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Abstract 

The involvement of the lectin/carbohydrate interaction in the invasion of the turbot 

intestinal epithelium by Enteromyxum scophthalmi was studied in vitro using explants 

of turbot intestine and pre-treatment of parasite stages with the plant lectins of 

Canavalia ensiformis (Con A) and Glycine max (SBA). Both lectins inhibited the 

attachment and invasion of E. scophthalmi stages to the intestinal epithelium, though 

the inhibitory effect was higher for SBA than for Con A. Such results point to the 

involvement of N-acetyl-galactosamine (GalNAc) and galactose (Gal) residues and also 

of mannose/glucose residues in the E. scophthalmi-intestinal epithelium interaction. The 

inhibitory effect of both lectins on the parasite adhesion and penetration points to the 

interest of further studies to confirm the presence of putative lectins recognising 

GalNAc-Gal and mannose/glucose residues in turbot intestine. The obtained results 

demonstrated also the adequacy of turbot intestinal explants as an in vitro model to 

study the interaction with E. scophthalmi. 
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1. Introduction 

The phylum Myxozoa includes a large number of species most of them parasites 

of fish. Some myxozoans cause disease and impact upon wild and farmed fish 

populations. Enteromyxosis caused by Enteromyxum scophthalmi (Palenzuela et al., 

2002) is among the most severe parasitic diseases in mariculture, producing serious 

loses in turbot Psetta maxima (L.) (Branson et al., 1999; Quiroga et al., 2006). E. 

scophthalmi is highly specific for the digestive tract, mainly for the intestine, the target 

organ. 

Infection by pathogens is generally initiated by the specific recognition of host 

epithelia surfaces. Receptors present in the mucin layer can act as binding sites in the 

subsequent adhesion, which is essential for invasion. The lectin/glycoconjugate 

interactions, characterized by their high specificity, are known to play a significant role 

in the adhesion of bacteria and parasites and in their interaction with the host. In their 

infection strategy, microorganisms often use sugar–binding proteins, such as lectins and 

adhesins to recognize and bind to host glycoconjugates (Imberty and Varrot, 2008). The 

blocking or inhibition of microbial lectins by suitable carbohydrates or their analogous 

is the aim of anti-adhesion therapy for the prevention and treatment of infectious 

diseases (Sharon, 2006). In addition, many carbohydrate residues present on the surface 

of parasites are specifically recognised by host lectins (Jacobson and Doyle, 1996; 

Nyame et al., 2004; Hammerschmidt et al. 2005). These carbohydrate structures of 

parasites can be used as prototypes for the chemical or combined chemo-enzymatic 

synthesis of new compounds for diagnosis and vaccine development, or as inhibitors 

specifically designed to target glycan byosinthesis (Mendoça-Previato 2002).  Previous 

studies have demonstrated the binding of several plant lectins to carbohydrate residues 

present in E. scophthalmi stages (Redondo et al. 2008) and in the epithelial surface of 



turbot intestine, and a role of lectin-carbohydrate interaction in the turbot-E. 

scophthalmi relationship has been suggested (Redondo and Alvarez-Pellitero 2009). 

The unavailability of in vitro cultures of myxozoans, makes particularly difficult 

the studies on the interaction parasite/host. However, in the case of E. scophthalmi, the 

life cycle of the parasite can be experimentally maintained in vivo using effluent, 

cohabitation or oral infections (Redondo et al. 2002). In addition, turbot intestinal 

explants have been used in vitro to demonstrate the adhesion and penetration of this 

parasite into the intestinal epithelium (Redondo et al. 2004). In the present work, the 

involvement of the lectin/carbohydrate interaction in the invasion of the epithelium by 

E. scophathalmi was studied in vitro using explants of turbot intestine and pre-treatment 

of parasite stages with Canavalia ensiformis (Con A) and Glycine max (SBA), the two 

lectins showing the highest binding activity to E. scophtalmi (Redondo et al. 2008). 

 

2. Materials and methods 

Four trials using different methods of parasite treatment and incubation were 

performed (see below and Table I). 

 

2.1. Intestine explants 

Healthy turbot (Psetta maxima) were obtained from an E. scophthalmi-free farm. 

Fish were killed by overexposing to MS222 and bled from the caudal vein. After 

necropsy, portions of anterior or medium parts of intestine were collected, placed in 

sterile phosphate buffer saline (PBS) containing 2 x PSA antibiotic/antimycotic mixture 

(1x PSA = 100 U.ml
-1

 penicillin, 100 µg.ml
-1

 streptomycin, and 0.25 µg.ml
-1

 

amphotericin B), and cut in small pieces up to 10 x 6 mm. Small intestine pieces were 

placed (epithelial layer facing upwards) in each well of 24-well tissue culture plates 



(one piece per well), containing 800 l of PBS (trial 1) or Leibovitz’s L-15 medium 

supplemented with 10% heat-inactivated foetal bovine serum (FBS) and 1 x PSA (trials 

2, 3, 4). L-15 osmolarity was adjusted to 350 mOsm.kg
-1

 by the addition of NaCl and 

pH to 7.2 with 20 mM HEPES. 

All the experiments were carried out according to national (Royal Decrete 

RD1201/2005, for the protection of animals used in scientific experiments) and 

institutional regulations (CSIC, IATS Review Board) and the current European Union 

legislation on handling experimental animals 

 

2.2. Source of parasites 

Live E. scophthtalmi stages were obtained from turbot experimentally infected at 

the Instituto de Acuicultura Torre de la Sal (IATS) facilities. Infected fish were initially 

obtained from spontaneous infections occurring in turbot farms of Galicia, North West 

Spain (Redondo et al. 2004; Quiroga et al. 2006). This infection was experimentally 

transmitted via effluent water from tanks containing diseased fish; per os, by feeding 

infected intestinal tissue; and via cohabitation of infected and uninfected fish (Redondo 

et al. 2002). Since the experimental infection model was obtained, the life cycle has 

been maintained in vivo at the IATS facilities by several series of cohabitation of 

infected and uninfected fish or by oral infection.  

 

2.3. Isolation and processing of E. scophthalmi stages 

Infected fish were killed as above, necropsied and processed as explained 

previously (Redondo et al. 2002). Briefly, the intestinal fluid was collected from 

infected fish using a syringe and deposited in 15-ml centrifuge tubes containing PBS 

supplemented with a 2 x PSA. A drop of the intestinal liquid was observed as a fresh 



smear at the microscope at 300x and the infection intensity was evaluated using the 

microscope at 300x magnification. Samples rich in parasite stages were centrifuged 10 

min at 365 g. The pellet was processed in a different way depending on the trial (see 

below and Table I). In trials 1 and 2, the pellet was washed once in fresh PBS 

containing 2 x PSA. In trial 3, two further washes were done. In trial 4, a slight 

enzymatic treatment was applied after the third washing as follows: Stages were 

incubated in PBS containing 0,370 mg/ml EDTA (ethylenediaminetetraacetic acid) and 

0,145 mg/ml DTT (dithiothreitol) during 1 h at 18ºC under shaking, and washed in 

washing medium (HBSS pH 7.2, 5% FBS, 1 x PSA, 0.1mg/ml DNase I). After filtration 

using a 40 µm cell stainer, the filtrate containing the parasites was resuspended in L-15 

medium. In all cases, the stages in the final pellets were counted and their viability 

estimated using eosin dye-exclusion methods. The parasites present in the pellets 

belonged to stage 2 (a primary cell containing one or several secondary cells) and stage 

3 (a primary cell containing one or several secondary cells, which in turn harboured one 

or more tertiary cells), according to Redondo et al. (2004). All the procedure was 

carried out using sterile material and aseptic techniques.  

 

2.4. Parasite culture with intestine explants  

In the four experiments, the isolated parasites were divided into three parts. Two 

of them were incubated with 50 μg/l Con A or SBA, recognising Man α-1>D-Glc α-

1>GlcNAc α-1 and α,ß GalNAc>α,ßGal residues, respectively, during 30’, and the third 

one served as control, non-incubated with the lectin. Details on the parasite obtaining, 

temperature and incubation conditions can be found in Table I. The lectin-incubated and 

control parasite suspensions (2.5x10
5
-1x10

6
 stages/ml) were added to the wells 

containing the intestinal explants. Control wells contained intestine pieces with no 



parasites added. After incubation at 15-18ºC, intestine portions were recovered at 2-3 h 

post-exposure (p.e.), fixed in 10 % neutral buffered formalin and embedded in 

Technovit-7100 resin (Kulzer, Heraeus, Germany). Sections (2 µm) were stained with 

toluidine blue. The presence of parasite stages was evaluated in the histological sections 

at light microscope by counting the number of parasites that appeared attached or within 

the epithelia. For such purpose, serial sections of the epithelial tissue were obtained and 

sets of 4 sections per slide were mounted on successive slides. In order to assure the 

examination of different levels of the tissue and to avoid repetition of stages, the four 

sections of impair slides were examined. In each section, 32 observational fields of 

epithelium (460 x 460 μm surface) were seen at 300x. Three replicate series of counts 

were done per condition. In each replicate, 4 slides (16 sections, 108 mm
2 

of
 
epithelial 

surface)
 
were examined, and the parasites attached or within the epithelium were 

counted.  

 

2.5. Statistical analysis 

Differences between the three conditions in each trial and between trials were 

analysed by One-way analysis of variance (ANOVA). When the test of normality or 

equal variance failed, a Kruskal-Wallis one-way ANOVA on Ranks followed by Tukey 

test or Holman-Sidak method was applied instead. All statistical analyses were 

performed using Sigma Stat software (SPSS Inc., Chicago, IL, USA), and the minimum 

significance level was set at P<0.05.  

 

3. Results  

The number of E. scophthalmi stages attached to or penetrated in the turbot 

intestinal explants was higher for control parasites than for stages pre-incubated with 



both Con A and SBA, with a more pronounced effect of SBA (Fig. 1). Differences were 

statistically significant for SBA-treated stages with respect to untreated stages in all 

trials except in trial 4. However, the number of Con A treated stages was significantly 

lower than that of untreated stages only in trial 3.  

Few stages were observed within the epithelium in any treatment, but their 

number was again lower for Con A treated parasites whereas none stage was seen in this 

location after SBA treatment. Attached (Figs. 2A-B) or internalised (Fig. 2C) stages 

were mainly stage 3 parasites (Figs. 2A, C), though some stages with the appearance of 

secondary cells released from a mother stage were seen adhered to epithelium (Fig. 2D). 

Lectin treated stages appeared sometimes in close contact, suggesting an agglutinating 

effect of the lectin (Fig. 2E). As the number of attached or penetrated stages in control 

explants was low in trials 1 and 2, some conditions were changed in subsequent trials to 

improve the invasion. The number of attaching or invading stages was the highest in 

trial 3, when using washed stages at 15 ºC, though the difference was statistically 

significant only with respect to trial 1. The enzymatic treatment to separate the stages 

from the mucus (trial 4) did not improve the invasion and penetration. In spite of the 

observed differences between trials, the effect of the pre-incubation of parasite stages 

with lectins was inhibitory in all cases. 

  

4. Discussion 

The incubation of E. scophthalmi stages with Con A and SBA influenced their 

ability to invade the epithelium of turbot intestinal explants in vitro. The inhibitory 

effect was higher for SBA than for Con A, which points to the involvement of GalNAc-

Gal and also of Man/Glc residues in the E. scophthalmi/intestinal epithelium interaction. 

Such effect was confirmed in several experiments using parasite material obtained from 



different individual fish and performed in different conditions. The use of washed stages 

at 15 ºC proved to be the most efficient condition for these in vitro studies. 

The obtained results indicate that such residues could be recognised by putative 

lectins present in the fish intestinal epithelium. Among animal lectins recognising Man 

residues, the best characterized is the mannose-binding lectin (MBL), a C-type lectin 

that plays an essential role as initiator of the primary immune response and participates 

in inflammation (Petersen et al. 2001; Turner 2003; Klein 2005; Arnold et al. 2006). 

MBL or its homologous exist in different organs of teleosts, including the intestine 

(Vitved et al. 2000; Nikolakopoulou and Zarkadis 2006). The pufflectin, another MBL, 

is present in the mucosal tissues of skin and digestive tract of pufferfish and can bind 

specifically to the monogenean Heterobothrium okamotoi (Tsutsui et al. 2003). Other 

animal lectins recognise Gal residues, such as galectins and intelectins. There are 

several mammalian galectines, some of them expressed in the intestine (Rabinovich 

1999). Among piscine galectins, the congerin, located at skin and mucosal tissues 

(Nakamura et al. 2001) can play immune functions in the Japanese conger eel (Conger 

myriaster) intestinal lumen (Nakamura et al. 2007). Intelectins are Ca2+-dependent Gal 

binding lectins that are expressed in Paneth and goblet cells of mammalian small 

intestine (reviewed in Nair et al. 2006; Wrackmeyer et al. 2006). Several intelectins 

have been characterized in the fish gut and some of them can interact with bacteria 

(reviewed in Alvarez-Pellitero 2009).  

Several transmembrane or soluble lectin domains in the host can interact with 

Man, fucose or Gal structures in different parasites and can thus play a crucial role in 

the host/parasite interaction and invasion, and also in the immune evasion (Cambi and 

Figdor 2005). Among lectins recognising D-Man and D-Glc residues, MBL is known to 

be involved in the interaction and response to some parasites (Klabunde et al. 2000; 



Ambrosio and Messias-Reason 2005; Hokke and Yazdanbakhsh 2005; Gruden-

Movsesijan and Milosavljevic 2006). In addition, in vitro experiments have 

demonstrated a reduction of the invasion of macrophages by Leishmania mexicana 

(Bray 1983) and of the excised skin of channel catfish by the ciliate Ichthyophtyrius 

multifiliis (Xu et al. 2001) by lectins recognising such residues.  

Among lectins recognising Gal residues, intelectins have been also proposed to 

have a role in the response to parasite infections. Intelectin-1 and intelectin-2 are up-

regulated in mice infected with Trichuris muris and Trichinella spiralis, respectively 

(Pemberton et al. 2004; reviewed in Artis and Grencis 2008). Lectins binding to O-

linked glycoconjugates containing Gal or GalNAc residues mediate inhibition of 

sporozoite infectivity of Cryptosporidium parvum in vitro (Gut and Nelson 1999). Other 

studies have confirmed the role of lectin carbohydrate interactions involving a 

Gal/GalNAc-specific lectin in C. parvum attachment to epithelial cells (Chen and 

LaRusso 2000) and the role of GalNAc residues in blocking the attachment to host cells 

(Cevallos et al. 2000). In a similar manner, the penetration of sporozoites of Eimeria 

tenella was suppressed when pretreated with peanut lectin that specifically recognizes 

D-Gal residues (Baba et al. 1996).  

The currently obtained results demonstrated also the adequacy of turbot 

intestinal explants as an in vitro model to study the interaction with E. scophthalmi. The 

inhibitory effect of the studied lectins on the parasite adhesion and penetration points to 

the interest of further studies to confirm the presence of putative lectins recognising E. 

scophthalmi structures in turbot intestine. The potential use of lectins in invasion-

inhibiting treatments, as suggested for C. parvum (Gut and Nelson 1999; Cevallos et al. 

2000) and Giardia lamblia (Ortega-Barria et al. 1994; Grant et al. 2001) infections 

deserves further investigations.  
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Figure legends 

Fig. 1. Number of E. scophthalmi stages (mean ± SE) attached or penetrated in the 

turbot intestinal explants in vitro in trials 1 to 4. Different low-case letters indicate 

statistically significant differences (P ≤ 0.05) between parasite treatments within each 

trial. Capital letters indicate statistically significant differences between trials. Stages: 

control. Stages + Con A, Stages + SBA: pre- incubated with Con A or SBA, 

respectively. 

Fig. 2. Histological sections of intestinal explants of turbot after exposure to E. 

scophthalmi stages non-incubated (control) or pre-incubated with the plant lectins ConA 

or SBA. A. Trial 2, control. The parasite adhered to the epithelial surface (stage 3) 

seems to initiate the penetration in the epithelium. B. SBA. Trial 3. Stage 3 with the 

membrane of the primary cell adhered to the epithelium. C-E. Con A. C. Trial 1. Stage 

3 within the epithelium. Two secondary cells (containing tertiary cells) can be seen in a 

primary cell. D. Trial 3. Two stages 3 (arrows) are near the mucus layer. In the upper 

part of the image, three secondary cells apparently released from the primary cell appear 

attached to the brush border (arrowhead). E. Trial 2. Three stages are closed together, 

apparently agglutinated. Staining: Toluidine blue. Bars: Figs. A, D-E: 20 µm; Figs. B-

C: 10 µm.  



Table I. Experimental conditions in the four trials of in vitro infection of E. scophthalmi 

in turbot intestine explants 

 

Conditions Trial 1 Trial 2 Trial 3 Trial 4 

Parasite stages 

processing 

Washed once 

in PBS 

Washed once 

in PBS 

Washed trice 

in PBS  

 

Washed trice in 

PBS + 

enzymatic 

treatment 

Incubation 

medium 

PBS L-15 L-15 L-15 
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