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“Natural selection is not evolution” [1]. This simple statement explains how we pursue 18 

the study of natural selection, as it separates within-generation natural selection from 19 

the multiple-generation evolutionary response to natural selection. Actually, we can 20 

estimate natural selection by just measuring the relevant traits of organisms during a 21 

single growing and breeding season [2]. However, a good understanding of adaptive 22 

evolution cannot be achieved without considering the selective agents responsible for 23 

natural selection. The comparative method in evolutionary biology [3] was born in part 24 

to fill this gap, serving very successfully since then to document how selective agents 25 

drive adaptive variation at scales that expand from a few to millions of generations. 26 

However, the systematic inclusion of selective agents in studies documenting natural 27 

selection in the wild has been much less common. 28 

 In a recent review in TREE, MacColl [4] proposes a new research programme 29 

that aims at measuring and manipulating selective agents in field studies of natural 30 

selection. Making selective agents come to the surface may be a major step forward in 31 

evolutionary biology. MacColl has done an excellent job at envisaging how research in 32 

this area should be pursued. Using the analogy with variance-covariance genetic 33 

matrices (G-matrices) of quantitative characters, he proposes the use of variance-34 

covariance O (Oikos) matrices of selective agents and to relate them to the strength of 35 

selection [2] by means of multiple regression. Actually, O-matrices have been implicitly 36 

used in the comparative method, as the most modern statistical techniques allow for the 37 

test of partial and interaction effects of candidate selective agents on trait values [e.g. 5]. 38 

Since, in order to detect their role in adaptive evolution through the comparative 39 

method, selective agents should be present and relatively constant through a great part 40 

of the evolutionary history of the focal taxon, these are stable O-matrices in the 41 
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MacColl’s sense. However, at the temporal scales at which selection is measured in the 42 

wild, these O-matrices may not be always as stable. 43 

If spatio-temporal fluctuation in climatic factors (rainfall, temperature), and the 44 

associated productivity, is sufficiently high at temporal scales shorter than the average 45 

lifespan of individuals in the target population, selection may be undetectable. 46 

Furthermore, abundances of interacting populations may fluctuate enormously in space 47 

and time regardless of climate variability. Thus, even in relatively stable ecosystems, 48 

the O-matrix may fluctuate sufficiently to produce noisy patterns of selection. When 49 

feasible, experimental manipulations may partially solve this problem [4]. In non-50 

manipulative studies, one could check if environmental fluctuations affect selection by 51 

testing for an interaction effect between agent fluctuation and trait values on fitness.  52 

Moreover, if O-matrices affect the evolution of G-matrices (i.e., over many 53 

generations the selective environment affects the genetics of trait variation and 54 

correlation – [4]) we must consider that G-matrices, which are relatively stable [6], may 55 

also reciprocally affect O-matrices. This important fact, which may completely change 56 

how we see eco-evolutionary landscapes, was not considered by MacColl. First, 57 

ecosystem engineers can contribute to enhance their own environment by niche 58 

construction, adaptively changing their O-matrices from generation to generation [7]. 59 

Second, Indirect Genetic Effects; i.e. the effect of gene expression in one individual on 60 

the gene expression of another, can actually drive the evolution of the biotic 61 

environment itself [8], making the G-matrix to behave in part as the O-matrix and 62 

viceversa. Third, if we consider ecological networks as the biotic O-matrices of target 63 

interacting species, the paucity of positive, negative, direct and indirect effects in these 64 

complex systems provides ample room for the O-matrix to affect the G-matrix [9] and 65 

viceversa. Actually, variation in the G-matrix can potentially affect variation in the 66 
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stability of complex food webs [10], and thus the stability of the O-matrix itself. 67 

Furthermore, asymmetric co-selection between pairs of interacting species can 68 

differently affect the demography of each other [11]. Using MacColl’s Fig. 1, a change 69 

in the G-matrix due to a response to selection for predatory defence in sites of high 70 

predator density, could affect the density of predators itself, and thus the O-matrix. 71 

Moreover, if the correlation between predator and parasite abundances is driven by 72 

predator density, a decrease in predator numbers will change parasite abundance. 73 

However, if the correlation is mediated by a third variable (e.g.; overall system 74 

productivity) the change in predator numbers will not affect the parasite axis of the O-75 

matrix. The possibilities may be astronomical when complex networks of interactions 76 

are considered as O-matrices. 77 

In order to tentatively explore this feedback among G- and O-matrices, one 78 

could measure O-matrices before and after selection and relate the change in the O-79 

matrices to the variance-covariance matrix of phenotypic trait values as measured 80 

before selection. To this end, one could use Path Analysis, which is a very useful 81 

statistical tool to disentangle cause and effect when combining experiments and 82 

complex biotic interactions [e.g. 12].  83 
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