1	
2	
3	Evidence for horizontal gene transfer as origin of putrescine-production
4	in Oenococcus oeni RM83
5	
6	
7	
8	ÁNGELA MARCOBAL ^{a,b} , BLANCA DE LAS RIVAS ^a , M. VICTORIA MORENO-
9	ARRIBAS ^b , AND ROSARIO MUÑOZ ^{a*}
10	
11	
12	^a Departamento de Microbiología and ^b Departamento de Caracterización de Alimentos,
13	Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
14	
15	
16	
17	Running Title
18	PUTRESCINE-PRODUCTION IN OENOCOCCUS OENI
19	
20	
21	* Corresponding author. Mailing address: Departamento de Microbiología, Instituto de
22	Fermentaciones Industriales, CSIC, Juan de la Cierva3, 28006 Madrid, Spain. Phone: 34 91
23	562 2900. Fax: 34 91 564 4853. E-mail: rmunoz@ifi.csic.es

The nucleotide sequence of a 17.2-kb chromosomal DNA fragment containing
the odc gene encoding the ornithine decarboxylase has been determined in the
putrescine-producer Oenococcus oeni RM83. This DNA fragment contains 13 open
reading frames, including genes coding for five transposases and two phage proteins.
This description might represent the first evidence of a horizontal gene transfer event
as the origin of a biogenic amine biosynthetic locus.
Wines are a highly selective media and support the growth of only a few species of
lactic acid bacteria (LAB), mainly Oenococcus oeni and several lactobacilli. O. oeni is
often responsible for wine malolactic fermentation and is frequently utilized as a starter
culture to promote malolactic conversion.
In acidic media like wine, decarboxylation of amino acids to their corresponding
amines is thought to provide energy through electrogenic transport as well as assist in
maintaining an optimal internal pH (11). Some of these amines are considered "biogenic"
and may cause intoxications when consumed. The biogenic amine putrescine, which can
potentiate the action of histamine, is the most prevalent amine in wine, and is found in
almost all analysed wines (12, 15).
Biogenic amines are primarily formed by decarboxylation of the corresponding
amino acids by microorganisms through substrate-specific decarboxylases. The capability
of biogenic amine production appears to be strain-dependent rather than species-specific.
Previously, we reported the identification of the <i>odc</i> gene in the putrescine-producer O.
oeni RM83 (formerly, O. oeni BIFI-83) for the first time (14). The odc gene encodes a

1	deduced 745-amino acid putative ornithine decarboxylase (ODC-EC 4.1.1.17) which
2	catalyzes the conversion of ornithine to putrescine. The odc gene is seldom present in the
3	O. oeni genome, as it has not been detected in a screen of 42 O. oeni strains tested to date
4	(14). Moreover, in silico analysis of the draft O. oeni PSU-1 genome did not reveal the
5	presence of any <i>odc</i> homologs (16).
6	Recently, Lucas et al. (2005) (13) described that the potential for producing
7	histamine in Lactobacillus hilgardii 0006 is encoded on an unstable 80-kb plasmid; the
8	authors further suggested that it is very likely that the histamine-producer Tetragenococcus
9	muriaticus and O. oeni 9204, harbors the same plasmid. However, the localization of the
10	odc gene in O. oeni RM83 remains unknown.
11	This study was undertaken to gain deeper insight into the origin of putrescine
12	production in O. oeni RM83. Additionally, the O. oeni RM83 ODC has been expressed in
13	E. coli and biochemically characterized.
14	
15	Genetic location of the odc locus in O. oeni RM83. The putrescine-producer O.
16	oeni RM83, formerly O. oeni BIFI-83, was isolated from lees of a Spanish red wine (14).
17	Putrescine-production by O. oeni RM83 was maintained without ornithine pressure,
18	suggesting that the odc locus was stable. To determine if O. oeni RM83 harbored any
19	plasmids, total DNA was extracted and analysed by standard agarose gel electrophoresis
20	(19). This assay revealed the absence of small plasmids in O. oeni RM83 (data not shown).
21	Subsequently, native total DNA was embedded in agarose plugs and analysed by PFGE as
22	described previously (1). Again, plasmids were not detected. Moreover, southern
23	hybridization with a 1.4-kb DNA probe targeted to an internal <i>odc</i> fragment (14) yielded a

positive signal only in the chromosomal DNA (data not shown). Therefore, it is concluded
that *odc* in *O. oeni* RM83 is located on the chromosome.

3

4 Characterization of the odc region in O. oeni RM83. Since i) in silico analysis of 5 the O. oeni PSU-1 draft genome did not reveal the presence of an odc gene (16), ii) the 6 presence of the *odc* gene appears to be infrequent in the *O. oeni* genome (13), and iii) the 7 odc gene is chromosomically located in O. oeni RM83, we decided to identify the 8 chromosomal DNA region involved in putrescine production in O. oeni RM83. The 17.2-kb 9 sequence flanking the previously described 2.3 kb odc region was determined (14). This 10 sequence was ascertained by creating a phage library of O. oeni RM83 genomic DNA and 11 by several reverse PCR experiments. 12 To construct the O. oeni RM83 DNA library, chromosomal DNA was partially 13 digested with Sau3AI restriction enzyme and ligated to the ZAP Express® vector 14 (Stratagene, La Jolla, CA) digested with BamHI. The screening of the library using the 1.4-15 kb internal *odc* DNA fragment as a probe yielded five positive clones. Since the inserts of 16 three of them were included in pAM4 and pAM8, only these plasmids were sequenced (Fig. 17 1). A total of 10,891 bp O. oeni RM83 DNA fragment was sequenced from the pAM4 and 18 pAM8 plasmids. Two successive reverse PCR experiments, utilizing SnaBI and EcoRV, 19 allowed us to sequence the 5'end of the fragment (Fig. 1). Similarly, a reverse PCR 20 experiment using SpeI, allowed for the sequencing of the total 17,270-bp EcoRV-SpeI 21 chromosomal DNA fragment surrounding the O. oeni RM83 odc gene (Fig. 1). 22 Sequence analysis of this DNA fragment showed the presence of 11 complete 23 (albeit some interrupted) and 2 partial open reading frames (ORFs) in the *odc* region (Fig. 24 1, Table 1). Two interesting features were observed, the presence of two putative phage

2	
4	(<i>orf1</i>), is predicted to code for a protein showing the highest similarities (>30% identity) to
3	Streptococcus thermophilus bacteriophage proteins. Notably, it has been reported that the
4	genomes of currently characterized S. thermophilus phages exhibit homology to each other
5	in a modular fashion (2). Furthermore, <i>orf2</i> is predicted to encode a protein similar to a
6	DNA replication protein from an Enterococcus faecalis prophage. The O. oeni PSU-1 draft
7	genome does not contain any intact temperate bacteriophage, or larger tracts of obvious
8	bacteriophage origin, although several prophage integration sites have been found (16).
9	Contiguous to and divergently transcribed from <i>orf</i> 2, we found a variant copy of the
10	insertion sequence (IS) IS1165 (99% nucleotide identity) (9). The existence of two
11	additional copies of IS1165, at positions 3121-4675 and 12879-14433/c was observed. All
12	three of the IS1165 copies are identical and contain the canonical terminal inverted repeats.
13	Although IS1165 was originally described in Leuconostoc mesenteroides subsp. cremoris,
14	copies of this IS element have been described in other LAB such as Leuconostoc lactis, O.
15	oeni, Pediococcus sp., Lactobacillus helveticus, and Lactobacillus casei (10).
16	Upstream of orf4, there is a 876-bp region that might correspond to an insertion
17	sequence-like element on the basis of sequence similarity (58.5% nucleotide identity to a L .
18	plantarum transposase). Almost perfect 17-bp inverted repeats were found at positions
19	6124-6140 and 6984-7000. Another IS element, a copy of ISLpl4, is found 722 nucleotides
20	further upstream (4).
21	The odc gene is located downstream of ISLpl4. The ODC protein is predicted to
22	possess 745-amino acid residues including conserved residues involved in enzymatic
23	activity as well as the consensus sequence containing the pyridoxal-5-phosphate binding

24 domain (14). The next identified ORF is a putative *potE* gene. It encodes a 441-amino acid

1	residue, 47.6-kDa, protein showing 67.3% identity to the putrescine-ornithine antiporter
2	(PotE) from Haemophilus influenzae. PotE can catalyse both the uptake and excretion of
3	putrescine (8).
4	
5	Functional expression of the odc gene from O. oeni RM83. To confirm that the
6	odc gene from O. oeni RM83 encodes a functional ODC, we expressed this gene in E. coli
7	HT414 (CGSC strain # 6856) as this strain is defective for ODC activity (20). Firstly, the
8	gene was PCR amplified from O. oeni RM83 DNA by using Pfu DNA polymerase
9	(Stratagene, La Jolla, CA) and oligonucleotides PIN-ODC-up (5'-
10	GGAACTCTAGAGGGTATTAATAATGGATAGCGAAATAAAT
11	PIN-ODC-down (5'-
12	CGCATTGCGTTCACGTCGTTGCTCAATTATCATCTTTTTTTCTTCATCTTTTGAC).
13	The purified PCR fragment was inserted into pIN-III(lpp ^p -5)A3 (9) by using the strategy
14	described by Geiser et al. (7).
15	Cell extracts for ODC enzymatic assay were obtained from E. coli HT414 cells
16	harboring the control plasmid pIN-III(lpp ^p -5)A3 or the recombinant plasmid pAM11 as
17	previously described (18). The ODC assay was performed in 50 mM sodium phosphate
18	buffer (pH 6.5) in the presence of 3.6 mM ornithine and 0.4 mM PLP. The reaction was
19	incubated at 37 °C for 1 hour. Subsequently, the putrescine formed in the reaction was
20	derivatized, and detected by thin-layer chromatography (6) and by RP-HPLC (14). Extracts
21	from the strains harboring pAM11 were able to decarboxylate the supplied ornithine to
22	putrescine, whereas extracts prepared from control cells containing the vector plasmid
23	alone did not (Fig. 2). Therefore, we have provided experimental evidence that the odc
24	gene encodes a functional ODC.

2	Recombination as origin of the odc region in O. oeni RM83. Comparison of
3	nucleotide positions 15271 to 17270 (2 kb) of the sequenced O. oeni RM83 DNA fragment,
4	with positions 60644 to 62643 of the draft genome sequence of O. oeni PSU-1, accession
5	NZ_AABJ03000005, reveals three distinct regions based on their nucleotide sequence
6	identity (Fig. 3). The leftmost 649 nucleotides of both sequences showed a 47% nucleotide
7	identity, the next 827 nucleotides are 61.5% identical between RM83 and PSU-1 and, the
8	rightmost 524 nucleotide residues exhibiting perfect identity between both strains.
9	The proteins encoded by these 2-kb sequences are remarkable as well. From
10	nucleotide position 61293, O. oeni PSU-1 encodes a 156 residue protein, Ooen02001059,
11	annotated as a carbamoyl phosphate synthase and Ooen02001060, a 631 amino acid
12	hypothetical protein (Fig. 3). This hypothetical protein contains a N-terminal putative
13	signal peptide extending to amino acid 33, followed by five GW domains and a 130 amino
14	acid residues C-terminal end containing a MucBP domain (Fig. 3).
15	It is noteworthy that orf7 in O. oeni RM83 appears to be a chimeric protein
16	originating from the fusion of a gene encoding a protein 50% identical to the O. oeni PSU-1
17	putative carbamoyl phosphate synthase (Ooen02002059) and a gene encoding a protein
18	55% identical on its MucBP domain to the PSU-1 hypothetical protein (Ooen02002060).
19	Taking into account that GW and MucBP domains are found in a variety of bacterial
20	proteins, it is possible that the unknown donor protein could have domains coded by DNA
21	regions showing high nucleotide similarity with the corresponding O. oeni regions. This
22	similarity could facilitate the crossover between this unknown donor DNA and O. oeni
23	chromosomal DNA. Upon examination of regions of extreme identity, the crossover point
24	appears to reside at nucleotide position 16747 of the O. oeni RM83 sequence described in

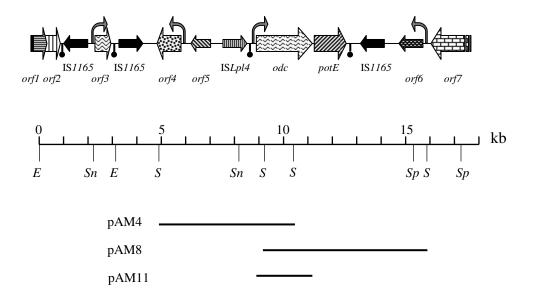
1	this work, and position 62120 of the O. oeni PSU-1 accession NZ_AABJ03000005. This
2	recombination site is located in the junction of the MucBP domain and the first GW
3	domain. Interestingly, in O. oeni PSU-1 the gene coding for the hypothetical protein
4	Ooen02001060 is found less than 5 kb downstream of the gene <i>recP</i> coding for a
5	transketolase. Recently, de las Rivas et al. (2004) (3) described in the <i>recP</i> locus a possible
6	example of a recombinatorial event from an unknown source. The description of two
7	recombinatorial events in the same DNA region indicate a region of great flexibility in the
8	O. oeni chromosome as described recently in L. plantarum (17).
9	It is now understood that horizontal gene transfer provides an important mechanism
10	for generating genotypic and phenotypic diversity in bacteria. This phenomenon has been
11	studied extensively in relation to bacterial adaptability or fitness under certain growth
12	conditions. Accordingly, it has been widely reported that adaptability traits can be encoded
13	by mobile genetic elements. Genomic islands (GI) are clusters of chromosomal genes that
14	have been described as horizontally acquired DNA regions (5). They often possess genes
15	(or pseudogenes) coding for mobility-related elements such as phage genes, insertion
16	sequence elements, transposases, and origins of replication. A typical GI carries genes
17	encoding traits that may increase bacterial adaptability under certain growth conditions. All
18	of these observations taken together, suggests that the 16.7-kb O. oeni RM83-specific DNA
19	may be a fragment of a GI transferred by horizontal gene transfer.
20	
21	Nucleotide sequence accession number. The DNA sequence of the O. oeni RM83 odc
22	region has been deposited in the EMBL/GenBank database under accession number
23	AJ746165.
24	

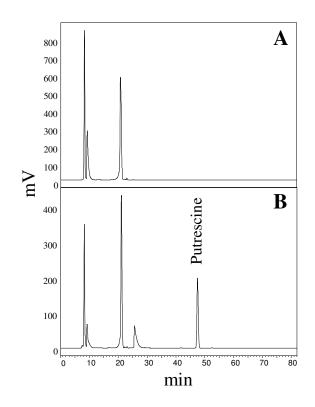
1		This work was supported by grants AGL2005-00470 (CICYT), RM03-002 (INIA),
2	an	d S-0505/AGR/000153 (CAM). We thank E. García and D. Llull for their help with the
3	PF	GE experiments. We thank the E. coli Genetic Stock Center
4	(<u>h</u>	ttp://cgsc.biology.yale.edu) to generously provide <i>E. coli</i> HT414 strain. We also thank D.
5	Se	la for correcting the English version of the manuscript. The technical assistance of M.V.
6	Sa	ntamaría and A. Gómez is greatly appreciated.
7		
8		REFERENCES
9		
10	1.	Arrecubieta, C., R. López, and E. García. 1994. Molecular characterization of <i>cap3A</i> ,
11		a gene from the operon required for the synthesis of the capsule of Streptococcus
12		pneumoniae type 3: sequencing of mutations responsible for the unencapsulated
13		phenotype and localization of the capsular cluster on the pneumococcal chromosome. J.
14		Bacteriol. 176:6375-6383.
15	2.	Brüssow, H., A. Probst, M. Frémont, and J. Sidoti. 1994. Distinct Streptococcus
16		thermophilus bacteriophages share an extremely conserved DNA fragment. Virology
17		200: 854-857.
18	3.	De las Rivas, B., A. Marcobal, and R. Muñoz. 2004. Allelic diversity and population
19		structure in Oenococcus oeni as determined from sequence analysis of housekeeping
20		genes. Appl. Environ. Microbiol. 70:7210-7219.
21	4.	De las Rivas, B., A. Marcobal, A. Gómez, and R. Muñoz. 2005. Characterization of
22		ISLpl4, a functional insertion sequence in Lactobacillus plantarum. Gene 363:202-210.
23	5.	Dobrindt, U., B. Hochnut, U. Hentschel, J. Hacker. 2004. Genomic islands in
24		pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414-424.

1	6.	García-Moruno, E, A. V. Carrascosa, and R. Muñoz. 2005. A rapid and inexpensive
2		method for the determination of biogenic amines from bacterial cultures by thin-layer
3		chromatography. J. Food Prot. 68:625-629.
4	7.	Geiser, M., R. Cèbe, D. Drewello, and R. Schmitz. 2001. Integration of PCR
5		fragments at any specific site within cloning vectors without the use of restriction
6		enzymes and DNA ligase. BioTechniques 31:88-92.
7	8.	Igarashi, K., and K. and Kashiwagi, K. 1999. Polyamine transport in bacteria and
8		yeast. Biochem. J. 344:633-642.
9	9.	Inouye, S., and M. Inouye. 1985. Up-promoter mutations in the <i>lpp</i> gene of
10		Escherichia coli. Nucleic Acids Res. 13:3101-311.
11	10	. Johansen, E, and A. Kibenich. 1992. Isolation and characterization of IS1165, an
12		insertion sequence of Leuconostoc mesenteroides subsp. cremoris and other lactic acid
13		bacteria. Plasmid 27: 200-206.
14	11	. Konings, W.N. 2002. The cell membrane and the struggle for life of lactic acid
15		bacteria. A. van Leeuw. 82:3-27.
16	12	. Landete, J. M., S. Ferrer, L. Polo, and I. Pardo, I. 2005. Biogenic amines in wine
17		from three Spanish regions. J. Agric. Food Chem. 53:1119-1124.
18	13	Lucas, P. M., W. A. M. Wolken, O. Claisse, J. S. Lolkema, and A. Lonvaud-Funel.
19		2005. Histamine-producing pathway encoded on an unstable plamsid in Lactobacillus
20		hilgardii 0006. Appl. Environ. Microbiol. 71:1417-1424.
21	14	. Marcobal, A., de las Rivas, B., Moreno-Arribas, M. V., and R. Muñoz. 2004.
22		Identification of the ornithine decarboxylase gene in the putrescine-producer
23		Oenococcus oeni BIFI-83. FEMS Microbiol. Lett. 239:213-220.

1	15. Marcobal, A., P. J. Martín-Alvarez, M. C. Polo, R. Muñoz, and M.V. Moreno-
2	Arribas. 2006. Formation of biogenic amines during red wine manufacture. J. Food
3	Prot. 70: 157-164.
4	16. Mills, D. A., H. Rawsthorne, C. Parker, D. Tamir, and K. Makarova. 2005.
5	Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS
6	Microbiol. Rev. 29: 465-475.
7	17. Molenaar, D., F. Bringel, F. H. Schuren, W. M. de Vos, R. J., Siezen, and M.
8	Kleerebezem. 2005. Exploring Lactobacillus plantarum genome diversity by using
9	microarrays. J. Bacteriol. 187: 6119-6127.
10	18. Muñoz., R., R. López, M. de Frutos, and E. García. 1999. First molecular
11	characterization of a uridine diphosphate galacturonate 4-epimerase: an enzyme
12	required for capsular biosíntesis in Streptococcus pneumoniae type 1. Mol. Microbiol.
13	31: 703-713.
14	19. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory
15	Manual, second ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, HY.
16	20. Tabor, H., C. W. Tabor, M. S. Cohn, and E. W. Hafner. 1981. Streptomycin
17	resistance (<i>rpsL</i>) produces an absolute requirement for polyamines for growth of an
18	<i>Escherichia coli</i> strain unable to synthesize putrescine and spermidine [Δ (<i>speA-speB</i>)

19 Δ*specC*]. J. Bacteriol. **147:**702-704.


- 1 Legends to Figures


3	FIG. 1. Genetic organization of the O. oeni RM83 17.2-kb DNA region containing the odc
4	gene. Thick and thin arrows representing complete or interrupted ORFs, respectively. The
5	localization of putative promoters (vertical bent arrow) and predicted transcriptional
6	terminator regions (ball and stick) are indicated. Some of the plasmids used in this study are
7	indicated, as are relevant restriction sites: E, EcoRV; S, Sau3AI; Sp, SpeI; Sn, SnaBI. Only
8	some of the corresponding restriction sites present in this fragment are represented.
9	
10	FIG. 2. Putrescine production by soluble cell extracts of IPTG-induced cultures of E. coli
11	HT414 harboring pAM11. The putrescine produced during the enzymatic reaction was
12	submitted to an automatic precolumn derivatization with o-ophthaldialdehyde prior to
13	injection. Putrescine was determined by RP-HPLC as previously described (14). (A)
14	Reaction from <i>E. coli</i> HT414 bearing the control pIN-III(lpp ^p -5)A3 plasmid. (B) Reaction
15	from E. coli HT414 bearing the recombinant pAM11 plasmid.
16	
17	FIG. 3. Schematic overview of the sequence conservation between O. oeni PSU-1 and O.
18	oeni RM83 chromosomal regions containing the proposed recombination site. Genes are
19	represented as arrows. Thin arrow corresponds to interrupted gene. The genes present in
20	these regions are indicated: orf6 and orf7 in O. oeni RM83, and Ooen02001058 (encoding a
21	putative transcriptional terminator), Ooen02001059 (encoding the carbamoylphosphate
22	synthase large subunit), and Ooen02001060 (coding for a hypothetical protein
23	ZP_00319317) in O. oeni PSU-1. The complete ORF coding for the hypothetical protein in
24	O. oeni PSU-1 is also represented. Open squares and hexagons represent GW domains and

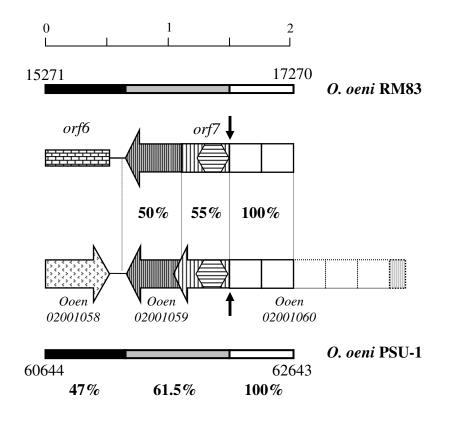

1	MucBP domains, respectively. ORF regions with identical shading correspond to regions
2	having the same degree of sequence identity. The degree of amino acid identity between
3	the protein fragments coded by these ORF is also shown. The color of the upper and lower
4	bars indicates the degree of nucleotide identity between the 2 kb DNA regions: black, 47%
5	identity; grey, 61.5%; and white, 100% identity. Two black arrows indicate the
6	recombination site. The nucleotide positions corresponding to both sequences are also
7	indicated. The O. oeni PSU-1 nucleotide sequence appears in the database under accession
8	number NZ_AABJ03000005.

Table 1	
odc region-encoded proteins: properties and similarities to proteins in the databases	

Gene	Location in	G+C	Predicted	Similar	Proposed function	Database	Degree of identity	Organism
Gene	nucleotide	(%)	protein	Polypeptide(s)	roposed function	accession no.	(%)	organishi
	sequence	(,-)	(aa/kDa)	(aa)				
orfl	< - 237	36.3	-	Str0776 (286)	Replication protein, phage- plasmid associated	Q5M098	32.5 (in 81 aa overlap)	S. thermophilus CNRZ 1066
			-	ORF12 (269)	Conserved protein in <i>S.</i> <i>thermophilus</i> phages	O34043	30.1 (in 63 aa overlap)	S. thermophilus temperate bacteriophage φ O1205
			-	ORF35 (271)	Hypothetical protein	Q9XJC8	30.5 (in 59 aa overlap)	S. thermophilus lytic bacteriophage DT1
orf2	230-784	32.8	184 / 20.5	EF1279	DNA replication protein	Q835U3	27.6	<i>Enterococcus faecalis</i> V583 putative prophage 02
IS <i>1165</i>	1175-2236/c	48.1	353 / 39.5	IS1165 transposase	Transposase	Q48788	98.8 (in 335 aa overlap)	Leuconostoc mesenteroides subsp. cremoris
orf3	2502-3095/c	35.2	197 / 21.6	EfaeDRAFT_2583	Hypothetical protein	Q3Y3B9	55.7	Enterococcus faecium DO
				Spr0580	Hypothetical protein	Y580	55.6	Streptococcus pneumoniae R6
IS <i>1165</i>	3258-4319	48.1	353 / 39.5	IS1165 transposase	Transposase	Q48788	98.8 (in 335 aa overlap)	<i>L. mesenteroides</i> subsp.
101102	5200 1012	1011	555, 57.5	101100 dumpocase	Tunspoonse	Q 10700	90.0 (m 222 uu 0 (en up)	cremoris
orf4	4767-5837/c	35.2	356 / 39.5	LJ1779	Major facilitator superfamily	Q74HG7	50.4	Lactobacillus johnsonii
					permease	-		NCC533
orf5	6541-6927/c	46.0	128 / 13.6	lp_3570	Transposase	Q88S70	58.5	Lactobacillus plantarum WCFS1
ISLpl4	7828-7953	43.2	41 / 4.7	ISLpl4 transposase	Transposase	CAI93853.1	97 (in 34 aa overlap)	L. plantarum CECT4645
odc	8866 - 11103	36.3	745 / 81	OdcI	Ornithine decarboxylase	P43099	67.1	Lactobacillus sp. strain 30a
potE	11184-12509	39.2	441 / 47.6	PotE	Putrescine-ornithine antiporter	P44768	67.3	Haemophilus influenzae Rd
IS <i>1165</i>	13235-14295/c	48.1	353 / 39.5	IS1165 transposase	Transposase	Q48788	98.8 (in 335 aa overlap)	<i>L. mesenteroides</i> subsp. <i>cremoris</i>
orf6	15240-15800/c	30.4	186 / 22.0	BCE3325150	Probable membrane protein	Q630E9	36.8 (in 148 aa overlap)	Bacillus cereus ZK
orf7	15966 > /c	40.2	-	Ooen02001060	Hypothetical protein	ZP_00319317	78.2% (in 307 aa overlap)	O. oeni PSU-1

