Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>Please check the abbreviation of genus names, and correct if necessary.</td>
</tr>
<tr>
<td>Q3</td>
<td>This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section.</td>
</tr>
<tr>
<td>Q4</td>
<td>Please provide better quality artwork for Fig. 3.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Phylogeographic patterns of decapod crustaceans at the Atlantic–Mediterranean transition

Highlights

► Genetic diversity of different species within families is related to depth. ► Shallow-water species present higher genetic diversity and structure levels. ► Oceanographic discontinuities have a different impact in different decapods. ► Phylogeographic patterns are affected by historical and contemporary processes.
Molecular Phylogenetics and Evolution xxx (2011) xxx–xxx

Phylogeographic patterns of decapod crustaceans at the Atlantic–Mediterranean transition

V.H. García-Merchán a,⁎, A. Robainas-Barcia b, P. Abelló c, E. Macpherson d, F. Palero e, M. García-Rodríguez f, L. Gil de Sola g, M. Pascual a
a Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
b Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16, No. 114 entre 1ra y 3ra, Miramar, Havana, Cuba
c Institut de Ciències del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain
d Unitat Mixta Genòmica i Salut CSISP-UV, Institut Cavanilles Universitat de Valencia, C/Catedrático Jose Beltran 2, 46980 Paterna, Spain
e Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
f Instituto Español de Oceanografía, Corazón de María, 8, E-28002 Madrid, Spain
g Instituto Español de Oceanografía. Centro Costero de Málaga, Muelle Pesquero y N, Fuengirola, Spain

ARTICLE INFO

Article history:
Received 24 May 2011
Revised 23 September 2011
Accepted 14 November 2011
Available online xxxx

Comparative multispecies studies allow contrasting the effect of past and present oceanographic processes on phylogeographic patterns. In the present study, a fragment of the COI gene was analyzed in seven decapod crustacean species from five families and with different bathymetric distributions. A total of 769 individuals were sampled along the Atlantic–Mediterranean transition area in order to test the effect of three putative barriers to gene flow: Strait of Gibraltar, Almeria–Oran Front and Ibiza Channel. A significant effect of the Strait of Gibraltar was found in the crabs Liocarcinus depurator and Macropipus tuberculatus. The Ibiza Channel had a significant effect for L. depurator. However, the Almeria–Oran front was not found to have a significant effect on any of the studied species. Higher levels of population structure were found in shallow-water species, although the number of species sampled should be increased to obtain a conclusive pattern. The haplotypes within the different species coalesced at times that could be related with past climatic events occurring before, during and after the last glacial maximum. Given the large diversity of phylogeographic patterns obtained within decapods, it is concluded that both historical and contemporary processes (marine current patterns, bathymetry and life-history traits) shape the phylogeographic patterns of these crustaceans.

⁎ Corresponding author. Fax: +34 934034420.
E-mail address: victorhugogarcia@ub.edu (V.H. García-Merchán).

1 Introduction

Decapod crustaceans are speciose and abundant, with more than 500 recognized species in the NE Atlantic and Mediterranean Sea (d’Udekem d’Acoz, 1999). They play an important role in most marine ecosystems, occupying a variety of trophic niches (Cartes et al., 2010). Many decapod species are of high commercial value and studies on their population biology and ecology have increased during the last decades (e.g. Company et al., 2008; Guijarro et al., 2009). Despite growing interest in this group, genetic structure, variability, and phylogeography of decapod species remain still poorly known (Palero et al., 2008; Sotelo et al., 2009; Kelly and Palumbi, 2010). Defining the genetic diversity and population structure of these species is necessary to better understand the influence of past and present climatic and oceanographic processes on the structure of their populations.

The use of molecular tools to study marine species has shown that both genetic variability and population structure are shaped by processes occurring at different time scales (Palumbi, 2004). Contemporary processes, such as permanent or semi-permanent oceanographic discontinuities, are among the main factors defining the population genetic structure of marine organisms (Ayre et al., 2009; Galärza et al., 2009a). Likewise, the distribution of genetic diversity levels has also been related to past events shaping the evolution and present distribution of species (e.g. Pleistocene glaciations: Hewitt, 2000; Maggs et al., 2008). In this context, mtDNA genes have been the main markers of choice, given that they provide information about past events while providing an overall picture of gene flow among populations (Avise, 2000; Reece et al., 2010) although nuclear markers have also proved to be powerful indicators of past and present events (Kenchington et al., 2009).

The Mediterranean Sea is a semi-enclosed marine basin surrounded by large continental masses and connected with the Atlantic Ocean through the Strait of Gibraltar. The patterns of water circulation in the Western Mediterranean, characterized by
the inflow of surface Atlantic water and outflow of deeper Mediterranean water (Millot, 2005), were already established during the Pleistocene (Cacho et al., 1999). The circulation pattern and topography along the southern and eastern coasts of the Iberian Peninsula originate three main oceanographic discontinuities (Fig. 1): (1) around the Strait of Gibraltar, (2) the Almería–Oran Front, and (3) the Ibiza Channel. The discontinuity around the Strait of Gibraltar is caused by Atlantic water flowing into the Mediterranean through epipelagic layers (maximum depth around 100 m) and Mediterranean water exiting the basin through deep water layers (Gómez et al., 2000). Before the entry of the Atlantic waters throughout the Gibraltar Strait a branch of these waters recirculates near the Strait, in front of Cape Trafalgar, towards the northwest along the coast of Cadiz. This area is also influenced by the intense tidal–current regime of the Strait of Gibraltar and the strong topographic interaction between the swift along-shore tidal flow and a submerged ridge running perpendicular to the shoreline (García-Lafuente and Ruiz, 2007). These processes originate persistently a patch of cold water that can also affect the connectivity between populations at both sides of the Gibraltar Strait (Galarza et al., 2009b). The Almería–Oran Front (AOF) is a semi-permanent dynamic oceanographic front connecting the main jet of incoming Atlantic water and the Mediterranean Sea (Tintoré et al., 1988). Depending on winter conditions, the AOF may decrease its strength or even disappear (Tintoré et al., 1988). Finally, the current flowing southwest along the continental slope of the northeastern Iberian Peninsula often turns around the Ibiza Channel (IC) towards the Balearic Islands (García-Lafuente et al., 1995; Salat, 1996) generating a disruptive effect on the circulation and the enclosing of Mediterranean water in the northwestern basin (Pinot et al., 2002).

Most population genetic studies in this area have focused on coastal or shallow water species, which generally have epipelagic larvae that can be strongly influenced by surface oceanographic fronts and eddies. In fact, the AOF is known to affect the population structure of some species with an Atlantic–Mediterranean distribution (Paternello et al., 2007; Galarza et al., 2009a). However, not so much is known about the effect of GS or IC, given that very little information was prepared during the 2002. The Spanish surveys were performed on board R/V ‘Cornide de Saavedra’. Samples were based on a sample design randomly stratified by geographical sector and five depth strata (<50 m, 50–100, 100–200, 200–500 and 500–800 m). Each haul was performed along a fixed isobath during day-time hours. The bottom trawl gear used had a codend stretched mesh size of 20 mm which allows the capture of epibenthic and benthopelagic fish and crustaceans.

The sampling design allowed delimitation, for the present study, of several sub-areas, according to their geographic location in relation with putative oceanographic structures which might influence species connectivity: (1) Cadiz, located west of the Strait of Gibraltar, in Atlantic waters; (2) Malaga, between the Strait of Gibraltar and the Almería–Oran Front; (3) Tarragona both located north of the Ibiza Channel; (4) Valencia, and (5) Tarragona both located north of the Ibiza Channel. Each sampling sub-area encompassed several hauls taken within a ca. 50 km coastal sector. This sampling scheme, with areas evenly spaced, encompassing a broad geographic zone and with samples located at either sides of putative barriers to genetic dispersal, has been shown to be adequate in recent genetic studies carried out in the area (e.g. Calderón et al., 2008; Galarza et al., 2009a; Reusch et al., 2010; Mokhtar-Jamal et al., 2011; Schünter et al., 2011).

In order to analyze the effect of these oceanographic discontinuities on genetic population differentiation, the species were...
2.2. DNA extraction, amplification and sequencing

Muscle tissue from each individual was preserved in 100% ethanol and total genomic DNA extraction was performed with Chelex 10\% following Estoup et al. (1996). The cytochrome oxidase I (COI) gene was amplified using the universal primers LCO1490 and HCO2198 (Folmer et al., 1994). The sequence lengths (bp) for each species are given in Table 1. PCR reactions were carried out in a 13 µl volume reaction with approximately 40 ng of genomic DNA containing 1 U of Taq polymerase (Amersham), 1 x buffer (Amerham), 0.2 µM of each primer and 0.12 mM of dNTPs. The reaction profile was 94 °C for 4 min for initial denaturation, followed by 36 cycles at 94 °C for 1 min, 54 °C for 1 min and a final extension at 72 °C for 7 min. A small volume (2 µl) from each PCR product was purified using the Exo-SAP method with 0.34 µl of exonuclease I (ThermoScientific) and 0.66 µl of shrimp alkaline phosphatase (Promega), incubated at 37 °C for 15 min and at 80 °C for 15 min. Cycle-sequencing was carried out using the Big Dye terminator sequencing kit v3.1 (Applied Biosystems) following the manufacturer’s instructions. The sequences were obtained with an ABI PRISM®3770 automated sequencer (Applied Biosystems) from the Scientific and Technical Services of the University of Barcelona.

2.3. Diversity estimates and genetic differentiation

Sequences were visually inspected, aligned and trimmed with BioEdit v7.0.1 (Hall, 1999). Nucleotide diversity (π), haplotype diversity (h) and their standard deviations were calculated for each area and species using DnaSP v5 (Librado and Rozas, 2009). Haplotypic networks were constructed for each species using the Median joining network algorithm (Bandelt et al., 1999) as implemented in Network v4.5.1.6 (Fluxus Technology). The resulting networks illustrate the relationship among haplotype sequences and allow examining the geographic partitioning of the data. Haplotype sequences were deposited in GenBank under accession numbers (JN564801-JN564906) (Table 1).

Pairwise genetic differentiation among sampling sites was estimated measuring Gamma2\(st\) values and its significance was obtained using the Smn statistic (Hudson, 2000) as implemented in DnaSP. Pairwise Gamma2\(st\) values were standardized by dividing each pairwise value by its corresponding geographic distance. In this way, a genetic distance per km of geographic distance was obtained and used to evaluate the relative effect of each front on each species.

Table 1

<table>
<thead>
<tr>
<th>Accession #</th>
<th>N (H)</th>
<th>N</th>
<th>h</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>JN56486875</td>
<td>21 (3)</td>
<td>22 (10)</td>
<td>26 (9)</td>
<td>0.185 ± 0.150</td>
<td>0.710 ± 0.166</td>
<td>0.622 ± 0.107</td>
<td>0.338 ± 0.128</td>
<td>0.653 ± 0.088</td>
<td>0.007 ± 0.002</td>
<td>0.016 ± 0.003</td>
<td>0.003 ± 0.005</td>
<td>0.001 ± 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56484895</td>
<td>21 (5)</td>
<td>25 (5)</td>
<td>22 (8)</td>
<td>0.396 ± 0.153</td>
<td>0.710 ± 0.166</td>
<td>0.622 ± 0.107</td>
<td>0.338 ± 0.128</td>
<td>0.653 ± 0.088</td>
<td>0.007 ± 0.002</td>
<td>0.016 ± 0.003</td>
<td>0.003 ± 0.005</td>
<td>0.001 ± 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56484395</td>
<td>23 (9)</td>
<td>24 (9)</td>
<td>21 (6)</td>
<td>0.245 ± 0.120</td>
<td>0.746 ± 0.046</td>
<td>0.596 ± 0.122</td>
<td>0.095 ± 0.084</td>
<td>0.333 ± 0.124</td>
<td>0.817 ± 0.055</td>
<td>0.083 ± 0.078</td>
<td>0.003 ± 0.002</td>
<td>0.002 ± 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56483895</td>
<td>20 (6)</td>
<td>20 (3)</td>
<td>24 (4)</td>
<td>0.083 ± 0.070</td>
<td>0.789 ± 0.057</td>
<td>0.537 ± 0.115</td>
<td>0.000 ± 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56485295</td>
<td>21 (4)</td>
<td>23 (6)</td>
<td>13 (3)</td>
<td>0.239 ± 0.102</td>
<td>0.411 ± 0.131</td>
<td>0.391 ± 0.125</td>
<td>0.294 ± 0.135</td>
<td>0.324 ± 0.124</td>
<td>0.739 ± 0.070</td>
<td>0.000 ± 0.000</td>
<td>0.000 ± 0.000</td>
<td>0.000 ± 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56489695</td>
<td>23 (1)</td>
<td>27 (2)</td>
<td>25 (7)</td>
<td>0.604 ± 0.108</td>
<td>0.112</td>
<td>0.2714 ± 0.138</td>
<td>0.363 ± 0.131</td>
<td>0.762 ± 0.080</td>
<td>0.000 ± 0.000</td>
<td>0.000 ± 0.000</td>
<td>0.000 ± 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56485395</td>
<td>114 (6)</td>
<td>115 (29)</td>
<td>118 (22)</td>
<td>0.152 ± 0.048</td>
<td>0.752 ± 0.027</td>
<td>0.542 ± 0.055</td>
<td>0.189 ± 0.054</td>
<td>0.420 ± 0.059</td>
<td>0.765 ± 0.034</td>
<td>0.095 ± 0.081</td>
<td>0.363 ± 0.147</td>
<td>0.747 ± 0.098</td>
<td>0.095 ± 0.081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN56490695</td>
<td>93 (4)</td>
<td>13 (3)</td>
<td>115 (11)</td>
<td>0.590 ± 21 (4)</td>
<td>0.604 ± 0.108</td>
<td>0.112</td>
<td>0.2714 ± 0.138</td>
<td>0.363 ± 0.131</td>
<td>0.762 ± 0.080</td>
<td>0.000 ± 0.000</td>
<td>0.000 ± 0.000</td>
<td>0.000 ± 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bp: sequence length in base pairs, N: Number of samples, H: number of haplotypes, h: haplotype diversity, π: nucleotide diversity. Standard errors were computed from 1000 bootstrap replicates.
ANOVA tests were carried out considering genetic diversity and Gamma2 values as dependent variables and life history traits as factors. Depth was initially classified in three levels: continental shelf (<200 m), upper (200–500 m) and lower (>500 m) slope. Northernmost latitude was classified in two levels: high (>65° N) and low (<50°N). Number of larval stages was grouped in two levels: low (<6) and high (>11). Main reproductive period in the study area was summarized in two levels: winter and summer. ANOVA tests were also used to evaluate the effect of depth within the families Paguridae (P. excavatus and Pagurus alatus) and Portunidae (L. depurator and M. tuberculatus). Before carrying out the ANOVA analyses, dependent variables were tested for normality using the Shapiro–Wilk test. Haplotype diversity followed a normal distribution. Nucleotide diversity did not fit a normal distribution after transformation and was not used. Gamma0 values were Ln-transformed and fit normality. ANOVA tests were performed with STATISTICA v8.0. The homogeneity of variances was evaluated with both the Figner–Killeen test and the Bartlett test as implemented in R (R Development Core Team, 2008). None of the test gave significant results and thus variances could be considered homogeneous.

In order to test for patterns of isolation by distance, comparisons between pairwise genetic and geographical distances were carried out through a Mantel test using the GenAlEx package v6.4 (Peakall and Smouse, 2006). The geographical distances were measured along the 200 m isobath using the software Karto v5.2 (Cadiou, 1994).

2.4. Neutrality tests, demographic inferences and coalescence time

For tests that depend from neutrality Fu’s Fs (1997) was computed using DnaSP v5 (Librado and Rozas, 2009). The McDonald and Kreitman (MK) test (McDonald and Kreitman, 1991), that compares the ratio of polymorphism to divergence at non-synonymous and synonymous sites, was carried out to detect selection acting directly on the COI gene. Outgroup selection was based on sequence similarity assessed through blast searches in GenBank. Liocarcinus maculatus (FJ174949) was used as outgroup for L. depurator, Neosarmatium fourmanoiri (FN392165) for P. heterocarpus, Alpheus cristulifrons (FJ013896) for P. longirostris, P. alatus for P. excavatus and vice versa, L. depurator for M. tuberculatus and Munida delicata (EU418001) for M. intermedia. Time elapsed since population expansion was inferred from pairwise nucleotide site differences (Mismatch distribution) for each species assuming the “sudden expansion” model and the equation: t = τ/2Δk, where t (Tau) is the date estimate measured in units of mutational time, k is the sequence length and μ is the mutation rate per nucleotide (Rogers and Harpending, 1992). Following Rogers (1995), we assumed theta final (theta after the population growth) to be infinite in order to estimate theta initial and τ from the data. The substitution rate (μs) per nucleotide for the COI region was estimated from sister decapod species separated by the Isthmus of Panama (μs = 0.9–1.1% divergence/Myr) as reviewed in Ketmaier et al. (2003). Since substitution rate (μs) represents a lower boundary for the mutation rate within species, we followed a conservative approach after Emerson (2007). Thus, an intraspecific mutation rate (μs) three times faster than the substitution rate (Howell et al., 2003) was also used for dating haplotype coalescence time in all species.

3. Results

3.1. Genetic variability

A total of 769 samples were analyzed in seven decapod crustaceans, with final fragment sizes ranging from 512 bp in P. alatus to 573 bp in L. depurator (Table 1). Genetic diversity levels varied across species, with total number of haplotypes ranging between 4 and 29 (Table 1; see Appendix A for details), haplotype diversity (h) from 0.063 to 0.765, and nucleotide diversity (π) ranging from 0.0002 to 0.0039 (Table 1). When comparing haplotype diversity levels between species, three groups were observed when considering non-overlapping 95% confidence intervals (1) a high diversity group: L. depurator and M. intermedia; (2) an intermediate diversity group: P. heterocarpus and M. tuberculatus; (3) and a low diversity group: P. excavatus, P. longirostris and P. alatus (Fig. 2 and Table 1).

In all cases, haplotype networks showed one or two widely distributed haplotypes and several derived haplotypes found in one population only (Fig. 3). Most of those private haplotypes were singletons (present in one individual only) and separated from the common haplotypes by one or two mutational steps. L. depurator had a particularly structured haplotype network, with two abundant haplotypes showing opposite geographic frequency clines. Ldep02 was present in all Mediterranean areas but not in Cadiz, and Ldep03 was predominantly present in Cadiz, Malaga and Alicante (i.e. the Atlantic area and Mediterranean areas under strong Atlantic influence (Appendix A). No haplotype frequency clines were observed in any of the other six species.

The ANOVA test was only significant for haplotype diversity with depth (F = 6.50, P < 0.004). Furthermore, Fig. 2 suggests that within a family, haplotype diversity is higher in the shallower species than in the deeper (e.g. L. depurator vs. M. tuberculatus and P. excavatus vs. P. alatus). However when evaluating the effect of depth within families, a significant relationship between h and depth was observed only for portunid crabs (F = 7.12, P = 0.03).

3.2. Neutrality tests, demographic inferences and coalescence time

In agreement with the star-like shape of most species haplotype networks, Fu’s Fs test yielded negative and significant values in all species, which is indicative of deviations from neutral expectation that can be due to recent expansions or selection (Table 3). When the test was independently computed for each significantly differentiated unit of M. tuberculatus (see below) no significant values were obtained for Cadiz (Fs = −0.925, P > 0.05) but significant for the grouping of the remaining populations (Fs = −8.746, P < 0.01). For L. depurator Fu’s Fs values were also independently estimated for the three genetically differentiated units (see below) and significant values were obtained for Cadiz (Fs = −5.087, P < 0.05) and the populations north of the IC (Fs = −7.049, P < 0.05) and not significant for the group constituted by the two populations separated by the AOF (Fs = −3.589, P > 0.05). The MK test was only significant in P. excavatus and M. tuberculatus due to the larger frequency of non-synonymous changes when comparing polymorphism within species (Table 3, Appendix B). Pseudogene amplification can be ruled out in these species since the sequences we obtained were good and no double peaks were observed.

When haplotype coalescent times within each species were estimated from Tau using the substitution rate (μs), an older coalescence time of approximately 100–138 kya was found for L. depurator and M. intermedia, an intermediate coalescent time of 44–68 kya for P. heterocarpus and M. tuberculatus, and a younger coalescent time of 6–20 kya for P. longirostris and P. alatus (Table 3). For P. excavatus it was not possible to estimate its haplotype coalescence time given that the observed variance was larger than the mean haplotype diversity (Rogers, 1995). When we used an intraspecific mutation rate (μs) three times faster than the substitution rate, the estimates were placed before the Last Glacial Maximum (LGM), with 34–46 kya for L. depurator and M. intermedia, during the LGM (15–23 kya) for P. heterocarpus and M. tuberculatus and more recently (2–7 kya) for P. longirostris and P. alatus (see Table 3).
4. Discussion

In the present study, we have analyzed the effects of the three main oceanographic discontinuities occurring in the Western Mediterranean on the phylogeography and genetic structure of seven crustacean species using mitochondrial genes which integrate information of present and past processes (Avise, 2000). We used haplotype networks and coalescence times to enquire about historical events that could be related to glacialiations during the Pleistocene. Our results showed that shallow water species present higher genetic differentiation than deep water species as also shown by Etter et al. (2005). Furthermore, species living at lower latitudes were less likely to present population genetic structure. Other life history traits such as the number of larval stages (as a proxy of planktonic larval duration) and main reproductive period did not influence the genetic diversity or structure patterns, as observed by Galarza et al. (2009a). However, the relatively low number of species considered in the present study recommends that further studies would strengthen the validity of these relationships. In the evaluation of oceanographic discontinuities, only the Strait of Gibraltar (for the crabs L. depurator and M. tuberculatus) and the Ibiza Channel (for L. depurator) seemed to act as barriers to gene flow. Surprisingly, the Almería–Oran front, previously defined as a barrier in numerous marine organisms (e.g. Patarnello et al., 2007; Galarza et al., 2009a), showed no effect on the genetic structure on any of the studied species. This result could be due to sampling limitations or could be related to the characteristics of the molecular marker used (e.g. low diversity found in Parapenaeus and the pagurid crabs).

4.1. Genetic variability, population history and haplotype coalescence time

The signature of historical demographic or selection processes can be inferred from the observed genetic variability levels in natural populations. Three groups of species were identified based on mean haplotype diversity values (Fig. 2): high diversity in L. depurator and M. intermedia, intermediate levels in P. heterocarpus and M. tuberculatus and low diversity in P. excavatus, P. alatus and P. longirostris. The high and intermediate diversity values are similar to those reported for other crustacean species of the Atlantic-Mediterranean area such as Carcinus maenas (Roman and Palumbi, 2004), Palinurus elephas (Palero et al., 2008), or Aristaeus antennatus (Roldan et al., 2009). Low diversity values are characteristic of populations having experienced strong bottlenecks due to founder effects (Roman, 2006), although they could also result from low lineage-specific mutation rates or natural selection. For the two studied hermit crabs (P. excavatus and P. alatus), low lineage
specific mutation rate may be ruled out given that high nucleotide diversity values in COI gene have been found in other pagurid species (Kelly and Palumbi, 2010). Consequently, the low diversity values could be due to recent colonization of the studied area and/or selection. The low number of non-synonymous changes observed with the MK test (Appendix B) could be caused by purifying selection, as recently unveiled in other crustacean species (Palero et al., 2010). In particular, different selective pressures acting on mtDNA genes have been suggested to cause low genetic diversity estimates in species with shallow bathymetric distributions in contrast to species from the same group with a deeper distribution (Etter et al., 2005; Palero et al., 2010). On the contrary, the present study found higher genetic diversity levels in shallower water species compared to those with a deeper bathymetric distribution. However, this differentiation was only significant in portunid crabs and thus it could be species specific.

The significant Fu’s Fs values and star-shaped haplotype networks (observed in all species included in the present work), are characteristic of species that have undergone a recent process of expansion or selection (Wares, 2010). Assuming Rogers and Harpending (1992) “sudden expansion” model allowed us to date haplotype coalescent times and therefore relate genetic diversity levels and historical processes. The time estimates found could be associated to abrupt climatic changes occurring during the late

Fig. 3. Median–Joining haplotype networks of mtDNA COI sequences for each of the seven species, where (a and b) are continental shelf species, (c–f) are upper slope species and (g) is a lower slope species. Empty circles represent missing haplotypes. The haplotype pie sizes within each network are proportional to their frequency. Populations are color coded: Cadiz (green), Malaga (black), Alicante (red), Valencia (blue) and Tarragona (yellow).
Table 3
Neutrality tests and coalescence times for seven decapod crustaceans distributed in the Western Mediterranean and adjacent Atlantic Ocean.

<table>
<thead>
<tr>
<th>Species</th>
<th>Fu’s Fs</th>
<th>MK test</th>
<th>Tau</th>
<th>Coalescence time (kya)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagurus excavatus</td>
<td>-6.088</td>
<td>0.00249</td>
<td>0.000</td>
<td>na</td>
</tr>
<tr>
<td>Liocarcinus depurator</td>
<td>-21.340</td>
<td>1.0</td>
<td>1.426</td>
<td>113–138</td>
</tr>
<tr>
<td>Plesionika heterocarpus</td>
<td>-29.727</td>
<td>1.0</td>
<td>0.672</td>
<td>56–68</td>
</tr>
<tr>
<td>Parapenaeus longirostris</td>
<td>-17.845</td>
<td>1.0</td>
<td>0.202</td>
<td>16–20</td>
</tr>
<tr>
<td>Macroopus tuberculatus</td>
<td>-7.512</td>
<td>0.0192</td>
<td>0.549</td>
<td>44–53</td>
</tr>
<tr>
<td>Munida intermedia</td>
<td>-17.065</td>
<td>1.0</td>
<td>1.269</td>
<td>102–125</td>
</tr>
<tr>
<td>Pagurus alatus</td>
<td>-5.562</td>
<td>1.0</td>
<td>0.065</td>
<td>6.2–7.6</td>
</tr>
</tbody>
</table>

Coalescence times estimated from Tau using μ_s (substitution rate for the COI gene established in several Crustacea: 0.9–1.1 divergence/My; Ketmaier et al., 2003) and μ_l (assuming the mutation rate is three times the substitution rate, according to Emerson (2007)). The symbol “na” indicates that haplotype coalescence could not be estimated (see main text for details).

Fig. 4. Standardized pairwise GammaST values for the different decapod crustacean species across putative oceanographic discontinuities. The values in the right side of each species bar correspond to their global GammaST (GS: Gibraltar Strait (Cadiż vs. Malaga), AOF: Almeria–Oran Front (Malaga vs. Alicante), IC: Ibiza Channel (Alicante vs. Valencia), NF: No front (Valencia vs. Tarragona). *$P < 0.05$. Pairwise GammaST values for the seven species across all populations in the Atlantic–Mediterranean transition in Appendix C.

During the last glacial maximum (30–20 kya) the sea level decreased up to 120 m (Lambeck and Chappell, 2001) although did not significantly change the oceanographic processes occurring in the area (Cacho et al., 1999). For both L. depurator and M. intermedia haplotypes, coalescence times may be related to an abrupt descent of sea temperatures in north Atlantic waters driving an intensive cooling of the Alboran Sea (westernmost portion of the Mediterranean Sea) at 38–40 kya (Cacho et al., 2002). For P. heterocarpus and M. tuberculatus, the haplotypes described within each species coalesced approximately at 20 kya coinciding with the Last Glacial Maximum (LGM). Sea level and sea surface temperatures are known to have increased in the studied area after the LGM (Cacho et al., 2002) so that higher temperatures could then have favoured the range expansion of species with a tropical distribution and summer reproduction such as P. heterocarpus and P. longirostris (Table 1). These species could postglacially colonize and further expand its distribution area towards the Mediterranean Sea as indicated in Melicertus kerathurus, which presents a similar distribution range (Pellero et al., 2009). Finally, P. alatus presents the most recent haplotype coalescent time and could be related to a cold event detected in the North Atlantic 2.5 kya (Frigola et al., 2007). Despite this coalescence among coalescent times and past climatic events, it should be stressed that not only demographic but also other processes, such as selection linked to climatic events, may have influenced the observed COI diversity patterns.

4.2. Genetic differentiation and oceanographic discontinuities

The effect of the Strait of Gibraltar on genetic differentiation was only significant for the two portunid crabs, L. depurator and M. tuberculatus. Significant differences at both sides of the Strait of Gibraltar have been previously observed in a few crustacean and fish species (Papetti et al., 2005; Galarza et al., 2009b; Sala-Bozano et al., 2009; Fernández et al., 2011). The circulation pattern at the Strait of Gibraltar may affect species differentially according to the distribution of their larval phases along the water column. The Atlantic water flowing inwards could transport L. depurator epipelagic larvae (Abelló and Guerao, 1999) but prevent the outwards transport of larvae from the Mediterranean. This process is clearly observed in the distribution of the two most frequent L. depurator haplotypes, presenting opposite clinal patterns and with the most frequent Mediterranean haplotype being absent in the Atlantic area (see Appendix A). For M. tuberculatus the presence of an Atlantic private haplotype (Mtub03, Appendix A) seems to be the cause of the population differentiation between the two basins and suggests that Atlantic larvae have restricted movement towards the Mediterranean Sea and could be located in the deeper layers (Gómez et al., 2000). However, given that a single marker was used to assess genetic differentiation, the possibility of local adaptation cannot be ruled out in either L. depurator or M. tuberculatus. The fact that both species belong to the Portunidae and could be under similar selective pressures indicates that this point merits further consideration and that an independent set of nuclear neutral markers should be tested on these samples. As for the absence of genetic differentiation in the other species, it would seem to indicate that the depth distribution of their larval stages could encompass the whole water column (see Queiroga and Blanton, 2005; Dos Santos et al., 2008) and therefore facilitate genetic homogenization between populations. In any case, the lack of reliable data on larval behavior for these species recommends further studies to confirm the relationship between gene flow and water dynamics.

The Almeria–Oran Front (AOF) is a semi-permanent dynamic oceanographic structure (Tintoré et al., 1988) that has been described as the main barrier causing genetic discontinuities along the Atlantic–Mediterranean transition area (e.g. Patarnello et al., 2007; Galarza et al., 2009a; Reuschel et al., 2010). The AOF would affect larval dispersion mainly in those species having epipelagic stages while it would not affect so much those species whose
larvae are distributed throughout the water column. Despite the fact that our sampling strategy was specifically designed to include populations at both sides of the front, we did not detect its effect in any of the seven decapod studied species. This is in agreement with a recent phylogeography study on the red shrimp *A. antennatus* (Fernández et al., 2011). The absence of effect of this front in *L. depurator*, a species with coastal epipelagic larvae, could be related to the winter relaxation of the AOF (Tintoré et al., 1988) coinciding with the main planktonic larval development season of this species (Abelló, 1989). Finally, the Ibiza Channel only showed a significant effect on the genetic structure in the case of *L. depurator* populations. The water masses transported by the northern current often block the circulation across the Ibiza Channel in the upper epipelagic layers, diverting large volumes of water to the northeastern Balearic Current (López-Jurado et al., 2008; Monserrat et al., 2008). The intensities of the oceanographic processes occurring in this area are stronger in winter (Pinot et al., 2002), coinciding with the main reproductive period of *L. depurator*, and can restrict the genetic connectivity between its populations at both sides of the Channel as observed in the red gorgonian and the comber fish (Mohktar-Jamai et al., 2011; Schunter et al., 2011). However, no significant association was found between genetic differentiation and main reproductive period for all species. Nevertheless, the significant isolation by distance patterns observed in *L. depurator* and *M. tuberculatus* suggest that their genetic population structure may not only be influenced by the oceanographic discontinuities and that active and passive dispersal, along with historical colonization and local adaptation processes, could be responsible for the observed patterns.

5. Conclusions

Overall, our results indicate that species living along the continental slope have a low genetic structure, being less affected by oceanographic processes occurring in the upper layers. The Almería–Orán Front, despite being considered as the main oceanographic discontinuity separating Atlantic and Mediterranean populations, showed no effect in the species analyzed in this study. This result indicates that the effect of this front cannot be generalized and that other discontinuities, such as the Gibraltar Strait, can reduce the gene flow between the two basins. The Ibiza Channel also appears as a significant barrier influencing connectivity between populations. Finally, the present study showed that both current and historical processes have to be considered together when analyzing genetic variability and population differentiation in marine species.

6. Uncited references

Garau et al. (2004) and Guarniero et al. (2004).

Acknowledgments

We deeply thank all participants in cruises MEDITS_ES and ARSA for all support provided. This work was funded by Projects BIOCON08–187 from Fundación BBVA and CTM2010–22218 from the Ministerio de Educación y Ciencia. The authors are part of the Research Group 2009SGR–636, 2009SGR–655 and 2009SGR–1364 of the Generalitat de Catalunya. VHGM acknowledges a predoctoral fellowship from Universidad del Quindío (Armenia, Colombia). ARB acknowledges a postdoctoral fellowship from MAE-AECID 2009.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ympev.2011.11.009.

References

Cadiou, Y., 1994, Karto: programme de représentation géographique, version 5.2.

