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We consider a simple model consisting of particles with four bonding sites (“patches”), two of type
A and two of type B, on the square lattice, and investigate its global phase behavior by simulations
and theory. We set the interaction between B patches to zero and calculate the phase diagram as
the ratio between the AB and the AA interactions, ε∗

AB , varies. In line with previous work, on three-
dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or
“pinched” shape for the same range of ε∗

AB , suggesting that the ratio of the energy scales – and the
corresponding empty fluid regime – is independent of the dimensionality of the system and of the
lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in
the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently
large systems to establish the nature of the liquid-vapor critical points and to describe the structure of
the liquid phase in the empty fluid regime, where the size of the “voids” increases as the temperature
decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with
a scaling region that decreases rapidly as the temperature decreases. The results of simulations and
theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line
at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant,
empty fluid, regime. © 2011 American Institute of Physics. [doi:10.1063/1.3657406]

I. INTRODUCTION

One of the scientific and technological revolutions cur-
rently in progress is the increasing ability to miniaturize
material design and manufacturing components. Advances
in the chemical synthesis and fabrication of nanometer-to-
micrometer sized particles have produced a variety of new
particles. Their organization into more complex structures re-
mains, however, a great challenge. A promising approach in-
spired by Nature is nanoparticle self-assembly. The structure
of the self-assembled clusters, which range from chains to
rings and complex branched structures, depends crucially on
the anisotropy of the particle shapes and interactions and may
compete with the clustering that drives condensation, giving
rise to novel macroscopic behavior.1–3

Indeed, patchy particle models with dissimilar patches
(A and B) were recently introduced in this context and re-
vealed that the criticality depends on the type of clusters that
are formed.4, 5 Of particular interest are systems where the
self-assembled clusters are long linear chains connected by
junctions, as the liquid-vapor transition of these network (per-
colated) fluids may be viewed as the condensation of these
junctions.4, 5 In addition to ferrofluids or electro-rheological
fluids, colloids with distinct patchy interactions may be syn-
thesized by the selective functionalisation of specific areas of
the particles.6, 7
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noe@iqfr.csic.es.

Primitive models of patchy particles with identical8, 9 and
distinct patches share the physics of limited valence materi-
als, namely, the existence of stable liquid states of vanish-
ingly small density (empty liquids), and provide a route to
equilibrium gels.10 In addition, distinct-patch models allow a
unique control of the effective valence through the tempera-
ture T. In three-dimensional (3D) off-lattice models consist-
ing of particles with two types of patches, A and B, where the
interaction between B patches is set to zero, the topology of
the liquid-vapor diagram is determined by the ratio between
the AB and the AA interactions, ε∗

AB . As ε∗
AB decreases in

the range 1/3< ε∗
AB < 1/2, the low-temperature liquid-vapor

coexistence region also decreases.11 The binodal exhibits a
characteristic re-entrant or “pinched” shape with the coexist-
ing liquid density vanishing as the temperature approaches
zero.11, 12 Below ε∗

AB = 1/3, there is no condensation, and
above ε∗

AB = 1/2, there is no re-entrant behavior.13 Both the
scaling of the vanishing critical parameters and the re-entrant
phase behavior are predicted correctly by Wertheim’s thermo-
dynamic first-order perturbation theory.11, 12, 14, 15 The theory
also reveals that the re-entrant phase behavior is driven by the
balance of two entropic contributions: the higher entropy of
the junctions and the lower entropy of the chains in the (net-
work) liquid phase, as suggested a decade ago on the basis of
a hierarchical theory of network fluids.16

The feature that makes patchy particles ideally suited
to the investigation of the interplay between self-assembly
and condensation is the fact that both the thermodynamic
and structural properties of patchy particle systems can be
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predicted with a high degree of accuracy by the ther-
modynamic perturbation theory of Wertheim and the
Flory-Stockmayer theory of polymerization.17–19 It is then
possible to study the phase behavior of patchy particles using
reliable liquid-state theories and to use this knowledge to
design the models and guide the simulations, the results of
which validated the theoretical predictions.8, 9, 11, 12 There
remain, however, two open questions: 1. What is the nature
of the liquid-vapor critical point, in models with an empty
fluid regime? and 2. Are there ordered phases that pre-empt
the empty fluid regime, or what is the topology of the global
phase diagram? These are difficult questions that will be
addressed here by considering simple patchy particle models
on the square lattice.

In systems with two bonding sites per particle, only
(polydisperse) linear chains form and there is no liquid-vapor
phase transition.20 If the chains are sufficiently stiff, they
undergo an ordering transition at fixed concentration, as
the temperature decreases below the bonding temperature.
The interplay between the self-assembly process, driven by
the bonding interactions, and the ordering transition, driven
by the anisotropic shape of the bonded clusters has been
investigated for a two-dimensional (2D) model consisting
of particles with two bonding sites, on the square lattice
(self-assembling rigid rods (SARR) model). It was shown
that bonding drives ordering and that the ordering enhances
bonding.21 Subsequently, extensive Monte Carlo simulations
were carried out to investigate the nature of the ordering tran-
sition that was shown to be in the Ising 2D universality class,
as in models where the rods are monodisperse.22 The scal-
ing region, however, was found to depend strongly on the
temperature.22, 23

In this paper, we consider the 2A2B model consisting of
particles with four patches, two of type A and two of type
B, on the square lattice and investigate its global phase be-
havior by simulations and theory. We set the interaction be-
tween B patches to zero and calculate the phase diagram,
as the ratio of the AB and the AA interactions, ε∗

AB , varies.
We find that, in the same range of parameters as in 3D off-
lattice models, the liquid-vapor diagram exhibits a re-entrant
or “pinched” shape, and there is an empty fluid regime. In
addition, below ε∗

AB = 1/3 condensation ceases to exist, and
the re-entrant regime disappears for ε∗

AB > 1/2, in line with
the results for off-lattice 3D models and the predictions of
Wertheim’s theory.11–13 This suggests that the thresholds pre-
dicted by Wertheim’s theory are exact and universal, i.e., inde-
pendent of the dimensionality of the system and of the lattice
structure. Finally, the 2A2B model exhibits an order-disorder
(O-D) transition that is ferromagnetic for 1/3 < ε∗

AB < 1/2.
The use of 2D lattice models allows the simulation of

larger systems enabling us to establish the nature of the criti-
cal points and to investigate the structure of the network liquid
phase in the empty fluid regime, where the size of the “voids”
increases rapidly as the temperature decreases. We find that
the liquid-vapor critical points are in the 2D Ising universality
class, with a scaling region that decreases as the temperature
decreases. The simulation results also indicate that the line of
O-D transitions intersects the condensation line at zero tem-
perature and density, at a multi-critical point, or at a very low

temperature, at a critical end-point. The analysis of this region
requires the simulation of larger systems at extremely low
temperatures, which becomes prohibitive even for 2D patchy
particle lattice models.

In order to proceed, we consider a low-temperature
model (LTM) that describes the asymptotic behavior of 2D
patchy particle models at low temperatures, and use a cluster
algorithm that enables the efficient simulation of these low-
temperature systems. Finally, we derive asymptotic expres-
sions based on Wertheim’s theory, for the liquid branch of the
binodal and the O-D transition that suggest, in line with the
simulation results, that the transition lines meet, at a multi-
critical point, at zero temperature and density.

The paper is arranged as follows: In Sec. II, we describe
the patchy particle model, the mapping of the full lattice limit,
and the simulation methods. In Sec. III, we present the results
for the global phase diagram of a system with a re-entrant
binodal. We compute the binodals, analyze the nature of the
liquid-vapor critical points, and discuss the topology of the
global phase diagram for systems with a ferromagnetic order-
ing transition (re-entrant regime). In Sec. IV, we introduce
the LTM and the simulation techniques developed to sample
low temperatures efficiently. We compute the binodals and
the ferromagnetic ordering transition and discuss the topol-
ogy of the global phase diagram. Then, in Sec. V, we address
the zero temperature and zero density limit theoretically. We
derive asymptotic expressions for the condensation and O-D
transitions based on Wertheim’s theory for associating liquids,
in the limit of strong AA bonding. We conclude, based on the
asymptotic analysis, that the condensation and O-D lines meet
at a multi-critical point, at zero temperature and density. In
Sec. VI, we make some concluding remarks, and in the Ap-
pendix, we provide details of the calculation of the starting
point of the liquid-vapor equilibrium of the LTM, used in the
Gibbs-Duhem integration of the liquid branch of the binodals.

II. THE 2A2B MODEL

The model consists of particles with four patches, two
of type A and two of type B, on a square lattice. The lattice
sites are either empty or occupied by one single particle. The
patches A and B are aligned along one of the two lattice di-
rections (see Figure 1). There are two configurations for each
occupied site: (1) A patches aligned along ±x̂ and B patches
aligned along ±ŷ, and the symmetric configuration with (2)
A patches aligned along ±ŷ and B patches aligned along ±x̂.
The potential energy, U , is the sum of pair interactions be-
tween nearest-neighbor (NN) particles on the lattice and is
written as

U = −εAANAA − εABNAB − εBBNBB, (1)

where Nαβ is the number of αβ bonds, i.e., lattice bonds be-
tween NN occupied sites connecting patches α and β.

This model is a lattice realization of the patchy particle
models with distinct patches introduced in Refs. 4 and 5
investigated in the context of empty network fluids.11, 12 In
line with previous work, we take εAA = ε as the energy scale
(ε > 0) and focus on systems where the B patches do not
interact, i.e., εBB = 0. The interaction between A and B
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FIG. 1. Illustration of the model. Top: One particle with 2A and 2B bonding
sites or patches with the A patches aligned along x̂ and the B patches aligned
along ŷ. Bottom: Two particles forming an AA bond along x̂.

patches varies although most of the results are for systems in
the re-entrant regime, i.e., 0 < εAB ≤ ε/2. Taking into account
that each particle carries two A patches and that a patch can
participate, at most, in one bond, we can write

2N = 2NAA + NAB + NA0, (2)

where N is the number of particles in the system and NA0

is the number of patches that are not bonded. Combining
Eqs. (1) and (2) for εBB = 0, we get

U/ε = −N + NAB

(
1

2
− εAB

ε

)
+ 1

2
NA0. (3)

From Eq. (3), it follows that AA bonds are favored when
εAB < ε/2, while AB bonds are favored when εAB > ε/2. At
low temperature, most of the A patches are bonded and the
network fluid consists of AA chains connected by a small
number of AB branches in the former case, while the network
is almost fully branched in the latter. The special case εAB

= 0 corresponds to a self-assembling rigid rod model that
was studied on 2D lattices recently.21–26 In the SARR model,
a continuous O-D transition is found to be the only feature

of the phase diagram. At low temperatures, the particles
form long rigid rods, through AA bonds, which undergo an
orientational ordering transition, in the 2D Ising class on the
square lattice and in the q = 3 Potts class on the triangular
one.22, 23 The SARR model has no liquid-vapor transition as
adjacent rods do not interact energetically.

A. The full lattice limit

The full lattice limit of the SARR model on the square
lattice has been mapped on to the Ising model.22, 26 This was
achieved by establishing a correspondence between the parti-
cle orientations of the SARR model and the spins ±1 of the
Ising model. The total energy of both models is then com-
puted by adding the contributions of elementary plaquettes,
consisting of a square with four sites enclosing an elemen-
tary lattice cell. The mapping between the Ising and the full
lattice limit of the SARR model is established for any plaque-
tte configuration and the critical temperature of the model is
identified with the exact result of the critical temperature of
the corresponding Ising model.22 Following this procedure, a
similar mapping is established for the 2A2B model. At full
lattice occupancy, the 2A2B model undergoes an Ising O-D
transition, at the reduced temperature,22

kBTc

ε
= T ∗

c =
∣∣∣∣ε + εBB − 2εAB

2ε ln(1 + √
2)

∣∣∣∣ , (4)

where kB is Boltzmann’s constant. The ordered phase is stable
at T < Tc. When εBB = 0, the ordered phase is ferromagnetic
(particles aligned in the same direction), if εAB < ε/2, and
antiferromagnetic otherwise, if εAB > ε/2.

Note that when εBB = 0 and εAB = ε/2, there is no O-D
transition. Inspection of Eq. (3) reveals that at full lattice oc-
cupancy, every A patch is bonded, and therefore, all the con-
figurations have the same potential energy. This degeneracy
does not hold when vacancies (empty sites) are present but
the free energy is still dominated by entropic terms that pre-
vent the system from ordering.

B. Simulation methods

We aim at computing the global phase diagram of the
2A2B model through Monte Carlo Simulation. Based on pre-
vious results,11, 12, 22, 23 a low-temperature critical line corre-
sponding to the O-D transition, the locus of which at ρ = 1 is
known exactly through the mapping to the Ising model (4), is
expected to occur; in addition, a liquid-vapor first-order tran-
sition ending at a critical point (for εAB above a certain thresh-
old) is also expected.

The O-D transition is located using techniques analogous
to those described in Ref. 23. We fix the temperature and
system size and, by means of the simulated tempering
algorithm, compute the properties for different values of
the chemical potential around the expected critical point.
By using appropriate finite-size scaling analysis, we obtain
estimates of the critical parameters, μc(T) and ρc(T), in the
thermodynamic limit.
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The liquid-vapor equilibria (LVE) is computed using
a combination of Wang-Landau multi-canonical simulation
(WLMC) (Ref. 27) and Gibbs-Duhem integration (GDI)
procedures28 adapted to lattice models.29, 30 The WLMC
methodology was described previously, including the details
specific to lattice models.29, 31, 32 WLMC simulations, com-
bined with finite-size analysis techniques, are very efficient in
locating the liquid-vapor critical point and in computing the
phase diagram at temperatures not far from it. At low temper-
atures, we found it useful to resort to GDI schemes.

We run WLMC simulations and locate the LVE at a
given temperature and system size by searching for the
value of the chemical potential, μ0(L, T), that maximizes
the density fluctuations: δρ = [〈 ρ2〉 − 〈 ρ〉2]1/2. Under these
conditions, we compute the average density, ρm = ρm(L,
T, μ0), and the moments of the density distribution, mk

= 〈(ρ − ρm)k〉, in order to calculate the ratio g4 = m4/m2
2,

which is related to the fourth-order Binder cumulant.33 We
establish whether at the chosen temperature T there is LVE
by analyzing the dependence of g4 on the system size.
LVE occurs below the critical temperature, where at μ0

the density distribution function exhibits two peaks that
become sharper as the system size L increases. This im-
plies that g4(L) decreases as L increases and approaches g4

= 1 in the thermodynamic limit. Above Tc, g4(L) increases
with L and approaches g4 = 3 (Gaussian distribution) in
the thermodynamic limit. At the critical temperature, finite-
size scaling arguments,27, 34, 35 indicate that (for sufficiently
large systems) g4(L) takes a non-trivial value that depends on
the boundary conditions and on the universality class of the
transition.

We estimate the system-size-dependent pseudo-critical
points [Tc(L), μc(L)] by imposing that g4(L, T) takes the value
corresponding to the 2D Ising universality class.36 Numerical
details of these calculations may be found in Refs. 27 and 32.
We proceed to estimate the critical temperature and density in
the thermodynamic limit, using the scaling equations34

ρc(L) − ρc ∝ L−2+ 1
ν , (5)

Tc(L) − Tc ∝ L− 1
ν
−λ, (6)

where ν is the correlation length critical exponent (ν = 1 for
the 2D Ising class), and λ = θ /ν, where θ is the correction
to scaling critical exponent. There is some controversy37–41

concerning the value of λ for systems in the 2D Ising class,
as a number of simple models (e.g., 2D Ising) have no ir-
relevant operators.36, 37 One then expects, λ = 4/3 (Refs. 40
and 41) in general or λ = 7/4 (Refs. 36 and 38) in the ab-
sence of irrelevant operators. Taking this into account, we
computed three estimates of the critical temperature (the same
scheme applies to the critical chemical potential), using λ

= 4/3, λ = 7/4, and considering λ as a fitting parameter.
At temperatures below Tc, we fit the system-size-

dependent LVE results to the scaling equations,

x(L, T ) − x(T ) ∝ L−d , (7)

where x(L, T) is the finite-size result for the property x, and
x(T) (obtained from the fit) is the estimate of the property in

the thermodynamic limit; d = 2 is the spatial dimensionality
of the system. We have obtained very precise values of the
chemical potential at coexistence, which were subsequently
used in the GDI to compute the LVE in a wider range of tem-
peratures (away from the critical point). Within the GDI, we
run sequences of two phase (liquid and vapor) simulations us-
ing larger system sizes (than those feasible with WLMC) al-
lowing us to sample lower temperatures, in the empty liquid
regime.

In the computation of the critical parameters, described
above, we assumed that the critical point of the LVE is in
the 2D Ising universality class. As this is not yet established,
we proceed to analyze the scaling behavior of the pseudo-
critical parameters, and the moments of the density distribu-
tion, PL(ρ), at the pseudo-critical points. The finite-size scal-
ing behavior of δρc(L) satisfies42

Lβ ′/νδρc(L) ≈ a0 + a1L
−λ, (8)

where β ′ is the critical exponent of the order parameter (β ′

= 1/8 for 2D Ising). We expect the shape of the critical
density distribution, PL(ρ), to approach that of the critical
Ising 2D magnetization P Ising(M), for large system sizes.34

Deviations occur for small systems due to corrections to
scaling associated with the irrelevant fields and field-mixing
contributions.34 Thus, in addition to checking the scaling of
Tc(L), ρc(L), and δρc(L), we compare the asymptotic val-
ues of the reduced moments of the density distribution, g5

= m5/m
5/2
2 and g6 = m6/m3

2, to the critical Ising 2D values,
g5 = 0 and g6 
 1.4556.36

III. RESULTS FOR THE 2A2B MODEL

We start by illustrating, in Figure 2, typical configura-
tions of the coexisting phases for a system in the re-entrant
regime, with ε∗

AB = εAB/εAA = 0.40, at three temperatures.
We note that the density of the liquid decreases rapidly as the
temperature decreases. The (network) liquid phase is charac-
terized by voids (regions without particles) that increase as the
temperature decreases. This observation implies that larger
system sizes are required at lower temperatures, in order to
sample adequately the increasing length scales that character-
ize the empty liquid phase.

A. The phase diagram

We consider 2A2B models characterized by different ε∗
AB .

After preliminary WLMC tests, we choose appropriate sub-
critical temperatures and compute the liquid-vapor equilib-
ria by extrapolating to the thermodynamic limit the results of
several system sizes. We then select a temperature (for each
model) as the starting point of the GDI. These are collected in
Table I.

In Figure 3, we plot simulation and theoretical results for
the liquid-vapor binodal of the 2A2B model with ε∗

AB = 0.40.
The binodal has the “pinched” or re-entrant shape, charac-
teristic of 3D off-lattice patchy particle models, with two A
patches and 1/3 < ε∗

AB < 1/2.11, 12 The coexisting liquid den-
sity vanishes rapidly as the temperature decreases and the
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FIG. 2. Representative configurations of the 2A2B model with ε∗
AB = 0.40 and L = 128 at liquid-vapor coexistence, and several reduced temperatures T*

= kBT/ε. (a) Vapor phase at T* = 0.12, (b) liquid phase at T* = 0.12, (c) liquid phase at T* = 0.08, and (d) Liquid phase at T* = 0.06. Particles are represented
as segments of unit length oriented in the direction of the A patches. Note that the liquid becomes emptier as the temperature decreases.

model exhibits an empty fluid regime. The theory (based on
Wertheim’s theory for associating fluids discussed in Sec. V)
describes the re-entrant behavior of the binodal and gives
a good estimate of the critical temperature but underesti-
mates the coexisting liquid density, as in related 3D off-lattice
models.11–15 The computed percolation threshold, for clusters
of particles connected by bonds between patches,12 is also
shown in Figure 3. The simulation results suggest that the per-
colation line intersects the LVE binodal at the critical point,
in line with results for the 2D Ising model.43 This contrasts

TABLE I. Liquid-vapor equilibria from the WLMC simulations. The tem-
peratures are those used as the starting points of subsequent GDIs. L(GDI-
LT) and L(GDI-HT) correspond to the largest system sizes used in the GDI
for temperatures below and above (respectively) the starting temperature T0.
Error bars, between parentheses, are given in units of the last digit and corre-
spond to a confidence level of about 95%.

ε∗
AB T ∗

0 μ/ε ρm δρ L(GDI-LT) L(GDI-HT)

0.375 0.10 −1.01582(2) 0.155(1) 0.146(3) 512 512
0.400 0.13 −1.04302(2) 0.249(1) 0.226(1) 512 512
0.450 0.15 −1.08487(2) 0.3520(2) 0.3376(2) 512 256
0.500 0.20 −1.16526(2) 0.3891(4) 0.3242(5) 128 64
0.550 0.22 −1.22628(2) 0.4251(2) 0.3744(3) 128 128
0.600 0.25 −1.30164(2) 0.4426(3) 0.3704(2) 128 128

with the results of Wertheim’s theory (details of the theoreti-
cal methodology can be found in Ref. 13) and the simulation
results of 3D off-lattice models, where the percolation line in-
tersects the LVE binodal on the vapor side.13

B. The nature of the liquid-vapor critical points

In Figure 4, we illustrate the scaling behavior of the crit-
ical parameters and the moments of the density distribution
function, at the LVE pseudo-critical points, with the system
size, for two 2A2B models with ε∗

AB = 0.40 and ε∗
AB = 0.50.

The observed behavior is consistent with criticality in the 2D
Ising universality class. Note, however, that the system-size
dependence of the critical properties is stronger in the system
with ε∗

AB = 0.40.
The results for the critical temperature and the critical

chemical potential hardly depend on whether we use λ = 4/3,
λ = 7/4, or λ as a fitting parameter (see Eq. (6)). In the latter
case, the effective values of λ are always larger than λ = 1
(see the effective values λeff in Table II). In particular, for the
largest values of ε∗

AB , the effective values of λ are consistent
with λ = 4/3. For ε∗

AB = 0.35, 0.40, the uncertainty in the
effective value of λ is too large to discriminate between the
two scaling scenarios. Nevertheless, the fact that the effective
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FIG. 3. Phase diagram of the 2A2B model with ε∗
AB = 0.40. Left panel: Simulation results. Right panel: Results of Wertheim’s theory. See the legends for

details.
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FIG. 4. Scaling of the critical parameters and of the moments of the density
distribution function, at the pseudo-critical point, with the system size, for
two 2A2B models; one model is in the re-entrant regime and the other is at the
boundary to normal liquid behavior. The scaling results are fully consistent
with 2D Ising criticality. The pseudo-critical parameters, ρc(L), Tc(L), and
δρc(L), follow the 2D Ising scaling laws, Eqs. (5), (6), and (8), while the
moment ratios, g5 and g6, approach the 2D Ising values as L increases. It is
also clear that the scaling region decreases as ε∗

AB decreases.

TABLE II. Numerical results for the liquid-vapor critical points of differ-
ent 2A2B models in the re-entrant and normal regimes. The effective expo-
nents λeff are obtained from the fits of the pseudo-critical temperatures using
Eq. (6) with ν = 1. Error bars correspond to a confidence level of about 95%.
In the cases of Tc and μc, the error bars extend over the results of the three
fitting schemes (λ = 4/3, λ = 7/4, and λ as an adjustable parameter).

ε∗
AB T ∗

c μ∗
c ρc λeff Lmin Lmax

0.375 0.1160(10) −1.0251(6) 0.170(5) 2.3 ± 1.6 64 128
0.400 0.1402(2) −1.0509(2) 0.242(1) 1.7 ± 0.3 36 160
0.450 0.1768(2) −1.1087(2) 0.3279(5) 1.3 ± 0.3 20 64
0.500 0.2068(1) −1.1715(1) 0.3782(3) 1.3 ± 0.2 12 72
0.550 0.2340(1) −1.2387(1) 0.4109(4) 1.2 ± 0.3 10 56
0.600 0.2599(2) −1.3099(2) 0.4339(3) 1.3 ± 0.2 8 32

values of λ satisfy λ > 1 supports the hypothesis that the LVE
critical point of the 2A2B model is in the 2D universality class.

In Figure 5, we plot the liquid-vapor phase diagram for
various 2A2B models in the re-entrant and normal regimes.
Numerical results for the critical points are collected in
Table II. The results shown for Tc and μc are those extracted
from the fitting scheme with fixed λ which provides the
best agreement with the simulation results (λ = 7/4 for
ε∗
AB ≤ 0.40, and λ = 4/3 for ε∗

AB > 0.40). As expected, both
the critical temperature and the critical density increase with
ε∗
AB . A significant change in the binodal, however, occurs at

ε∗
AB = 0.5. For models with ε∗

AB > 0.5, the liquid density
approaches ρ = 1 as the temperature vanishes, while for
models with ε∗

AB < 0.5 the liquid density decreases at low
temperatures and seems to approach ρ = 0 as the temperature
vanishes. This conclusion is based on theoretical results
(see Sec. V) and confirmed by computer simulations of
3D off-lattice models.4, 5, 11, 12 The simulation of systems at
vanishingly low temperatures is hindered by two factors:
the usual problems of sampling at low temperatures, and the
emergence of diverging length scales, namely, the size of the
voids in the empty liquid phase.
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FIG. 5. Simulation results for the liquid-vapor binodals of different 2A2B
models in the re-entrant and normal regimes. From top to bottom: ε∗

AB= 0.60, 0.55, 0.50, 0.45, 0.40, 0.375.
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The model with ε∗
AB = 0.50 exhibits an intermediate be-

havior. Simulation results suggest that at T = 0, the density
of the liquid phase at equilibrium with the vapor approaches
a finite density, ρ ≈ 0.87. Note also the dashed lines that
continue the liquid branches of the models with ε∗

AB < 0.50.
These lines were computed using a related model that cap-
tures the phase behavior of the 2A2B patchy particle models
at low temperatures, to be described in Sec. IV.

A final important question remains. The 2A2B patchy
particle models undergo, in general, two thermodynamic tran-
sitions, a first-order liquid-vapor transition at low densi-
ties; and a continuous O-D transition at high densities (see
the phase diagram for ε∗

AB = 0.40 in Figure 3). Previous
results11, 12 and those discussed here suggest that for appro-
priate values of ε∗

AB , both the vapor and the liquid branches of
the LVE approach zero density at zero temperature; on the
other hand, the results for the SARR model21–23 also indi-
cate that the O-D transition approaches zero density at zero
temperature.

Several scenarios are then plausible for the global phase
diagram of the 2A2B patchy particle model depending on
where the O-D critical line intersects the LVE line; this can
happen at a finite temperature (either at a critical end point or
at a tricritical point) or at T = 0. The simulation results for
ε∗
AB = 0.45 and ε∗

AB = 0.40 discard the possibility of an up-
per tricritical point, as the critical temperature of the LVE is
higher than the exact result for the O-D transition at ρ = 1,
and the previous22 and present results (see Figure 3) suggest
that the critical temperature of the O-D transition increases
with the density.

The question remains whether the transitions meet at T
= 0 or at a finite temperature critical end point. For the mod-
els with ε∗

AB < 1/2 considered here, we computed the order
parameter on the liquid branch as obtained from the GDI, for
several system sizes, and found that the network liquid phase
at LVE is orientationally disordered. If a critical end point
exists, then it has to occur at lower temperatures than those
accessible by simulations of the 2A2B patchy particle model.
To proceed, we consider a related model in Sec. IV.

IV. PHASE BEHAVIOR AT LOW TEMPERATURES

Let us consider 2A2B models with εBB = 0. Defining λ

= (1/2) − ε∗
AB , we re-write Eq. (3) as

U/ε = −N + λNAB + 1

2
NA0, (9)

with λ = 0 for ε∗
AB = ε/2 and λ = 1/2 for ε∗

AB = 0. Now con-
sider 0 ≤ λ � 1/2. At sufficiently low temperatures, NA0 (the
number of non-bonded A patches) is negligible with respect to
both NAB and λNAB , and the thermodynamics of the model
is determined by λ* ≡ λε/kBT. This suggests that the LVE of
2A2B patchy particle models at low temperatures, and small
λ, may be collapsed (approximately) onto a single curve.

A. The low-temperature model

The previous discussion suggests the consideration of a
related low-temperature model with interaction energies uA0

= ∞ (i.e., non-bonded A patches are disallowed), uAA = uBB

= uB0 = 0, and uAB = λε.
In order to compute the LVE, we assume that the vapor

phase at low temperatures has zero density. This results from
the fact that, as all A patches are bonded, the particles must
belong to a network that percolates in, at least, one direction;
since the vapor does not percolate, its density must vanish
in the thermodynamic limit. We compute the liquid branch
of the LTM using Gibbs-Duhem integration, with thermody-
namic variables λ* and (βμ) ≡ μ/kBT. The differential equa-
tion to be solved is30

Nd(βμ) − NABdλ∗ = 0, (10)

(
∂(βμ)

∂λ∗

)
coex

= 〈NAB〉
〈N〉 , (11)

where N and NAB correspond to the liquid branch (the vapor
has zero density). The starting point for the integration is (βμ)
= (βμ)0, λ* = 0. The calculation of (βμ)0 is discussed in the
Appendix. At full lattice occupancy, the LTM is equivalent
to the original patchy particle model, since all A patches are
bonded, and thus, the LTM may also be used to compute the
O-D transition.

In the LTM, every A patch is bonded (either to another A
or to a B patch). In addition, the density of the liquid phase
decreases rapidly as λ* increases, in the empty fluid regime.
A standard algorithm involving single particle moves is use-
less under these conditions. In order to sample the LTM, we
have developed an efficient cluster algorithm that is described
below.

B. The cluster algorithm

The LTM algorithm is based on three types of moves:
(a) Rotation of particles (only if the four NNs of the particle
are occupied); (b) insertion of a sequence of aligned particles;
(c) deletion of a sequence of aligned particles.

The rotation move is straightforward. One particle with
four NNs occupied is selected at random (if there is any), and
then one of its two orientations is chosen with a probability
proportional to its Boltzmann factor.

The insertion / deletion of a sequence of aligned particles
is carried out as follows: A lattice site is chosen at random:
If the site is occupied, then a deletion attempt is performed.
It starts by identifying the linear cluster of particles linked
to the selected one by an unbroken sequence of AA bonds.
Such cluster either percolates through the periodic boundary
conditions (PBCs) or ends at two AB bonds. If the removal of
the cluster leads to an unbonded A patch, the deletion attempt
is rejected, otherwise the acceptance criterion (defined below)
is applied.

If the chosen site is empty, then one direction, s = 1, 2,
is chosen at random. A linear AA cluster of occupied sites
is built along the chosen direction (on both sides), the
bonding criterion being that the NN position is empty. The
process stops when the cluster percolates through the PBC or
when occupied sites are found at both ends. The acceptance
criterion (defined below) is then applied.
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It is straightforward to compute the change in energy
when inserting or deleting a LTM cluster. The cluster either
percolates through a sequence of AA bonds (�U* = 0) or
terminates at both ends with AB bonds: �U = ±2λ. Consid-
ering that positions (not insertions/deletions) are selected at
random, the acceptance probabilities are

A(N + �N |N )

A(N |N + �N )
= 2 exp [−β�U + βμ�N] , (12)

where �U = UN + �N − UN, and the factor 2 arises from the
two orientations of the inserted cluster, of length �N lattice
sites.

C. Simulation results

The GDI requires as input a point on the LVE binodal,
which was taken to be (βμ)0, the reduced chemical potential
at λ* = 0. The chemical potential at zero pressure (the va-
por phase has zero density) is obtained via thermodynamic
integration44 from (βμ → ∞), as the partition function in
the full lattice limit and λ = 0 is known exactly: Q = 2N.
We carried out the calculation for different system sizes L
= 16, 32, 64, . . . , 256 and found that the size dependence of
μ is negligible, obtaining (βμ)0 = −0.78940(2). This is con-
sistent with the estimate from the GDI of the patchy particle
model with ε∗

AB = 0.50, which gives μ/ε − 1 
 −0.789T*, at
low temperatures. The LVE is obtained using Gibbs-Duhem
integration. Several system sizes are considered to check the
system-size dependence of the results. In Figure 6, we test the
accuracy of the LTM to describe the coexisting liquid densi-
ties of the 2A2B patchy particle models, at low temperatures.
Clearly, the LTM results converge to those of the patchy parti-
cle models as the temperature is lowered. We found that as λ*
increases (scaled temperature decreases), larger systems are
required to obtain consistent results for different system sizes
(as was observed in the simulation of the 2A2B patchy parti-
cle models). Indeed, the line corresponding to the LTM liquid
branch in Figure 6 is plotted for scaled temperatures higher
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FIG. 6. Phase diagram of the LTM (LVE and order-disorder transition): re-
scaled liquid-vapor binodals of the 2A2B patchy particle models with ε∗

AB

< 0.50, and order-disorder transition for ε∗
AB = 0.40 (Symbols are explained

in the legends). The liquid branch of the LTM model is computed for a system
with L = 2048.

than those where the results for systems with L = 1024 and L
= 2048 start to show significant differences, i.e., λ* 
 1.88.
This is due to the rapid increase of the size of the voids in the
empty liquid at low temperatures, which hinders the simula-
tions of the LTM at larger λ* due to the system size require-
ments and the loss of efficiency of the simulation algorithm.

Finally, we have computed the O-D transition of the
LTM, which is almost indistinguishable from that of the 2A2B
model with ε∗

AB = 0.40, after proper re-scaling (both are plot-
ted in Figure 6).

Despite the difficulties in simulating the LVE of the LTM
when λ* ≥ 1.9, the numerical results suggest that the ratio
ρL(λ*)/ρOD(λ*) decreases with λ*, for λ* � 1.60. Consid-
ering that the LTM describes accurately the low-temperature
phase diagram of the 2A2B patchy particle models, we con-
clude that the most likely topology of the phase diagram of
this class of models is characterized by a multi-critical point
at T = 0 and ρ = 0, where the liquid-vapor and the O-D tran-
sitions merge.

V. TOPOLOGY OF THE PHASE DIAGRAM: THEORY

A. Wertheim’s theory

In this section, we address the topology of the phase di-
agram by resorting to theoretical/analytical techniques. The
thermodynamics of the 2A2B patchy particle model can be
described using Wertheim’s first-order perturbation theory
(WPT), which accounts accurately, in the low density limit,
for the effect of association.11, 12 The reference free energy
Fref is that of an ideal lattice gas,

βFref

N
= ln ρ + 1 − ρ

ρ
ln(1 − ρ), (13)

where ρ is the density. The perturbation term Fb includes the
bonding contribution and is given, within WPT, by11

βFb

N
= 2 ln XA − XA + 2 ln XB − XB, (14)

where Xα is the probability that a bonding site of type α is un-
bonded. These probabilities are related to the thermodynamic
quantities through the laws of mass action (i.e., by considering
bond formation as an equilibrium chemical reaction), which
are, for particles with 2A and 2B bonding sites,

Xα + 2ρ�ααX2
α + 2ρ�αβXαXβ = 1, (15)

with α = A, B and β �= α. The quantities �αβ are given by

�αβ = vαβ[exp(βεαβ) − 1], (16)

with vαβ the volume of the αβ bond (in units of the volume of
a lattice site). Note that, since εBB = 0, �BB = 0. We take vb

= 1/2, in order to maximize vb while disallowing more than
one bond between two patches and more than two patches per
bond (see Figure 1).

Using Eq. (15) in Eq. (14), Fb is obtained as a function
of ρ and T. From the Helmholtz free energy F = Fref + Fb,
one can obtain the pressure and the chemical potential and
calculate the phase diagram. Figure 7 shows the results of this
calculation for several values of ε∗

AB . Comparison with the re-
sults of simulations (Sec. III) reveals that the theory describes
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FIG. 7. Phase diagram of the 2A2B model, based on Wertheim’s theory, for
several values of ε∗

AB .

correctly the re-entrance of the liquid branch for εAB < 0.5ε

and the constant density of the liquid branch at low temper-
atures when εAB = 0.5ε. The theory also predicts4, 11 that no
liquid-vapor coexistence occurs when εAB < ε/3, in line with
the results of the simulations for these values of the param-
eters. Note that, as in 3D off-lattice models,11, 13 there is al-
most quantitative agreement between the critical temperatures
obtained by theory and simulations, while the theory under-
estimates systematically the density of the coexisting liquid
branch.

B. The liquid branch of the binodal and the
order-disorder transition

Wertheim’s theory, as described in Sec. V A, is not
capable of describing the O-D transition. The ordering is
driven by the excluded volume of the chains formed at low
temperatures,21 and this effect is not included in Eq. (13) nor
in Eq. (14). Based on previous works,11, 21 we proceed to de-
rive asymptotic expressions for the O-D transition and the liq-
uid branch of the binodal. This analysis shows that the line
of LVE is not intersected by the O-D line at any finite tem-
perature, and thus, a critical end point does not occur in this
model.

The asymptotic limit for the liquid branch of the binodal
of 2A2B models in the re-entrant regime, εAB < 0.5ε, is ob-
tained using the results of Ref. 11. Taking into account that
the reference free energy is given by Eq. (13), the asymptotic
pressure, i.e., the pressure in the limit of strong AA association
within WPT, is given by

βp = a0ρ
1/2 − a1ρ

3/2 + ρ2

2
, (17)

with a0 = (2�AA)−
1
2 and a1 = 2�ABa0. The first term van-

ishes when all the A patches are bonded (see Sec. IV) and
under these conditions p ≈ 0 at coexistence. The coexisting
liquid density, ρ�, is then approximated, at low densities and
temperatures, by

kBT

εAAλ
= − 2

ln ρ� − 2 ln 2
. (18)
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FIG. 8. Binodals for ε∗
AB < 0.5 at low densities and temperatures calculated

using Wertheim’s theory. The black line is the asymptotic result (Eq. (18)) for
the liquid branch of the binodal. Note that the temperature of each binodal is
re-scaled by λ = 1/2 − ε∗

AB .

The asymptotic liquid density is plotted in Figure 8 together
with the binodals of various 2A2B models, obtained using
Wertheim’s theory. It is clear that Eq. (18) is the asymptotic
limit of the liquid branch of 2A2B patchy particle binodals, at
low densities and temperatures.

Finally, we turn our attention to the O-D transition of the
2A2B patchy particle models. In Ref. 21, the SARR model,
which is the limit of the 2A2B model when εAB = 0 (i.e., when
only AA chains are formed), was investigated and the contri-
bution of the excluded volume of two chains was included in
the free energy via an Onsager-like approximation. An order
parameter � = ρx − ρy (with ρα being the number density of
particles with A patches aligned along α̂) was defined, and it
was shown that the field h0 associated to � is

βh0 = 1

2

[
ln

(
X

Y

)
− �

]
, (19)

with X and Y given by

ρx = exp(−βε)
X

(1 − X)2
, (20)

ρy = exp(−βε)
Y

(1 − Y )2
. (21)

The O-D line is found by solving (∂h0/∂�)�=0 = 0.
The 2A2B model differs from the SARR model by al-

lowing the formation of AB bonds. In the limit of strong AA
bonds, the field h, conjugated to the order parameter �, may
be taken to be

βh = βh0 +
(

∂βfAB

∂�

)
, (22)

where fAB is the contribution of the AB bonds to the free en-
ergy density. If this free energy is calculated within WPT and
taken in the limit of strong AA bonds,11

βfAB = −4
√

2a1
(
ρ1/2

x ρy + ρ1/2
y ρx

)
, (23)
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one obtains a simple expression for h

βh = βh0 −2
√

2a1

(
1

2

(
ρ−1/2

x ρy +ρ−1/2
y ρx

)+ ρ1/2
x + ρ1/2

y

)
.

(24)

The O-D line is now calculated by solving (∂h/∂�)�=0 = 0,
which, in the limit of low densities and temperatures, yields

a0ρ
1
2 − ρ2 + 5a1ρ

32 = 0. (25)

In line with the derivation of Eq. (18), we neglect the first term
of Eq. (25), and obtain for the O-D transition line

kBT

εAAλ
= − 2

ln ρ − 5 ln 2
. (26)

The asymptotic liquid binodal (Eq. (18)) and the asymptotic
O-D line (Eq. (26)) are plotted in Figure 9; they do not inter-
sect at finite temperature, and thus, the global phase diagram
of the 2A2B model does not have a critical end point. In other
words, the empty liquid regime is not pre-empted by the or-
dered (liquid) phase.

VI. CONCLUSIONS

We investigated a simple patchy particle lattice model
consisting of particles with four bonding sites, two of type
A and two of type B, on the square lattice, and computed its
global phase behavior by simulations and theory. We have set
the interaction between B patches to zero and calculated the
phase diagram as the ratio between the AB and the AA in-
teractions, ε∗

AB , varies. In line with previous work on three-
dimensional off-lattice models, we have shown that the liquid-
vapor phase diagram exhibits a re-entrant or “pinched” shape,
for an identical range of ε∗

AB , suggesting somewhat surpris-
ingly that this range – and the corresponding empty fluid
regime – is independent of the dimensionality of the system
and of the lattice structure.

In addition, the use of low-dimensional lattice systems al-
lowed the simulations of much larger systems enabling us to
establish the nature of the liquid-vapor critical points, which
were found to be in the Ising 2D class, both in the re-entrant

and the normal liquid models. While in the normal liquid
regime the scaling regions are typical of models in the 2D
Ising universality class, in the re-entrant liquid regime the
scaling region decreases rapidly as the critical temperature
(or ε∗

AB) decreases. Our theoretical and simulation results also
suggest that the Ising scaling region vanishes as the critical
temperature vanishes, in line with the presence of a multi-
critical point at zero density and temperature.

The patchy particle models on the square lattice exhibit
an O-D transition at fixed density, as the temperature is low-
ered below the bonding temperature. This transition is anti-
ferromagnetic for normal liquid models and ferromagnetic for
models with a re-entrant liquid regime. In the latter models,
the results of simulations of an appropriate low-temperature
model that describes the asymptotics of the particle patchy
systems at low temperatures, together with an efficient sam-
pling cluster algorithm, suggest that the line of O-D tran-
sitions intersects the condensation line at zero temperature
and zero density. This topology of the phase diagram is cor-
roborated by an asymptotic theoretical analysis of the liquid
branch of the binodal and of the O-D transition, based on
Wertheim’s theory for associating fluids. The theory is exact
at zero density, lending support to the results of the asymp-
totic analysis in the low-temperature, low-density region.

In summary, the results of simulations and of theoretical
analysis strongly suggest that the line of O-D transitions in-
tersects the condensation line at a multi-critical point at zero
temperature and density, for patchy particle lattice models in
the re-entrant liquid regime. The global phase diagram of off-
lattice patchy particle models, in 2D and 3D, is further com-
plicated by the presence of stable solid phases. These phases
may pre-empt the empty fluid regime rendering the zero tem-
perature zero density multi-critical point metastable.
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APPENDIX: COMPUTING THE INITIAL POINT
FOR THE GDI OF THE LTM

The limit λ* = 0 of the LTM is an athermal model, where
all allowed configurations have zero potential energy. A con-
figuration is allowed if (and only if) every patch of type A
is bonded. In this model, a first-order transition, correspond-
ing to the transition of the 2A2B model with εAB = ε/2 at T
= 0, is expected to occur. The results of a series of simulations
of the LTM with increasing/decreasing values of βμ indicate
that the transition at λ = 0 is indeed first order. The coexisting
vapor phase is found to have vanishingly small density, in line
with the results for the 2A2B model.
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The value of βμ at the transition is computed using ther-
modynamic integration, as the partition function for λ* = 0
in the full lattice limit is known exactly

Q(N = M,M) = qM, (A1)

where q is the number of particle orientations, q = 2 for the
square lattice. If the number of vacancies is small: M − N
� M, we can write an approximate expression for the parti-
tion function, by assuming that the number of NN pairs of
vacancies is negligible

Q(N,M) 
 Q0(N,M) = 2M−5(M−N)

(
M

N

)

= 25N−4M

(
M

N

)
. (A2)

The factor 2−5(M − N) arises as an isolated vacancy eliminates
the possibility of having two different states (orientations) at
the vacant site and at its four NNs (that are assumed to be oc-
cupied), since in the LTM orientations with A patches pointing
to the vacant site are not allowed.

We can assume the vapor phase density to vanish, and
thus, the pressure at coexistence also vanishes. As the parti-
tion function at full coverage is known, we can compute the
equation of state of the high-density phase and the value of
the chemical potential at the transition μlv, which satisfies
βp(βμlv) = 0.

In order to derive a procedure to compute βμlv, we con-
sider, first, the approximate partition function Q0(N, M). The
corresponding grand canonical partition function is

Q0(βμ,M)) = 2−4M

M∑
N=0

(
M

N

)
exp [(βμ + 5 ln 2) N ] ,

(A3)

which can be summed to give

Q0(βμ,M) = 2−4M [1 + exp(βμ′)]M (A4)

where βμ′ = βμ + 5ln 2. The pressure, at this level of ap-
proximation, is written as

βp(0)(βμ′,M) = 1

M
ln Q0(βμ,M)

= −4 ln 2 + ln(1 + eβμ′
). (A5)

At the same level of approximation, the density is easily
computed

ρ(0)(βμ′,M) = 1

M

∑M
N=1

(
M

N

)
eβμ′NN

∑M
N=1

(
M

N

)
eβμ′N

= eβμ′

1 + eβμ′ .

(A6)

By defining the fugacity fraction φ as

φ = eβμ′

1 + eβμ′ , (A7)

we obtain,

ρ(0)(φ) = φ, (A8)

βp(0)(φ) = −4 ln 2 − ln (1 − φ) . (A9)

In the grand canonical ensemble for processes at constant
temperature and constant volume, we have

d(βp) = ρd(βμ), (A10)

which can be integrated to give the pressure as a function of
the fugacity fraction

βp(φ) = βp(0)(φ) +
∫ φ

1
dφ1 [ρ(φ1) − φ1]

d(βμ)

dφ1
,

(A11)

βp(φ) = −4 ln 2 − ln (1 − φ) +
∫ φ

1
dφ1

[
ρ(φ1) − φ1

φ1 (1 − φ1)

]
.

(A12)

The integrand in Eq. (A12) is well behaved in the limit φ1

→ 1, and thus, Monte Carlo simulation and thermodynamic
integration may be used to calculate the value of φ (and sub-
sequently the value of βμ) at liquid-vapor coexistence.
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