
PHYSICAL REVIEW A 85, 052101 (2012)

Quantum correlations and mutual synchronization

Gian Luca Giorgi, Fernando Galve, Gonzalo Manzano, Pere Colet, and Roberta Zambrini
IFISC, Instituto de Fı́sica Interdisciplinar y Sistemas Complejos (UIB-CSIC), Campus Universitat Illes Balears,

E-07122 Palma de Mallorca, Spain
(Received 30 May 2011; published 3 May 2012)

We consider the phenomenon of mutual synchronization in a fundamental quantum system of two detuned
quantum harmonic oscillators dissipating into the environment. We identify the conditions leading to this
spontaneous phenomenon, showing that the ability of the system to synchronize is related to the existence
of disparate decay rates and is accompanied by robust quantum discord and mutual information between the
oscillators, preventing the leak of information from the system.
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I. INTRODUCTION

Synchronization phenomena have been observed in a
broad range of physical, chemical, and biological systems
under a variety of circumstances [1]. In some instances
synchronization (also known as entrainment in this context)
is induced by the presence of an external forcing or driving
that acts as a pacemaker; in others it appears spontaneously as
a consequence of the interaction between the elements. The
latter case is the most relevant from the point of view of com-
plexity since it appears as an emergent phenomenon that takes
place despite the natural differences between the elements.
Collective synchronization, whose simplest description can be
given in terms of coupled self-sustained oscillators, is found
in relaxation oscillator circuits, networks of neurons, cardiac
pacemaker cells, or fireflies that flash in unison [2]. A key
ingredient for collective synchronization is dissipation, which
is responsible for collapsing any trajectory of the system in
phase space in a lower-dimensional manifold.

Synchronization has also been studied in the quantum world
in the case of entrainment induced by an external driving [3].
Difficulties in addressing quantum collective synchronization
come from the fact that in linear oscillators dissipation will lead
to the death of the oscillations after a transient while the exten-
sion to the quantum world of nonlinear phase oscillators does
not allow for an insightful treatment. In this work, however,
we take a step toward the understanding of quantum collective
synchronization, showing that it is possible to fully charac-
terize synchronization during the transient dynamics. We find
that synchronization happens in the presence of a common
bath due to a separation between dissipation rates. Different
groups have recently approached this subject considering the
(classical) synchronization of nanoscopic and microscopic
systems susceptible of having quantum behavior [4–6]. In this
work we establish the connections between the phenomenon
of synchronization and quantum correlations in the system.

II. SYSTEM

We consider two coupled quantum harmonic oscillators
dissipating into the environment [7–9] with different frequen-
cies [10], which is arguably one of the most fundamental
prototypical models. Current experimental realizations in the
quantum regime include nanoelectromechanical structures and
optomechanical devices [11] as well as separately trapped ions

whose direct coupling has been reported recently [12]. The
system Hamiltonian for h̄ = 1 and unit masses is
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where |λ| < ω1ω2 (attractive potential) and we allow for
frequency diversity. The free Hamiltonian is diagonalized by
a rotation in the x1-x2 plane, with θ the angle that gives
the eigenmodes {X±} a function of the coupling tan 2θ =
2λ/ω2

2 − ω2
1. Master equations for both a common bath (CB)

and separate baths (SB) have been compared by also analyzing
entanglement decay time in Ref. [10], where both the similarity
of the frequencies of the oscillators and the coupling strength
were shown to contribute to the preservation of entanglement
for a CB, leading to asymptotic entanglement in the case
of identical frequencies [7,8,13]. The transition from SB to
one CB underlies the capability of entanglement generation
discussed in Ref. [14] and a physical implementation of the
latter has been proposed recently [15].

Following Ref. [10], the system dynamics is described by
a master equation that is valid in the weak-coupling limit
between the system and environment, without the rotating-
wave approximation [16]. Even if the obtained master equation
has the same form as the exact one [9], the coefficients
are approximated for weak coupling γ between the system
and environment. Taking this equation for strong coupling
can lead to unphysical values for the reduced density and
violation of positivity can appear at low temperatures and
for certain initial states [16]. In the following we restrict
our analysis to small γ = 0.01ω1, where we never encounter
any unphysical dynamics. This is consistent with the fact
that deviations of this master equation from one in the
Lindblad form (preserving positivity) are in fact small for high
temperatures (here T = 10ω1 in natural units). Particularly
useful for the purpose of understanding the physical behavior
of the oscillators dissipation is the master equation in the basis
of the normal modes of the system Hamiltonian as given in
Appendix A.

An important observation is that our results do not in fact
depend on the specific choice of this master equation. In
particular, in Appendix B we compare our results with the one
obtained from a master equation in the Linblad form, obtained
by a rotating-wave approximation. Within this approximation
the master equation is known to be in the Lindblad form [16,17]
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FIG. 1. (Color online) (a) 〈x2
1 (t)〉/S (light color) and 〈x2

2 (t)〉/S (black) normalized with the shot noise S, for ω2 = 1.4ω1 and λ = 0.7ω2
1

starting from squeezed vacuum states for a CB and (b) synchronization C〈x2
1 〉〈x2

2 〉(t,15) for a CB (dark color) and SB (light color) for temperature

T = 10ω1 (in natural units). The insets show synchronization values |C〈x2
1 〉〈x2

2 〉| varying ω2/ω1 and λ/ω2
1 at t = 300. Time t is scaled with ω1

(and is therefore adimensional) and γ = 0.01ω1 here and in the following. The initial state is separable with squeezing parameters 2 and 4,
respectively, in the two oscillators.

and we find almost exactly the same results as that obtained
with the master equation (A4). Therefore the phenomena
predicted in the following do not depend on the specific details
of the considered master equation.

III. SYNCHRONIZATION

The dynamical behavior of the two oscillators can be
analyzed through their average positions, variances, and cor-
relations, as we deal here with Gaussian states. The presence
of a CB or of two (even if identical) SB leads to different
friction terms in the dynamical equations of both first- and
second-order moments [10] with profound consequences. We
recall that for a CB only the sum of positions x+ = x1 + x2 is
actually dissipating and this does not coincide with X+ unless
the oscillators are identical.

Figure 1(a) shows the variance dynamics of two oscillators
starting from two vacuum squeezed states. To quantify
synchronization between two functions f (t) and g(t), we
adopted a commonly used indicator, namely, Cf,g(t,�t) =
δf δg/

√
δf 2δg2, where the bar stands for a time average

f = ∫ t+�t

t
dt ′f (t ′) with time window �t and δf = f − f .

For similar evolutions |C| ∼ 1, while |C| ∼ 0 for different
dynamics. The position variances for CB [Fig. 1(a)] show a
transient dynamics without any similarity between them, also
in antiphase (C〈x2

1 〉〈x2
2 〉 < 0), before reaching full synchroniza-

tion [Fig. 1(b)].
A comprehensive analysis shows that this behavior is robust

considering (i) different initial conditions, (ii) any second-
order moments of the two oscillators (either of positions x1,2

or momenta p1,2 or any arbitrary quadrature), and (iii) a whole
range of couplings and detunings. Regarding (i), an important
observation is that while in an isolated system the dynamics
is strongly determined by the initial conditions, this is not
the case in the presence of an environment. After a transient
(in which the initial conditions have an important role), we
actually find synchronization independently of the initial state,
with detuning and oscillator coupling therefore being the only
relevant parameters. The full analysis (iii) for a CB allows
us to conclude that synchronization arises faster for nearly

resonant oscillators and that the deteriorating effect of detuning
can be proportionally compensated for by strong coupling, as
represented in the CB inset of Fig. 1(b).

Moving now to the case of separate baths, a completely
different scenario appears. The quality of the synchronization
is generally poor (small |C|), not improving in time and
dependent on the initial condition. The full parameters map
for |C| is shown in the SB inset of Fig. 1(b). In this case the
oscillators do not synchronize in spite of their coupling even
considering long times when finally the system thermalizes.

The appearance of a synchronous dynamics only for a
CB can be understood by considering the time evolution of
the second-order moments. The matrix governing their time
evolution [10] (see also Appendix A) has complex eigenval-
ues {μi} (i = 1, . . . ,10), named in the following dynamical
eigenvalues. Their real and imaginary parts determine the
decays and oscillatory dynamics of all second-order moments
and variances. As shown in Fig. 2(a), when λ = 0 all the
eigenvalues are along the line −0.01 and for increasing
coupling in the case of one CB they move in the complex
plane assuming three different real values. In contrast, for SB
all dynamical eigenvalues have similar real parts that remain

FIG. 2. (Color online) (a) Eigenvalues μi in the complex plane
for a CB for ω2/ω1 = 1.31 and increasing the coupling from λ =
0 [circles with Re(μi) ∼ −0.01] to λ = 0.9ω2

1 in the direction of
darker colors. (b) Ratio between minimum and maximum eigenvalue
Re(μm)/Re(μM ) for a CB.
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almost unchanged when varying parameters. Hence for SB
the ratio between the maximum and the minimum eigenvalues
Re(μM )/Re(μm) ≈ 1 is almost constant for all parameters,
while for a CB and for parameters for which synchronization
is found [CB inset in Fig. 1(b)] Re(μM )/Re(μm) � 1, as
shown in Fig. 2(b). In this parameters regime, after a transient
time, only the least-damped eigenmode survives, thus fixing
the frequency of the whole dynamics of the moments. As a
consequence of this mechanism, synchronization is observed
by considering the expectation values of any quadrature of the
oscillators as well as higher-order moments.

We obtain an approximated analytical estimation of time
scales by considering the master equation in the eigenbasis
{X±,P±} of the free Hamiltonian [Eq. (1)], as detailed in
Appendix A. The master equations for common and separate
baths have the same expression in the case of detuned
oscillators and the nature of dissipation (a CB or SB) appears
only in the form of the damping coefficients. By eliminating
the oscillating terms in the dynamics in the interaction picture,
one obtains that, within this approximation, the decay rates of
〈P 2

±〉 are given by

�̃SB
±± = c2�11 + s2�22 ± cs�12 (2)

for SB and

�̃CB
±± = (c ± s)(c�11 ± s�22) + (1 ± 2sc)�12 (3)

for a CB, where c = cos θ , s = sin θ (with θ the previously
defined diagonalization angle of HS), and �11,22,12 appear in
the original master equation (see the Appendix of Ref. [10]).
These approximated decays for the variances, together with
their average (�̃−− + �̃++)/2 (for 〈P+P−〉), for a CB and
SB do agree very well with the real parts of the dynamical
eigenvalues.

As mentioned before, synchronization (for a CB) is
observed by looking at the dynamics of both first- and
second-order moments: The ratio between minimum and
maximum dynamical eigenvalues is the same in both cases.
Still, our interest is in the second-order moments due to
their relevance in the quantum information shared by the
oscillators. Furthermore, inspection of first-order moment
dynamics allows us to establish connections with what is
known in classical systems [1]. Two studied scenarios for
classical synchronization are the diffusive coupling where both
oscillator dampings depend on the difference of the velocity
and the direct coupling where each one depends on the velocity
of the other [1]. The quantum harmonic oscillators considered
here for a CB display in their first-order moments a diffusive
coupling up to a change of sign, which explains the antiphase
character of their synchronization.

IV. QUANTUM CORRELATIONS

Once the conditions for synchronization to arise have been
established, we explore this phenomenon by focusing on the
information aspects, through mutual information shared by
the oscillators and their quantum correlations. In particular,
the total correlations between the oscillators are measured
by the mutual information I(	) = S(	1) + S(	2) − S(	),
where S stands for the von Neumann entropy and 	1(2)

is the reduced density matrix of each harmonic oscillator.

FIG. 3. (Color online) (a) Mutual information and (b) discord on
a logarithmic scale for a common bath and separate baths. Both the
exact time evolutions and the filtered ones (Gaussian filter) are shown.
The parameters are ω2 = 1.05ω1 and λ = 0.3ω2

1.

A possible partition of correlations into quantum and clas-
sical parts that has received much attention recently is
given by the quantum discord [18,19] δ(	) = min{
i }[S(	2) −
S(	) + S(	1|{
i})], with the conditional entropy defined
as S(	1|{
j }) = ∑

i piS(	1|
i
), 	1|
i

= 
i	
i/pi density
matrix after a complete measurement {
j } on the second os-
cillator, and pi = Tr12(
i	). The importance of this measure
of the quantumness of correlations relies on its capability to
distinguish and understand classical and quantum behaviors
[20]. Quantum discord has been reported recently also for
continuous variables in Gaussian states [21].

Dissipation degrades all quantum and classical correlations
[22]. Nevertheless, important differences are found when
comparing a CB and SB for the same parameter choices. In
Fig. 3 we show a fast decay of all the total [Fig. 3(a)] and
quantum [Fig. 3(b)] correlations for SB. In contrast, for a
CB we find that after a short transient both mutual information
and discord oscillate around an almost constant value and their
decay is nearly frozen. For these parameters and a common
environment the oscillators synchronize and C〈x2

1 〉〈x2
2 〉 = 0.95

at t ∼ 270. The robustness of the quantum correlations for
long times in synchronizing oscillators in a CB and the deep
differences with the case of SB is surprising also because their
respective asymptotic values are really similar for detuned
oscillators. In other words, the upper CB curve in Fig. 3(a)
[or Fig. 3(b)] will eventually thermalize, converging to a value
very similar the one obtained for SB, while strong differences
in the asymptotic values actually appear only in the case
of identical oscillators [7]. As a further result, the effect of
increasing the temperature is mostly on the asymptotic state
while the main features of the dynamics described here are
still observed.

We now focus on the case of a CB to look for specific
quantum features of the synchronization exploring different
parameters regimes. The comparison of mutual information
and discord in cases in which there is synchronization or the
system dissipates without having time to synchronize is given
in Fig. 4 (upper and lower curves, respectively), where we
filter out the fast oscillations to highlight the decay dynamics.
For small coupling and large detuning, discord (shown in Fig. 4
for λ/ω2

1 = 0.3 and ω2/ω1 = 1.4) and mutual information
are rapidly degraded. In this case, when t = 200 there is no
synchronous dynamics and C〈x2

1 〉〈x2
2 〉 ∼ 0. In contrast, for strong
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FIG. 4. (Color online) Evolution of the discord for a CB and
the parameters ω2/ω1 = 1.05andλ = 0.8ω2

1 (dashed line A) and
ω2/ω1 = 1.4 and λ = 0.3ω2

1 (solid line B). The inset represents the
quantum discord at t = 300 for a CB.

coupling or for small detuning, synchronization occurs fast:
For λ/ω2

1 = 0.8, ω2/ω1 = 1.05 and C〈x2
1 〉〈x2

2 〉(t = 200) ∼ 1. In
this case, after a short transient, the dynamics of discord is
almost frozen and it remains robust against decoherence. In
exploring different parameter regimes we conclude that fast
decay of classical and quantum correlations is found in cases
in which there is no synchronization, while the emergence
of synchronization accompanies robust correlations against
dissipation (frozen decay). The inset in Fig. 4 represents the
value of the discord after the fast decay (here for t = 300),
where it is expected to be already in the plateau. There is
a rather suggestive similarity to the synchronization map for
a CB shown in the inset of Fig. 1(b). Considering that also
entropy shows in this regime a slow growth, we conclude
that synchronized oscillators are characterized by a reduced
leakage of information into the environment.

One might wonder if the presence of a synchronous
dynamics has any effect on entanglement, as in contrast with
pure states mixed states with large quantum correlations can
have even vanishing entanglement [23]. The presence of the
environment for oscillators with different frequencies leads to
a complete loss of entanglement in finite short times unless
the couplings to the CB are balanced [10]. In the general case
of detuned oscillators, even for large couplings, entanglement
decay is typically faster than the time scales at which the
system reaches synchronous dynamics both for a CB and SB,
mostly at this temperature (T = 10ω1). Still, longer survival
times for entanglement in a CB are found for small detunings
and strong couplings [10].

V. DEPENDENCE ON INITIAL CONDITIONS

We mentioned before that initial conditions do not play
any important role in the appearance of synchronization.
Indeed synchronous dynamics of the moments appears when
an eigenmode dominates because of its slow dissipation rate
and this goes beyond the specificity of the choice of the initial
state. However, the details of the dynamics do depend on the
latter as we illustrate for the following initial conditions: (i) the
separable vacuum state ρ = |0〉〈0| ⊗ |0〉〈0|; (ii) the two-mode
squeezed states

ρ = U12(r)(|0〉〈0| ⊗ |0〉〈0|)U †
12(r),

where U12(r) = exp [−r(a†
1a

†
2 − a1a2)/2] and ai (a†

i ) are the
usual annihilation (creation) operators; and (iii) the separable
squeezed state

ρ = U1(r1)|0〉〈0|U †
1 (r1) ⊗ U2(r2)|0〉〈0|U †

2 (r2),

with Ui(ri) = exp [−r(a†2
i − a2

i )/2].
Instead, quantum correlations δ depend on the initial

condition in the sense that more or less of the latter will
be present. However, after the short transient they always
reach a plateau where information leakage to the environment
is greatly reduced. Both information leakage reduction and
synchronization are part of the same underlying phenomenon:
that of a dissipation channel being much slower than the other.
This behavior is seen in Fig. 5, where quantum correlations
and the synchronization indicator are displayed for different
initial conditions. We must further stress here that since the
asymptotic thermal state has δ ∼ 10−4, the plateau is expected
to be very long.

VI. CONCLUSION

Our analysis of the dynamics of dissipative quantum
harmonic oscillators has allowed us to establish under which
conditions synchronization appears. This phenomenon can
appear in rather different forms but in this paper it was
reported during the transient dynamics of a (quantum or
classical) system coupled to an environment and relaxing
toward equilibrium. The emergence of synchronization was
explained in terms of different temporal decays governing
the system evolution and related to a separation between
the eigenvalues of the matrix generating the dynamics. We
traced synchronization between second-order moment evo-
lution from the existence of a slowly decaying eigenmode

FIG. 5. (Color online) (a) Synchronization indicator and (b) decay of quantum correlations for different initial conditions in the case of
a common bath: separable squeezed state with squeezings r1 = 2 and r2 = 4 (solid line), separable vacuum state (dotted line), and entangled
two-mode squeezed state (dashed line) with squeezing r = 2. Other parameters are ω2/ω1 = 1.1andλ = 0.8ω2

1
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and found approximated expressions for the variance decay
coefficients in very good agreement with the real parts of the
dynamical eigenvalues. We found that synchronization arises
in the presence of a common bath, but not for separate ones,
for any strength of the coupling between oscillators. It could
be of interest to study the transition between such different
scenarios [14]. The relevant parameters are λ/ω2

1 and ω2/ω1

since the dependence on initial conditions is actually weak.
We have thus characterized mutual synchronization from a

quantum information perspective through mutual information
and quantum discord, exploring their dynamics in different
parameters regimes. We found that there is a signature of
synchronization in the information shared by the oscillators.
We have shown that discord and mutual information are
more robust when the oscillators synchronize. In spite of
the fact that after thermalizing the asymptotic discord is
negligible for both a CB and SB, the decay toward this value
is clearly frozen in the presence of synchronization. In this
case total and quantum correlations display a very slow decay
(plateau) and the leak of information into the bath is reduced.
The identification of the conditions for the occurrence of
synchronization and its connection with quantum correlations
reported here provides a path toward future extensions such
as the study of arrays and networks, the analysis of the
role of different environments, or the exploration of eventual
connections with biological systems in which synchronization
is a widespread phenomenon.
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APPENDIX A: MASTER EQUATION IN THE NORMAL
MODE BASIS

The master equations describing the evolution of the re-
duced density matrix of the system of two different oscillators,
up to second order in the coupling strength, have been reported
in Ref. [10] for both a common and separate baths. Here we
provide these equations in the basis of the eigenmodes of the
Hamiltonian. We stress that the exact master equation at all
coupling orders has the same structure as ours, the difference
being in the form of its coefficients [9,16]. For weak coupling
this equation is a very good approximation to the exact one.
Furthermore, in Appendix B we show that the full evolution
almost perfectly matches that of a master equation obtained by
a rotating-wave approximation, the latter being always positive
due to its Lindblad form.

1. Common bath

In the case of a common bath, we assume for the interaction
Hamiltonian between the system and the environment the
form H CB

I = ∑
k gk(bk + b

†
k)x+, where x+ = x1 + x2, bk (b†k)

creates (annihilates) an excitation (with energy �k) over the
kth mode of the bath, and the coupling coefficients gk are
related to the density of states of the bath J (�) through J (�) =∑

k(g2
k/�k)δ(� − �k). We assume an Ohmic environment

with a Lorentz-Drude cutoff function, whose spectral density
is

J (�) = 2γ

π
�

�2

�2 + �2
. (A1)

The results represented in this work are obtained with bath-
system coupling γ = 0.01ω1 and cutoff � = 50ω1.

The eigenmodes of HS are

X− = cos θx1 − sin θx2, (A2)

X+ = cos θx2 + sin θx1, (A3)

with tan 2θ = 2λ/ω2
2 − ω2

1. The system eigenfrequencies �±
are always different due to the coupling 2�2

± = ω2
1 + ω2

2 ±√
4λ2+(ω2

2−ω2
1)2. Neglecting energy renormalization, the master

equation in this eigenmode basis reads

dρ(t)

dt
= −i[HS,ρ(t)] − D̃CB

−−
2

[X−,[X−,ρ]] − D̃CB
++
2

[X+,[X+,ρ]] − D̃CB
+−[X+,[X−,ρ]]

+ F̃ CB
−−
2

[X−,[P−,ρ]] + F̃ CB
++
2

[X+,[P+,ρ]] + F̃ CB
+−
2

[X+,[P−,ρ]] + F̃ CB
−+
2

[X−,[P+,ρ]]

− i

(
�̃CB

−−
2

[X−,{P−,ρ}] + �̃CB
++
2

[X+,{P+,ρ}] + �̃CB
+−
2

[X+,{P−,ρ}] + �̃CB
−+
2

[X−,{P+,ρ}]
)

, (A4)

with

D̃CB
−− = (c − s)(cD11 − sD22) + (1 − 2sc)D12, D̃CB

++ = (c + s)(cD11 + sD22) + (1 + 2sc)D12,

D̃CB
+− = c2 − s2

2
(D11 + D22 + 2D12) + sc(D11 − D22), F̃ CB

−− = (c − s)(cF11 − sF22) + (1 − 2sc)F12,

F̃ CB
++ = (c + s)(cF11 + sF22) + (1 + 2sc)F12, F̃ CB

−+ = (c − s)(cF22 + sF11) + (c2 − s2)F12,
(A5)

F̃ CB
+− = (c + s)(cF11 − sF22) + (c2 − s2)F12, �̃CB

−− = (c − s)(c�11 − s�22) + (1 − 2sc)�12,

�̃CB
++ = (c + s)(c�11 + s�22) + (1 + 2sc)�12, �̃CB

−+ = (c − s)(c�22 + s�11) + (c2 − s2)�12,

�̃CB
+− = (c + s)(c�11 − s�22) + (c2 − s2)�12,
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where c = cos θ , s = sin θ , and the dissipation (�i,j ) and
diffusion (Di,j ,Fi,j ) coefficients are defined in the Appendix
of Ref. [10], specifically in Eqs. (A18)–(A20). The related set
of equations of motion is

d〈XiXj 〉
dt

= 1

2
({Xi,Pj } + {Xj,Pi}), (A6)

d〈PiPj 〉
dt

= −1

2

(
�2

i 〈{Xi,Pj }〉 + �2
j 〈{Xj,Pi}〉

)
− (

�̃CB
i,i + �̃CB

j,j

)〈PiPj 〉 − �̃CB
i,−i〈PjP−i〉

− �̃CB
j,−j 〈PiP−j 〉 + D̃CB

i,j , (A7)

d〈{Xi,Pj }〉
dt

= 2〈PiPj 〉 − 2�2
j 〈XiXj 〉 + F̃ CB

i,j

− �̃CB
j,j 〈{Xi,Pj }〉 − �̃CB

j,−j 〈XiP−j 〉, (A8)

where i,j = +,−.
The time evolution of the vector R of all ten moments can

be written in a compact matrix form

Ṙ = MR + N. (A9)

The complex eigenvalues of M are {μi} with i = 1, . . . ,10,
elsewhere referred to as dynamical eigenvalues.

2. Separate baths

When the two environments are thought to be identical
and independent from each other, the interaction Hamiltonian
becomes

H SB
I =

2∑
i=1

∑
k

gk

(
bi

k + b
i†
k

)
xi, (A10)

where the annihilation (creation) operators bi
k (bi†

k ) belong,
respectively, to the ith thermal bath. The density of states of
both of them is that of Eq. (A1), with the same γ and �

introduced before. The master equation has the same structure
of Eq. (A4), but the coefficients are modified as follows:

D̃SB
−− = c2D11 + s2D22 − 2csD12,

D̃SB
++ = c2D11 + s2D22 + 2csD12,

D̃SB
+− = cs(D11 − D22) + (c2 − s2)D12,

F̃ SB
−− = c2F11 + s2F22 − 2csF12,

F̃ SB
++ = c2F11 + s2F22 + 2csF12, (A11)

F̃ SB
−+ = F̃ SB

+− = cs(F11 − F22) + (c2 − s2)F12,

�̃SB
−− = c2�11 + s2�22 − 2cs�12,

�̃SB
++ = c2�11 + s2�22 + 2cs�12,

�̃SB
−+ = �̃SB

+− = cs(�11 − �22) + (c2 − s2)�12.

Once these coefficients are used instead of those coming from
a common bath, the equations of motion are formally identical
to those of Eqs. (A6)–(A8).

APPENDIX B: INDEPENDENT DECAY RATES

The eigenmodes (A2) and (A3) diagonalize the Hamilto-
nian of the system HS but are still indirectly coupled through

FIG. 6. (Color online) Rates �̃CB
++ and �̃CB

−−, from Eq. (3), and
(�̃CB

++ + �̃CB
−−)/2 (dots) compared with the (three different) real parts

of the dynamical eigenvalues Re(μi) (continuous line) in the case of
a common bath for ω2/ω1 = 1.31.

the heat bath(s) as seen from Eqs. (A6)–(A8). This means that
the eigenmodes cannot be considered as independent channels
for dissipation. Yet if we rewrite their master equation in
interaction picture, we can neglect fast oscillating terms, as
usual in the rotating-wave approximation, that is, eliminate
exponents such as e±i(�++�−)t due to their highly oscillatory
behavior in comparison with the overall slower dynamics
[17,24]. If we take this approach to the extreme we can
also eliminate terms that also rotate though more slowly,
such as e±i(�+−�−)t , and keep only nonrotating terms. Finally,
this procedure leads to an effective total decoupling of the
eigenmodes, which then dissipate independently to the heat
bath(s) with the decay rates �̃CB

±± and �̃SB
±± [Eqs. (2) and (3)]. In

some sense this time-averaging approximation can be seen as
renormalizing all dissipation coefficients having mixed indices
+− (and −+) to zero, hence rendering the master equation as a
tensor product of two independent evolutions. This could seem
a bit too far fetched, but a comparison of the full dynamics and
this approximation seems to be quite accurate as clear from
Fig. 6, where we compare �̃CB

±± and their average with the three
different values of Re(μi).

Inspection of these analytical expressions when varying
system parameters confirms that dynamical eigenmode decays
for SB all have similar real parts (in general �12 small
and �11 
 �22), while for a CB the decays can be sig-
nificantly different (a factor 20 in Fig. 6). This difference
between decay rates can be up to several orders of mag-
nitude for parameters where synchronization appears faster.
Synchronization is therefore linked to imbalanced dissipation

FIG. 7. (Color online) (a) Synchronization and (b) discord ob-
tained from the complete master equation (A4) compared with the
values obtained after the rotating-wave approximation, as described in
the text in the case of common bath, for ω2/ω1 = 1.4 and λ = 0.7ω2

1.
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rates of the eigenmodes, allowing the mode that survives longer
to govern the dynamics. Within the discussed approximation
its frequency is found to be 2�− with �− previously defined
as the frequency of the eigenmode X−. This is independent
of bath coefficients and we find very good agreement with the
exact frequency.

It can be easily seen that the rotating-wave approximation
described in this appendix, neglecting all highly oscillatory
terms with exponents e±i(�+±�−)t , leads to (CB and SB)
master equations in the Kossakowski-Lindblad form [16].
In particular, in the case of a common bath it can be
found that

dρ

dt
= −i[HS,ρ(t)] −

∑
i=+,−

(
D̃CB

ii /�i

) + �̃CB
ii

4

× [A†
i Aiρ + ρA

†
i Ai − 2AiρA

†
i ]

−
∑

i=+,−

(
D̃CB

ii /�i

) − �̃CB
ii

4

× [AiA
†
i ρ + ρAiA

†
i − 2A

†
i ρAi],

(B1)

where A± = √
�±/2X± + i/

√
2�±P±. In spite of formal

differences between Eqs. (A4) and (B1) we actually find very
good agreement between their dynamical evolutions. In Fig. 7
we show that in the limit of weak coupling considered here,
predictions for synchronization and discord are actually almost
indistinguishable. Maximum deviations in this case are at
least two order of magnitude smaller than the represented
quantities. As expected, deviations increase for stronger
system-environment coupling. The really weak dependence
on the details of the master equation [Eqs. (A4) and (B1)]
when comparing the dynamical behavior of synchronization
and quantum correlations between the oscillators further
strengthens the generality of our results.
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