditional probability on the rhs of Eq.=(17)
equals P (nA,nI ,t |n0

A,n0
I − 1,t0) since, as noted before, one of

the XI particles present at time t0 will stay until time t and
its presence does not influence the dynamics of creations and
deaths of other particles. Next, we use Bayes’ theorem:

P
(
S; I

∣∣n0
A,n0

I ,t0
) =

∑
n′

A,n′
I

P
(
S; In′

A,n′
I

∣∣n0
A,n0

I ,t0
)

=
∑
n′

A,n′
I

P
(
n0

A,n0
I ,t0

∣∣S; In′
A,n′

I

)P
(
S; In′

A,n′
I

)
P

(
n0

A,n0
I ,t0

) .

(18)

An argument similar to the one used in deriving Eq. (6) shows
that P (n0

A,n0
I ,t0|S; In′

A,n′
I
) = P (n0

A,n0
I − 1,t0|n′

A − 1,n′
I ,t −

τ ), which can be written as P (n′
A − 1,n′

I ,t − τ |n0
A,n0

I −
1,t0)P (n0

A,n0
I − 1,t0)/P (n′

A − 1,n′
I ,t − τ ). We use also that
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P (S; In′
A,n′

I
) = n′

AP (n′
A,n′

I ,t − τ )e−γ ′τ β�t to obtain

P
(
S; I

∣∣n0
A,n0

I ,t0
) =

∑
n′

A,n′
I

P
(
n′

A − 1,n′
I ,t − τ

∣∣n0
A,n0

I − 1,t0
)
n′

Aβe−γ ′τ�t
P (n′

A,n′
I ,t − τ )

P (n′
A − 1,n′

I ,t − τ )

P
(
n0

A,n0
I − 1,t0

)
P

(
n0

A,n0
I ,t0

) . (19)

We know that in the steady state, if the rates are constant, nA and nI follow independent Poisson distributions. This allows us to
compute the ratios of probabilities in this expression:

P (n′
A,n′

I ,t − τ )

P (n′
A − 1,n′

I ,t − τ )
= 〈nA〉st

n′
A

, (20)

P
(
n0

A,n0
I − 1,t0

)
P

(
n0

A,n0
I ,t0

) = n0
I

〈nI 〉st , (21)

which leads to

P
(
S; I

∣∣n0
A,n0

I ,t0
) =

∑
n′

A,n′
I

P
(
n′

A − 1,n′
I ,t − τ

∣∣n0
A,n0

I − 1,t0
)
βe−γ ′τ�t

〈nA〉st
〈nI 〉st n0

I (22)

= βe−γ ′τ�t
〈nA〉st
〈nI 〉st n0

I , (23)

where we have used
∑

n′
A,n′

I
P (n′

A − 1,n′
I ,t − τ |n0

A,n0
I − 1,t0) = 1. Putting all the pieces together, we find that the delay

degradation term in the master equation for the conditional probability for t − t0 < τ is

(EI − 1)P
(
nA,nI − 1,t

∣∣n0
A,n0

I − 1,t0
) γ ′

eγ ′τ − 1
n0

I . (24)

On the other hand, for t − t0 > τ , expression (17) equals∑
n′

A,n′
I

P
(
nA,nI ,t

∣∣n′
A − 1,n′

I ,t − τ ; n0
A,n0

I ,t0
)
e−γ ′τ n′

Aβ�tP
(
n′

A,n′
I ,t − τ

∣∣n0
A,n0

I ,t0
)
, (25)

which is the same as the delay-degradation term in the master equation (9) but conditioning all probabilities to n0
A,n0

I at time t0,
as happens in Markovian processes.

Using (24) and (25) in the corresponding time intervals, we obtain the evolution of the conditional averages in the steady
state:

d
〈
nA,t

∣∣n0
A,n0

I ,t0
〉

dt
= C − a

〈
nA,t

∣∣n0
A,n0

I ,t0
〉
,

(26)
d
〈
nI ,t

∣∣n0
A,n0

I ,t0
〉

dt
=

⎧⎨
⎩

−γ
〈
nI ,t

∣∣n0
A,n0

I ,t0
〉 + β

〈
nA,t

∣∣n0
A,n0

I ,t0
〉 − γ ′

eγ ′τ −1
n0

I , t0 � t � t0 + τ,

−γ
〈
nI ,t

∣∣n0
A,n0

I ,t0
〉 + β

(〈
nA,t

∣∣n0
A,n0

I ,t0
〉 − e−γ ′τ

〈
nA,t − τ

∣∣n0
A,n0

I ,t0
〉)
, t � t0 + τ.

The steady-state correlations KUV (t) ≡ 〈nU (t ′ +
t)nV (t ′)〉st − 〈nU 〉st 〈nV 〉st can be obtained by integrating the
previous equations (26) and averaging over initial conditions
in the steady state. The result is

KAA(t) = 〈nA〉st e−at , (27)

KII (t) =
{

〈nI 〉st e−γ ′ t−e−γ ′τ
1−e−γ ′τ , 0 � t � τ,

0, t � τ,
(28)

KIA(t) =
⎧⎨
⎩

Cβ

a
e−γ ′ t−e−at

a−γ ′ , 0 � t � τ,

Cβ

a
e(a−γ ′ )τ −1

a−γ ′ e−at , t � τ,
(29)

KAI (t) = 0. (30)

The autocorrelation function for the total number of particles
n = nA + nI is K(t) = KAA(t) + KII (t) + KIA(t) + KAI (t).
Note that in the case γ ′ = 0 the correlation for the XI particles
decays linearly in time instead of the typical exponential decay
[as can be seen from taking the limit γ ′ → 0 in Eq. (28)]. For
arbitrary γ ′ the correlation function for the XI particles drops
strictly to zero at t = τ .

An analysis of the previous expressions shows that, in
all cases, the autocorrelation functions KAA(t), KII (t), and
K(t) decrease monotonically in time, so there is no signature
of stochastic oscillations, contrary to what was claimed in
Ref. [12] and in agreement with what was found in the
particular case γ ′ = 0 considered in Ref. [13]. These exact
theoretical expressions are in excellent agreement with the
results of extensive numerical simulations of the stochastic
process (2) using a conveniently modified form of Gillespie’s
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algorithm [19,20]. This agreement provides an independent
check of the correctness of the theoretical calculations. It is
important to realize that particles that are tagged at, say, time
t and are then scheduled to die at time t + τ can nevertheless
die instantaneously at a rate γ ′ during the interval (t,t + τ ). If
this is the case, in the stochastic simulation one has to remove
that particle from the list of scheduled events to happen at
t + τ . Otherwise, one is removing a particle that was already
removed. Stochastic oscillations do appear if one, erroneously,
removes twice these particles. In the case γ ′ = 0 one has
to take into account that only “untagged” proteins (and not
the whole population) can be degraded instantaneously. These
considerations lead to the introduction of two variables XA

and XI .

VI. DISCUSSION

In this work, we have studied a stochastic model of protein
level dynamics that includes delay in the degradation. The
exact solution shows that no oscillations are present in the
system, contrary to previous results [12,21] and in agreement
with a recent analysis in a simplified version of the stochastic
model that allows for a Markovian reduction [13]. This implies
that the presence of delay in degradation alone cannot give
rise to oscillations. Our analysis is based on the assumption
of a fixed delay, but the effect of a stochastically distributed
delay typically decreases as the fluctuations in the delay size
increase [16]. Since the delayed degradation is a consuming
reaction (the state of the system changes both when the reaction
is initiated and when it is completed after the delay time), one
needs to consider two variables when analyzing the system.
Not doing so produces erroneous results such as the appearance
of oscillations.

We have also analyzed the derivation of master equations
and the time correlations in systems with delay, pointing out the
differences with Markovian processes. Our approach allows
one to deal with more general systems than the one used
in Ref. [13] and may be of interest for studying other non-
Markovian processes. Exact results are especially valuable in
small systems where approximated schemes typically fail (see
Ref. [7] for a recent analysis of the accuracy of the chemical
Langevin equation and [22,23] for exact solutions in other
stochastic models of gene expression). They are also important
for studying the validity of assumptions and approximations
to be used in more complicated systems.

In a broader context, due to the important role of stochastic-
ity and delay in many biological, physical, and technological
systems, the present work seems to be relevant as a case
where exact results can be obtained, allowing us to clarify
the combined effect of stochasticity and delay.
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APPENDIX: CALCULATION OF THE PROBABILITIES

Let us define the generating function
of P ∗(nA,nI ,t |n0

A,n0
I ,0) as G∗(sA,sI ,t) ≡∑∞

nA=0

∑∞
nI =0 s

nA

A s
nI

I P ∗(nA,nI ,t |n0
A,n0

I ,0). Using standard
techniques, it follows from the master equation (12) that the
generating function obeys the partial differential equation

∂G∗

∂t
= [γ (1 − sA) + β(sI − sA)]

∂G∗

∂sA

+ γ ′(1 − sI )
∂G∗

∂sI

+C(sA − 1)G∗ (A1)

with initial condition G∗(sA,sI ,0) = s
n0

A

A s
n0

I

I . Using the method
of the characteristics, one can find that the solution in the
case of the initial condition n0

A = n′
A − 1,n0

I = 0 [as needed
in master equation (9)] can be written as

G∗(sA,sI ,t) = [1 + 	(sA,sI ,t)]
n′

A−1

× exp

[
C

∫ t

0
dt ′ 	(sA,sI ,t

′)
]

, (A2)

where

	(sA,sI ,t) = (sA − 1)e−at + (sI − 1)
β

a − γ ′ (e
−γ ′t − e−at ).

(A3)

It follows from Eq. (11) that the generating func-
tion for the original delayed process G(sA,sI ,t) ≡∑∞

nA=0

∑∞
nI =0 s

nA

A s
nI

I P (nA,nI ,t) obeys

∂G

∂t
= [γ (1 − sA) + β(sI − sA)]

∂G

∂sA

+ γ ′(1 − sI )
∂G

∂sI

+C(sA − 1)G + βe−γ ′τ (1 − sI )

×
∑
n′

A=0

G∗(sA,sI ,τ )n′
AP (n′

A,t − τ ), (A4)

We assume nA(t) = nI (t) = 0 for t < 0 so that both the master
equation (9) and the equation for the generating function (A4)
are valid for t > 0. The number of XA particles follows a
Poisson distribution at all times P (nA,t) = xA(t)nA

nA! e−xA(t)(sA−1),
with xA(t) being the average value given in Eq. (15) [assuming
the initial condition is nA(0) = 0]. Using Eq. (A2), it is possible
to perform the sum over the n′

A variable to obtain the equation

∂G

∂t
= [γ (1 − sA) + β(sI − sA)]

∂G

∂sA

+ γ ′(1 − sI )
∂G

∂sI

+C(sA − 1)G + βe−γ ′τ (1 − sI )xA(t − τ )

× exp

[
xA(t − τ )	(sA,sI ,τ ) + C

∫ τ

0
dt ′ 	(sA,sI ,t

′)
]

.

(A5)

One can check by direct substitution that the Poisson
distribution G(sA,sI ,t) = exA(t)(sA−1)+xI (t)(sI −1) is a solution of
this equation if xA(t) and xI (t) obey the differential equations
(14). Therefore, nA and nI follow independent Poisson
distributions at all times [assuming nA(0) = nI (0) = 0]. It
follows that the total number of X particles n = nA + nI also
obeys at all times a Poisson distribution with parameter x(t) =
xA(t) + xI (t). If we start with an initial condition different
from nA(0) = nI (0) = 0 (or nA being Poisson distributed), the
time-dependent solution is not Poissonian, but this form is
recovered in the steady state.
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