Combinación de análisis de imagen y técnicas analíticas para la distinción de diferentes fases en un panel rupestre (La Coquinera II, Obón, Teruel)

Resumen: Tradicionalmente la detección de diferentes fases en la elaboración de paneles pictóricos se ha llevado a cabo mediante la tipología y la estratigrafía cromática. Dichas herramientas metodológicas, aunque en muchos casos han demostrado ser suficientemente fiables, abren la puerta a la subjetividad a la hora de atribuir determinadas figuras (o restos ilegibles de pintura) a una fase determinada u otra, toda vez que los distintos colores han podido verse afectados por procesos que hayan contribuido de manera diferencial a su conservación y que la tipología no es, en el caso de los restos mal conservados de pintura, un arma lo suficientemente poderosa por sí sola para asignar un elemento a una fase concreta. En este trabajo se combinan, por una parte, la caracterización a partir de la señal proporcionada por un Láser de Ablación acoplado a un sistema de espectrometría de masas con fuente de plasma de acoplamiento inductivo (LA-ICP-MS) y, por otra, el análisis de imagen. La caracterización de los pigmentos permite diferenciar entre motivos realizados con distintos materiales mientras que el análisis de imagen hace posible la representación espacial de estas composiciones, partiendo de la idea de que materiales iguales deben ofrecer idénticas características en su reflectividad. Esta combinación de técnicas se ha aplicado al panel II del abrigo de la Coquinera, en Obón (Teruel), en el que una fase esquemática se superpone a otra, también esquemática, aunque con rasgos más naturalistas. La estrategia de análisis de imagen utilizada ha permitido diferenciar con claridad entre las dos distintas fases sin necesidad de recurrir a prácticas lesivas para aumentar el contraste como es el mojado de los paneles. Los resultados se han cruzado con los datos analíticos avalando el uso de técnicas de análisis de imagen para este fin.

Abstract: The detection of different phases in rock art paintings has been traditionally performed by means of typology and chromatic stratigraphy. These methodological tools, even reliable enough in many cases, open the door to subjectivity when attributing some motifs (or illegible painting remains) to a specific phase. In addition, the pigments can be involved in deterioration processes affecting their conservation, and typology, in cases of poorly-conserved painting remains, is not properly a powerful tool for assigning a motif to a specific phase. This work combines, on the one hand, the characterisation of the composition of paintings utilised in rock art by means of laser ablation-induced coupled plasma-mass spectrometry (LA-ICP-MS) and, on the other hand, image analysis. Pigment characterisation allows distinguishing between motifs prepared with different materials and image analysis makes possible the spatial mapping of these compositions, due to the fact that identical compositions offer the same reflectance. This combination of techniques has been applied to the Panel II of La Coquineria shelter (Obón, Teruel), in which a schematic-style phase overlaps another, although more naturalistic one. The image analysis approach allowed clearly distinguishing the two different phases without the need to apply invasive practices such as painting wetting. The image analysis results have been confronted with the pigment analytical data showing that the use of image analysis techniques for these purposes is an accurate method.

1. Introducción

Aunque en algunos casos la decoración pictórica de los abrigos parece corresponder con un solo momento, lo habitual es que se documenten distintos episodios en la elaboración de las representaciones parietales, bien mediante la identificación de motivos con una clara diferencia tipológica, bien a partir de la detección de superposiciones entre los motivos, que hace posible extrapolar una cronología relativa entre los episodios decorativos. Las herramientas analíticas empleadas tradicionalmente para detectar estas fases han sido, por una parte, el estudio tipológico de los motivos y, por otra, la utilización de tablas de color para definir el...
cromatismo de las pinturas y poder así establecer series o estratigráfias cromáticas que, como tales estratigráfias, se presuponen con sentido cronológico.

Para algunos autores (Apellániz, 2004, por ejemplo), la principal limitación de los estudios tipológicos recae en el desarrollo de teorías evolutivas a partir de éstos, que en el fondo constituyen la expresión de una hipótesis no contrastable que no tiene más que valor cualquiera. Sin embargo, el valor cronológico graso modo de los estudios tipológicos ha podido ser verificado en gran cantidad de ocasiones, sobre todo para las representaciones encuadrables en el Paleolítico Superior (Alcolea y de Batón, 2007) y, en menor medida por la escasez de dataciones directas, para el Arte Esquemático peninsular (Sanchidrián y Valladas, 2001; García Díez et al., 2003). Aceptando la validez general de la tipología para establecer un marco cronológico relativo, hay que reconocer que, en ocasiones, se documentan motivos difícilmente encuadrables, unas veces por su unicidad, otras por su estado de conservación, que los hacen difícilmente legibles, y por tanto, identificables y encuadres en el marco tipológico.

El estudio del cromatismo de las pinturas parte de la asunción de que colores iguales han de corresponder con un mismo momento decorativo. Esta afirmación, que a priori parece discreta, no puede aceptarse sin más, ya que un mismo color puede deberse a la aplicación de pigmentos diferentes y, por otra parte, un mismo pigmento ha podido degradarse, merced a procesos posteriores, en tonos diferentes. Se ha señalado, por otra parte, la utilización de diferentes colores para la elaboración de distintos elementos de una misma escena (Mas Cornellà, 2001), si bien, algunos de estos motivos difieren no sólo en color sino también en tipología (Mas Cornellà, 2001, 146, figura 2).

Desde hace ya algún tiempo se vienen utilizando técnicas de análisis de imagen para la elaboración de calcos de arte rupestre (Vicent García et al., 1996; Montero Ruiz et al., 1998), como manera de llevar a cabo una documentación que minimice los daños que pudieran derivarse de la utilización de otros métodos más tradicionales como el calco directo (Rogério-Canhela, 2008, 2009). Grasso modo puede describirse que hay dos enfoques distintos a la hora de plantear estos calcos basados en el análisis de imagen: por una parte podríamos hablar de enfoques basados en las técnicas de retoque fotográfico, en los que el software básico es el Adobe Photoshop y similares y cuyos tratamientos consisten básicamente en la expansión del histograma para el incremento del contraste y/o la selección de gamas de color para la definición de los motivos (Domingo Sainz y López Montero, 2003, López Montero y Domingo Sanz, 2005, Cantalejo et al., 2005, Maura y Cantalejo, 2005, por ejemplo).

Los inconvenientes de este enfoque metodológico tienen que ver con la alteración que se produce de la utilidad, el que imposición la extracción de más información de la matriz de datos, desprendiéndose así información que puede ser muy valiosa para el conocimiento integral del sistema (Rogério-Canhela, 2009). Un enfoque diferente, que podríamos llamar analítico, es el que incide en la utilización de los datos recogidos en las imágenes digitales a partir de la aplicación de filtros y algoritmos de clasificación, operaciones de álgebra de imagen y tratamientos para la des correlación de datos. Este enfoque, hasta ahora menos utilizado que el anterior, permite rescatar de las imágenes digitales información que está efectivamente presente pero no se, lo que general, apreciable a simple vista, ya que se basa en que la información registrada en una imagen digital estándar tiene su correlativo en la reflectividad real de los materiales, que manifiestan comportamientos diferentes según la longitud de onda que registre el sensor haciendo posible discriminar entre dos elementos a priori similares en una imagen a color, pero que en realidad responden a composiciones diferentes. Ejemplos de aplicaciones encuadradas en este tipo de enfoque técnico pueden consultarse en Rip (1983, 1998), Vicent Garcia et al. (1996), Montero Ruiz et al. (1998), Cogg et al. (2000), Mork y Billo (2002, 2006), Palomo et al. (2004), Larra et al. (2006) o Portillo et al. (2008), sin que esta lista de referencias tenga intención de exhaustividad. Este último tipo de enfoque es el aplicado en este trabajo, en el que no se utiliza un protocolo de análisis de imagen basado en el Análisis de Componentes Principales y el álgebra de imagen para la diferenciación de dos fases decorativas distintas presentes en el abrigo de la Coquinería II.

Por otra parte, es necesario cruzar los datos obtenidos mediante análisis de imagen con la caracterización de los pigmentos para evaluar la idoneidad del enfoque. Desde el punto de vista de la conservación, lo más aconsejable es proceder a la caracterización in situ de los mismos utilizando técnicas no invasivas. Sin embargo, la dificultad de proceder al estudio analítico de los pigmentos in situ hace necesaria la toma de muestras, forzosamente de escasa entidad de cara a garantizar la integridad del bien a investigar. Por otra parte, los paneles de arte rupestre han permanecido expuestos a la interperimen desde que fueron realizados, sufriendo procesos que hacen difícil la obtención de datos seguros sobre el pigmento original. Por todo ello, el análisis de estas muestras se hacen imprescindibles técnicas con alta sensibilidad y capacidad resolutiva multies-
2. Material y Métodos

2.1. Sitio de Estudio

El abrigo de La Coquinera II se localiza en el término municipal de Obón (Teruel). Descubierto en 1985 y publicado entre 1991 y 1998 (Picazo Millán et al., 1991, Picazo Millán, 1992, Perales García y Picazo Millán, 1989), el abrigo se sitúa a una altura de 640 metros s.n.m. en el tramo inferior de un cortado calizo de la margen izquierda del Río Martín, junto al abrigo de La Coquinera I. El lugar donde se emplean los abrigos coincide con el inicio de un estrechamiento del río, que discurra profundamente encajado entre paredes de unos 50 m de altura (figura 1).

La Coquinera II es una cueva de unos 4 m de profundidad y 16 m de anchura, cubierta por una visera a unos 11 m sobre la base (Perales García y Picazo Millán, 1989). Las representaciones parietales presentes en el abrigo consisten en un panel pictórico situado a unos 3 m de altura sobre la base del abrigo, y un panel grabado dos metros por debajo que recibe la denominación de Coquinera III (Beltrán Martínez, 2005).

El ámbito objeto de estudio, Coquinera II, consta de 43 figuras esquemáticas correspondientes a dos paneles superpuestos, uno con una escena que se ha interpretado como de caza y el otro, superpuesto a este, compuesto por una serie de antropomorfos en torno a una figura circular. Además hay otras dos figuras esquemáticas, realizadas con distintos tonos cromáticos, una de ellas infrapuesta a la escena de caza y otra sin relación «estratigráfica» con el resto del panel. Observando concretamente estas dos últimas figuras, las dos composiciones que se superponen están realizadas en color rojo, con variaciones cromáticas que se definen, usando la notación de Munsell, como 10R 3/3, 10R 3/4, 10R 4/4, 10R 4/3, 10R 5/6, 10R 5/8 y 2.5YR 6/8 y que corresponden a distintos matices de rojo, desde tonos débiles y desvelados hasta otros más oscuros. A pesar de la existencia de tan variada gama de tonos de rojo, estilísticamente sólo parece haber dos planos decorativos: por una parte, en tonos por lo general más claros aunque no de manera exclusiva, se dibuja la escena de caza, a la que se superpone el conjunto de «orantes», con tonos en general más oscuros, aunque tampoco de manera excluyente (Perales García y Picazo Millán, 1998). La escena de los «orantes» se ve repiqueteada y rayada con objetos punzantes en
un momento indeterminado anterior a su descubrimiento (Beltrán Martínez, 2005).

2.2. Análisis de imagen
Se utilizaron fotografías del panel obtenidas con una cámara fotográfica digital estándar (Nikon E5200, con una apertura de diafagma de 4.8 y una distancia focal de 8 mm). A estas imágenes se les aplicó una adaptación del protocolo utilizado en un trabajo reciente para separar las diferentes cubiertas presentes en la imagen (Rogano-Candelera et al., 2009), que consistió en la creación de cubos de 3 y 6 bandas a partir de las bandas RGB originales de la imagen (que codifican la información referida a los intervalos de longitud de onda 400-500 nm, 500-600 nm y 600-700 nm), el cálculo de las Componentes Principales (CP) y la elaboración de imágenes en falso color a partir de las Componentes Principales minoritarias. Con este tipo de tratamiento se consigue la descorrelación de los datos abriéndose la posibilidad de separar diferentes cubiertas en función de sus diferencias de reflectividad. El comportamiento óptico de cada cubierta es diferente en cada longitud de onda debido a varias circunstancias entre las que la composición química es la más destacada (Vincent García et al., 1996). Un enfoque similar se ha utilizado en teledetección para la búsqueda y cartografía de minerales a partir de imágenes de satélite (Loughlin, 1991, Taylor, 2000, Tangestaní y Moore, 2002, Ramadan y Omi, 2003, Ramadan et al., 2006, Kargi, 2007, X. Zhang et al., 2007, Y. Zhang et al., 2007, Moore et al., 2009), en general combinando análisis de Componentes Principales y clasificación a partir de signaturas espectrales. Para las operaciones de análisis de imagen se utilizó el software HyperCube v. 9.5 (US Army Topographic Engineering Centre, EE.UU.).

2.3. Caracterización de pigmentos
Se tomaron 4 micromuestras de pigmento, denominadas C0G001, C0G002, C0G003 y C0G004 (figura 2), que correspondían a pigmentos de color rojo (C0G001), anaranjado (C0G002 y C0G003), y a la superposición de pigmento rojo sobre pigmento anaranjado (C0G004). Las muestras se analizaron mediante LA-ICP-MS utilizando un sistema de ablation láser Geolas de AirF a 193 nm (MicroLas, Alemania) acoplado a un espectrómetro de masas con plasma acoplado Perkin-Elmer Sciex DRCPlus. Los resultados del análisis de la muestra C0G004 se diferenciaron en dos, correspondiendo a los pigmentos rojo y anaranjado. El análisis multivariante de los datos obtenidos se llevó a cabo mediante el software SPSS v. 15.0.

3. Resultados y discusión
A partir de una imagen RGB se elaboraron las Componentes Principales por el método de la matriz de covarianzas. La
primera CP, como puede observarse en la figura 3, coincide casi plenamente con la imagen original convertida a escala de grises, como reflejo del alto porcentaje de la variación en la información explicada por la misma, superior al 97% (tabla 1). Las bandas correspondientes a la segunda y tercera CP explican un 1,9 y un 0,4% respectivamente de la información recogida en la imagen. Como se aprecia en la figura 3, la segunda CP es la más apropiada para destacar la escena de los «orantes», mientras que la escena de caza, en general con colores más desvios, se aprecia mejor en la tercera CP, aunque con bastante ruido producido por la detección de figuras de la otra escena.

Se elaboró una imagen en falso color utilizando las bandas correspondientes a las CP (figura 4), asignándolas a las bandas convencionales RGB. El resultado, permitió comprobar que, aunque se daba un aceptable grado de separación entre las distintas cubiertas presentes en la imagen, se hacía necesario descartar el exceso de información presente en la misma. Por ello, se elaboró otra imagen en falso color descartando la primera CP y potenciando el peso de la tercera CP, en la que también aparecía bien marcada la fase de los «orantes», para destacar la escena de caza (figura 5). A pesar de no utilizarse casi el 98% de la información de la imagen, los resultados son similares a los de la figura 4, si bien dando lugar a la confusión, en cuanto a la gama cromática utilizada, entre los trazos asignables a la escena de los «orantes» y el microrelieve de la pared. Por ello, se decidió cambiar el enfoque. Por una parte, se aplicaron a la imagen filtros direccionales que permitieran destacar el relieve, tanto natural, como el ocasionado por el rayado intencional de los orantes. Se trata de filtros de paso alto elaborados para el realce de los elementos lineales que sigan determinadas direcciones (Chuivéco Salmero, 2002). En este caso, los filtros más adecuados fueron un filtro Oeste y un Noroeste, cuyos resultados, sumados, permitían apreciar estos rasgos microtopográficos (figura 6). Por otra parte, para intentar descorrelacionar la información contenida en la tercera CP, se elaboró un cubo de imagen de 6 bandas, repitiendo dos veces las distintas bandas RGB. A este cubo sintético se aplicó Análisis de Componentes Principales, resultando 6 nuevas bandas (figura 7) que permitirían elaborar, utilizando las CP minoritarias, imágenes en falso color más detalladas. La figura 6 permite diferenciar entre elementos microtopográficos, que pueden producir artefactos visuales, y la propia pintura del panel. Al mismo tiempo permite documentar de manera separada el proceso destructivo del panel.

Las CP recogidas en la figura 7 sirvieron para elaborar la figura 8, imagen en falso color que constituye el paso intermedio para obtener la figura 9. Esta última figura se elaboró restituyendo a la imagen de la figura 4 la imagen de la figura 8. Este resultado final separa con un alto grado de definición las dos fases pictóricas señaladas: por una parte, en tonos oscuros (en una gama que va de tonos marrones a casi negros) se señalizan las figuras pertenecientes a la escena de caza. En tonos amarillentos, por otra parte, pueden apreciarse los restos de pintura de la escena de los «orantes», que se superpone a la escena anterior.

El análisis de las muestras de pigmento, por su parte, permitió obtener información cuantitativa sobre 56 elementos que fue homogeneizada para un contado en hierro del
10%. La figura 10 evidencia la cercanía de la composición de los pigmentos rojos y la existencia de dos pigmentos anaranjados distintos utilizados en la elaboración de la escena de caza.

Nuestro enfoque metodológico parte de la base de que composiciones químicas iguales deben presentar un mismo comportamiento óptico, por lo que, a la inversa, los resultados obtenidos a partir del análisis de imagen deben poder interpretarse desde el punto de vista de la composición química. En este sentido, nos parece fiable atribuir una figura a una fase u otra en función de su comportamiento óptico, ya que, en un contexto (el de la realización de los paneles) en el que no es posible controlar exactamente las proporciones a la hora de preparar las pinturas, una «receta» debe reflejar un momento de elaboración de la pintura, y por tanto, un momento determinado de aplicación.

Los resultados del análisis de imagen parecen apuntar a la utilización de más de dos pigmentos en la elaboración de los paneles. Así, podría identificarse un pigmento rojo que correspondería con las figuras de la fase esquemática más exterior, que podría apuntar al pintado de esta fase en un solo momento, y la existencia de más de un pigmento anaranjado, indicada por la gradación de color observable en la figura 9, que podría corresponderse con el pintado de esta fase decorativa en más de un momento. Los resultados de la caracterización de pigmentos parecen apoyar esta interpretación puesto que los pigmentos rojos (que corresponden a las figuras del panel de los «orantes») son bastante homogéneos entre sí y, sin embargo, los anaranjados muestran una notable divergencia en términos de distancia euclídea (el pigmento de la muestra C00002 es netamente diferente de los de las otras dos muestras).

Si bien todos los pigmentos están basados en minerales de hierro, la técnica de caracterización utilizada nos informa tan sólo de su composición elemental. Así, los pigmentos rojos deben estar basados en hematites (Fe₂O₃) procedente de la misma fuente, un óxido de hierro muy estable en cuanto a su composición que normalmente se presenta como sustancia pura con pequeñas cantidades de manganeso y titánio (Klein y Hurlburt, 2003) lo que explicaría la cercanía de estas muestras en el dendrograma. Por otra parte, cabe
interpretar el desagrupamiento de los pigmentos anaranjados como resultado de su composición molecular. Así, estos pigmentos se basarían en oxihidróxidos de hierro tipo limonita (FeO·OH nH₂O); la limonita no es un mineral sino una mezcla de óxidos e hidróxidos de hierro hidratados (goethita, lepidocrocita, etc.), de composición variable en función de las proporciones de cada mineral en la mezcla que puede cambiar incluso cuando se trata de materiales (pigmentos) recogidos en el mismo afloramiento (Klein y Hurlbur, 2003).

5. Conclusiones

La utilización de técnicas de análisis imagen y técnicas de caracterización microdestructiva de pigmentos ha proporcionado resultados congruentes entre sí, que parecen apuntar a la decoración del abrigo en al menos dos momentos que se corresponden con dos fases decorativas diferenciadas.

La aparición de dos pigmentos anaranjados distintos puede deberse tanto a la utilización de oxihidróxidos de hierro procedentes de distintos afloramientos, hecho que podría deberse a la realización en dos fases del panel de la escena de caza o, por el contrario, relacionarse con diferencias composicionales de pigmentos altamente heterogéneos extraídos del mismo afloramiento, en cuyo caso la pintura de este panel podría ser sincrónica en todos sus elementos.

Las técnicas de análisis de imagen a partir de fotografías digitales convencionales pueden resultar una herramienta analítica útil para diferenciar cualitativamente distintas composiciones químicas empleadas en la pintura de paneles rupestres, ergiéndose en un método de bajo coste tanto para la documentación de paneles como para la elaboración de estrategias de conservación.

Agradecimientos


Bibliografía


