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Abstract

The correct characterization of the effective reactive transport dynamics

is an important issue for modeling reactive transport on the Darcy scale,

specifically in situations in which reactions are localized, that is when dif-

ferent reactions occur in different portions of the porous medium. Under

such conditions the conventional approach of homogenizing only the porous

medium chemistry is not appropriate. We consider here reactive transport

in a porous medium that is characterized by mass transfer between a mobile

and a distribution of immobile regions. Chemical and physical heterogeneity

are reflected by distributions of kinetic reaction rate constants and residence

times in the immobile zones. We derive an effective reactive transport equa-

tion for the mobile solute that is characterized by non-local physical mass

transfer and reaction terms. Specifically, chemical heterogeneity is upscaled
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in terms of a reactive memory function that integrates both chemical and

physical heterogeneity. Mass transfer limitations due to physical heterogene-

ity yield effective kinetic rate coefficients that can be much smaller than

the volumetric average of the local scale coefficients. These results help to

explain and quantify the often reported discrepancy between observed field

reaction rate constants and the ones obtained under well mixed laboratory

conditions. Furthermore, these results indicate that transport under physical

and chemical heterogeneity cannot be upscaled separately.

1. Introduction

Modeling the fate of chemical species that react with rock-forming miner-

als is important for predicting situations related to water quality, risk assess-

ment, subsurface storage or CO2 sequestration performance, hydrocarbon

production, etc. These processes are modeled from laboratory to catchment

and reservoir scales. Yet, modeling is often performed in the frame of the

single continuum approach where the scale dependence of fluid-mineral reac-

tions inherits from that of flow and transport. While the theoretical basis for

the definition of a pertinent support volume in the frame of the continuum

approach have been investigated (e.g., Whitaker, 1999; Hornung, 1997), the

underlying assumption that solute species are fully mixed and have access to

all reactive surfaces of the rock-forming minerals is unrealistic. This is es-

pecially relevant in the case of chemically heterogeneous media over support

volumes ranging from millimeters to several meters. Our work is motivated

by the view that geological materials are heterogeneous and display both
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chemical and physical heterogeneities that may display distinct scale depen-

dence.

Permeability and diffusivity fields control water flow and conservative

transport. The spatial distribution of reactive surface areas controls dissolution-

precipitation rates. At the Darcy scale, all these parameters are related to

porosity, but not only. For instance, diffusion path tortuosity and surface

roughness affect diffusion and reactions, respectively. Whereas indirect mea-

surements of these parameters can be performed to evaluate Darcy scale

effective values, they can only be fully (i.e. geometrically) characterized at

micro-scale. Similarly, the distribution of micro-porosity in the matrix (with

pores often smaller than few microns) cannot be measured directly. The

X-ray microtomography cross sections shown in Figure 1 display a typical

example of reservoir rocks, with multi-scale grain size and matrix micro-

porosity heterogeneity. This figure illustrates the expected complexity of the

mass transfers between the macro-porosity (where fluid flow dominates) and

the diffusion clusters displaying heterogeneous porosity.

Accounting for both chemical and physical heterogeneity, while keeping

the computational advantages of the (single) continuum approach is essen-

tial for the development of practical (for instance, easily parameterizable

using measurable data) and reliable modeling tools. It follows that upscal-

ing of both chemical and physical heterogeneity is required. Along this line,

pore-scale models have been used to investigate the effect of the spatial dis-

tribution of reaction rates (e.g., Li et al., 2006, 2007). Results point out that

important discrepancies may occur between rates computed by continuum
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models and pore-scale models depending on the chemical and physical het-

erogeneity of rock. Yet, it is difficult to separate the specific control of the

chemical and physical heterogeneity and to derive general rules for upscaling

processes. Conversely, several studies have considered the upscaling of mass

transfer processes in heterogeneous media (e.g., Edwards et al., 1993; Quin-

tard and Whitaker, 1994; Lichtner and Tartakovsky, 2003; Meile and Tuncay,

2006; Lichtner and Kang, 2007) using different analytical methods. However,

physical and chemical mechanisms have often been investigated separately.

Still, what emerges from these works is that small scale concentration gradi-

ents are not negligible when large scale heterogeneities are considered (e.g.,

Battiato et al., 2009) and a non-local description of the upscaled concentra-

tion is required (e.g., Hu et al., 1997; Espinoza and Valocchi, 1997; Kechagia

et al., 2002; Lichtner and Kang, 2007; Liu et al., 2008; Donado et al., 2009).

Non-local approaches have been successfully applied for modeling the

transport of inert tracers in heterogeneous media displaying non-Fickian be-

havior (e.g., Berkowitz et al., 2002; Dentz and Berkowitz, 2003; Schumer

et al., 2003). Specifically, mass exchange between a distribution of regions

where the fluid is immobile and the flowing region can be accounted for by

non-local in-time formulations such as the multirate mass transfer (MRMT)

model (e.g., Haggerty and Gorelick, 1995; Carrera et al., 1998; Haggerty

et al., 2000). In the frame of the continuum approach, mobile and immobile

domains coexist locally at the Darcy scale. Alternatively, multicontinuum

models can be considered that account for multiple mobile and immobile

continua (e.g., Lichtner and Kang, 2007). Obviously, the MRMT model is
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well adapted to represent macroscale transport in fractured media, where the

mobile region plays the role of fractures and the immobile regions represent

matrix blocks (e.g., Neretnieks, 1980; Tsang et al., 1996). Nevertheless, sev-

eral studies show that the MRMT approach is well suited to describe solute

transport in different types of heterogeneous porous media, such as those

where a sizeable fraction of the porosity is formed of dead end structures and

low permeability zones or where hydraulic heterogeneity leads to travel time

distributions analogous to those of diffusion into physically immobile regions

(e.g., Haggerty and Gorelick, 1995; Carrera et al., 1998; Haggerty et al., 2000;

Salamon et al., 2007; Gouze et al., 2008; Willmann et al., 2008; Silva et al.,

2009). In fact, Willmann et al. (2010) reproduced the overall precipitation

of mixing driven (fast) reactions through hydraulically heterogeneous porous

media using a MRMT formulation. That is, non-local in time formulations

can be used to represent both diffusion into immobile regions and the effect

of heterogeneity in hydraulic conductivity.

The transport equation for a non-reactive dissolved species in a medium

consisting of a mobile continuum and multiple immobile continua can be

written as

φm
∂cm(x, t)

∂t
+∇ · [q(x)−Dm∇] cm(x, t) = jB(x, t), (1a)

where cm(x, t) is the species concentration (averaged over the support volume

associated with position x) in the mobile domain, Dm is the bulk dispersion

tensor, q(x) the Darcy velocity refering to the bulk volume. The porosity of

the mobile domain φm denotes the ratio of the mobile pore volume to the bulk
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volume. It is the product of the intrinsic mobile porosity with the mobile

volume fraction. The mass exchange between the mobile continuum and the

immobile continua is modeled by the source term jB(x, t). The immobile

regions are marked by a continuous variable α. The ensemble of immobile

regions then is characterized statistically by the distribution density P(α).

The exchange term jB(x, t) now can be written as the weighted sum over the

exchange terms jB(x, t|α) between the mobile continuum and the immobile

continua

jB(x, t) =

∞∫
0

dαP(α)jB(x, t|α). (1b)

Mass balance in the immobile region of type α is thus expressed as

φim(α)
∂cim(x, t|α)

∂t
= −jB(x, t|α), (1c)

where cim(x, t|α) and φim(α) are the concentration and porosity in the im-

mobile zone. As for the mobile porosity, the immobile porosity is refered to

the bulk volume. The local exchange terms jB(x, t|α) are determined by the

specific mass transfer mechanisms. For linear mass transfer processes, that

is, processes that can be assimilated to diffusive and first-order kinetic mass

transfer, the concentration in the immobile domain is a linear functional of

the mobile concentration history, Cm(x, t). Different forms can be adopted

for this functional, but they can all be represented as the convolution of this

history and a memory function ϕ(t/α) that characterizes the mass transfer

process under consideration, as well as the geometry (including the mobile-

immobile interface area) of the immobile zone of type α (e.g., Carrera et al.,

1998; Haggerty et al., 2000). This memory function can be viewed as the
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rate of change in immobile concentration, caused by a unit change in mobile

concentration at time t = 0. Therefore,

cim(x, t|α) =

t∫
0

dt′ϕ(t− t′|α)cm(x, t′), (1d)

When different immobile regions overlap, the global mass exchange is simply

the sum of the exchange rates with each of them. Therefore, a global memory

function can be defined as

ϕ(t) =

∞∫
0

dαP(α)ϕ(t|α). (1e)

The effective model (1) can be obtained by volume averaging (e.g., Whitaker,

1999) of a ’discrete’ model that distinguishes explicitly between mobile and

stagnant regions (e.g., Lichtner and Kang, 2007). The mobile and immo-

bile concentrations cm(x, t) and cim(x, t) are averages over the mobile and

stagnant regions, respectively. In this sense, the upscaling step from the dis-

crete to the continuum model is integrated in the memory function, which

contains information about shape and details of the stagnant regions. In

fact, the model (1) accounts for physical heterogeneity of the medium at two

levels. First the model acknowledges the presence of advection-dominated

and diffusion-dominated domains (mesoscale heterogeneity) and second, it

acknowledges the microscale heterogeneity of the immobile domains. This

has been studied experimentally and theoretically by Gouze et al. (2008).

If the solute is reacting with rock-forming minerals, dissolution-precipitation

reactions are expected both in the mobile and the immobile domains. The
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general formulation for reactions with a mineral M is

∑
i

νiSi 
 M, (2)

where Si denotes the dissolved species i and the νi are the stoichiometric

coefficients. Kinetic reaction rates are governed by rate laws often based on

transition state theory (e.g., Aagaard and Helgeson, 1982). In the absence

of catalytic mechanisms, the reaction rate r (r > 0 denotes precipitation of

mineral M) in any domain is written

r = −ϑσ

(
1− Πi(γici)

νi

K

)
, (3)

where K is the equilibrium constant for the reaction, ϑ is the kinetic rate

constant, γi is the activity coefficient for the ith species with concentration ci

(either in the mobile or in the immobile domain) and σ is the specific reactive

surface area defined as the accessible fluid-mineral area for the reactions

per unit volume of rock. For dilute systems (i.e. low salinity fluids), γi =

1. Whereas the kinetic rate constants are usually known from laboratory

measurements, the reactive surface area is the quantity with the greatest

uncertainty. In fact, it is well-known (e.g., Steefel et al., 2005; Li et al.,

2008) that field effective surface areas can be orders of magnitude smaller

than those derived from actual measurements. Such discrepancy reflects,

first, that access to reaction sites can be greatly delayed with respect to the

arrival of reactants to the mobile zone. Second, it also reflects that reactive

surface depends mainly on parameters that generally cannot be measured,

such as the mineral surface morphology and the pore geometry, because of the
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inherent heterogeneity of natural rocks. As a consequence, the heterogeneity

of the reaction rate is mainly triggered by the heterogeneity of the specific

reactive surface area. These effects can be captured by a transport model

defined by Equations (1a) through (1d) that accounts for chemical reactions

in the mobile and immobile regions (e.g., Lichtner and Kang, 2007; Liu et al.,

2008; Donado et al., 2009). Here we adopt this approach. Another model that

accounts for non-homogeneous physical and chemical medium properties on

the field scale is the stochastic-convective streamtube approach (e.g., Ginn,

2001; Cirpka and Kitanidis, 2000; Seeboonruang and Ginn, 2006).

The objective of this paper is to study the combined control of physi-

cal and chemical heterogeneities on the extension and rate of dissolution (or

precipitation). We focus on chemical systems far from the thermodynamic

equilibrium where mass transfers are limited by kinetics. We adopt the mul-

ticontinuum reactive transport description presented in Lichtner and Kang

(2007). In this framework reactions are defined separately for each immobile

zone. Based on this approach, we derive in Section 2 an effective reactive

transport equation for a single reactive solute species that is characterized

by a non-local retardation term and a non-local reaction term. In Section 3,

we investigate in detail the reaction behavior for the two end-member situ-

ations: (1) chemically homogeneous (i.e. same reaction rate) system with a

distribution of transfer rate in the immobile domain and (2) homogeneous

transport properties in the immobile domain with chemical heterogeneity

(distribution of reaction rate in the immobile domain). Section 4 studies

the behavior of effective reaction and transport coefficients. Conclusions are
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drawn in Section 5.

2. Reactive Transport and Mass Transfer

We consider the problem of dissolution/precipitation in a multicontinuum

medium characterized by a mobile and an ensemble of immobile regions,

which communicate by linear mass transfer, as described by Equations (1a)–

(1d). The immobile domains are characterized by the distribution of chemical

and physical properties, more specifically, of kinetic rate coefficients and

residence times. The dissolution reactions are described by the simplest

form of (2)

A + B
M. (4)

In this case, the local reaction rate (3) can often be simplified to r = k(c−ceq),

where expressions for the kinetic rate constant k are discussed in Appendix

A.

Reactive transport in the mobile domain is described by

φm
∂cm(x, t)

∂t
+∇· [q(x)−Dm∇] cm(x, t) = −φmkm [cm(x, t)− ceq]+ jB(x, t).

(5)

Note that the porosity is refered to the total bulk volume. That is, it is

given by φm = φ′mχm, where χm denotes the mobile volume fraction and

φ′m is the intrinsic porosity of the mobile domain, refered to the mobile bulk

volume. We define here the rate coefficient as km = k′m/φ′m with k′m the rate

coefficient refered to the mobile bulk volume. Thus, km refers to the mobile

pore volume, see also the discussion in Lichtner and Kang (2007).
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As outlined in the Introduction, the type of medium we focus at is char-

acterized macroscopically by a mobile region and a continuum of immobile

regions, which are defined at each point in space. For such a macroscopic

description to be valid, the support volume has to be large enough to be rep-

resentative of the microscale heterogeneity. The immobile regions are marked

by a continuous variable α. The distribution density of immobile zones is

given by P(α). The immobile porosity, reaction rate constant in the immo-

bile domain Ω(α) are denoted by φim(α), and kim(α). The inverse reaction

rate constant 1/kim(α) defines the reaction time τr(α). Figure 2 illustrates

the conceptual model underlying the multicontinuum approach.

The average concentration distribution cim(x, t|α) in the immobile zone

of type α satisfies the reaction equation

φim(α)
∂cim(x, t|α)

∂t
= −φim(α)kim(α) [cim(x, t|α)− ceq]− jB(x, t|α) (6)

with the initial conditions

cim(x, t = 0|α) = ceq. (7)

The immobile porosity of the immobile zone of type α refering to the bulk

volume is φim(α), and its volume fraction is denoted by χim(α). Note that the

immobile porosity φim(α) = φ′im(α)χim(α) with φ′im(α) the intrinsic porosity

of the immobile zones. As above, the reaction rate constant here is refered

to the immobile pore volume, kim(α) = k′im(α)/φ′im(α) with k′im(α) the rate

constant refered to the immobile bulk volume.

The mass exchange between the mobile and immobile regions is described

by the local source term (1c). Using (1b) and (6), Eq. (5) for the mobile
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concentration can be written as

φm
∂cm(x, t)

∂t
+∇ · [q(x)−Dm∇] cm(x, t) = −φmkm [cm(x, t)− ceq]

−
∞∫

0

dαP(α)φim(α)

{
∂

∂t
cim(x, t|α) + kim(α) [cim(x, t|α)− ceq]

}
. (8)

Expressions for the local jB(x, t|α) are discussed below for matrix diffusion

(i.e., for the case where physical heterogeneity can be described by the su-

perposition of bodies where mass transfer is modeled by a diffusion equation)

and first order terms, which can be used to approximate any memory func-

tion. Note that equations (6) and (8) are not closed for the mobile concentra-

tion. The closure of the system requires the specification of the mass transfer

terms jB(x, t|α), that is, specification of the mass transfer mechanisms. In

the following, we briefly review diffusive and first-order mass transfer mecha-

nisms (e.g., Maloszewski and Zuber, 1985; Villermaux, 1987; Brusseau et al.,

1989; Valocchi, 1990; Sardin et al., 1991; Haggerty and Gorelick, 1995; Car-

rera et al., 1998; Haggerty et al., 2000).

2.1. Diffusive Mass Transfer

For diffusive mass transfer, jB(x, t|α) is given by the integrated diffusive

flux over the boundary ∂Ω(α) of the immobile domain normalized by the

immobile volume Vim(α), that is

jB(x, t|α) = −φim(α)
Dim(α)

Vim(α)

∫
Sim(α)

df · ∇rgim(r, t|α). (9)

where Sim(α) is the boundary surface of and Dim(α) and gim(r, t|α) the

diffusion coefficient and concentration distribution in the immobile region of
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type α. The latter satisfies the reaction-diffusion equation

∂gim(r, t|α)

∂t
−Dim(α)∇2

rgim(r, t|α) = −kim(α) [gim(r, t|α)− ceq] (10)

with the initial boundary conditions

gim(r, t = 0|α) = ceq, gim(r, t = 0|α)|r∈∂Ω(α) = cm(x, t). (11)

The average immobile concentration cim(x, t|α) here is given by

cim(x, t|α) =
1

Vim(α)

∫
Vim(α)

drgim(r, t|α). (12)

2.2. First-Order Mass Transfer

For first-order mass transfer between the mobile and immobile regions,

the exchange flux between the mobile zones and the immobile zone of type

α is given by

jB(x, t|α) =
φim(α)

τ(α)
[cm(x, t)− cim(x, t|α)] (13)

where τ(α) is the residence time in the immobile zone.
:::::
This

:::::::::::::::::::
mobile-immobile

:::::::
model

:::::::::
coupled

::::::
with

::::::::::::
first-order

::::::::::::::
degradation

:::::::::::
reactions,

:::::
i.e.,

:::::::::
ceq = 0

:::
in

::::
Eq.

:
(8)

:
,

::::
was

:::::::::
studied

:::
in

:
Roth and Jury (1993)

::::
and

:
Das et al. (2002)

2.3. Closed Form Equation for the Mobile Concentration

For first-order as well as diffusive mass transfer, the immobile concentra-

tion cim(x, t|α) can be written as a linear functional of the mobile concen-

tration similar to Equation (1d), but which now reads (see Appendix B)

cim(x, t|α) =

t∫
0

dt′ϕr(t− t′|α) [cm(x, t′)− ceq] + ceq. (14)
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The ’reactive’ memory function ϕr(t|α) is defined by

ϕr(t|α) = ϕ(t|α) exp [−kim(α)t] , (15)

where ϕ(t|α) is the memory function for a non-reactive tracer. The latter de-

pends on the specific (linear) mass transfer mechanism under consideration.

For the first-order mass transfer considered above, it is given by

ϕ(t|α) =
exp [−t/τ(α)]

τ(α)
. (16)

For diffusive mass transfer into spherical inclusions, it is given by

ϕ(t|α) = L−1

{
3√

s τ(α)

[
coth

[√
sτ(α)

]
− 1√

sτ(α)

]}
, (17)

where L stands for Laplace transform, s is the Laplace variable, and τ(α) =

R(α)2/Dim(α) with R(α) the radius of the spherical immobile region Ω(α).

Memory functions for diffusion into immobile regions of other geometries can

be found in Haggerty and Gorelick (1995) and Carrera et al. (1998). It has

been shown by Haggerty and Gorelick (1995) and Carrera et al. (1998) that

the memory function for diffusive mass transfer can be expressed in terms

of a suitably chosen superposition of memory functions for first-order mass

transfer functions (16).

Inserting (14) into (8) and rearranging terms, we obtain the closed reac-
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tive transport equation for the concentration in the mobile zone

φm
∂cm(x, t)

∂t
+

∂

∂t

t∫
0

dt′ϕr(t− t′)cm(x, t′)

+∇ · [q(x)cm(x, t)−Dm∇cm(x, t)] = −
t∫

0

dt′κ(t− t′) [cm(x, t′)− ceq] .

(18a)

where we have included the global memory function and the global reaction

rate kernel, given by

ϕr(t) =

∞∫
0

dαP(α)φim(α)ϕr(t|α) (18b)

κ(t) = φmkmδ(t) +

∞∫
0

dαP(α)φim(α)kim(α)ϕr(t|α), (18c)

respectively. The system (18) can be seen as an upscaled reactive transport

description for the mobile solute that it provides a single (non-local) reac-

tive transport equation characterized by mass transfer and reaction memory

kernels. These kernels integrate the dynamics of the complex (subscale) dy-

namics consisting of mass transfer and reaction in the mobile and immobile

regions.

::::
For

:::::::
linear

::::::
mass

:::::::::
transfer

::::::::::
between

::::::::
mobile

:::::
and

:::::::::::
immobile

:::::::::
regions

:::::
and

:::::::
linear

:::::::::::
first-order

:::::::::::::
adsorption

::::::::::
kinetics

:::
in

:::::
the

:::::::::
mobile

:::::
and

:::::::::::
immobile

::::::::::
regions,

:::
it

:::::
has

:::::
been

::::::::
shown

:::::
that

:::::
the

::::::
mass

:::::::::
transfer

:::::
and

::::::::::
reaction

:::::::::::
processes

::::
can

::::
be

:::::::::::::
represented

::
in

::::::::
terms

:::
of

::
a
::::::::
single

::::::::::
memory

:::::::::::
function

:
(e.g., Brusseau et al., 1989; Sardin

et al., 1991)
:
.

:::::::
Here,

::::::
these

:::::::::::
processes

::::::::
cannot

::::
be

:::::::::::::
represented

:::
by

::
a
:::::::
single

::::::::::
memory
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::::::::::
function,

::::
but

::::
are

:::::::::::::
manifested

:::
in

::::
two

::::::::::
memory

:::::::
terms,

:::::
the

:::::::
global

::::::::::
memory

:::::::::
function

:
(18b)

::::
and

:::::
the

:::::::::
reaction

::::::::
kernel

:
(18c)

The effects of chemical and physical heterogeneity as reflected in the

distributions of mass transfer rates and kinetic rate constants, respectively,

are intimately related in their impact on the effective memory function and

reaction rate kernel as manifest in (18b) and (18c). This observation shows

that physical and chemical heterogeneity cannot be upscaled separately, that

is, mass transfer as expressed by (18b) is impacted on by chemistry and the

reaction as expressed by (18c) by mass transfer. Explicit Laplace space

solutions of (18a) for different initial and boundary conditions can be found

in Appendix C.

3. Breakthrough Curves

In this section we study the solute breakthrough at a control plane per-

pendicular to the direction of the mean fluid flow. We focus on the solutions

for the two end members of the reactive transport problem discussed in the

previous section. The first scenario considers a medium that is character-

ized by a distribution of residence times and a single kinetic rate constant.

The second scenario considers a medium characterized by a distribution of

reaction rate constants and only a single (first-order) residence time. Mass

transfer is assumed to be first-order single rate. Figure 2 illustrates these

two limiting cases of possible scenarios. In general, both the mass transfer

times and kinetic rate constant should be distributed. We focus on situa-

tions for which there is no reaction in the mobile zone, that is km = 0. For
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clarity, we briefly summarize the characteristic times appearing in the fol-

lowing analysis. The diffusive residence time in spherical immobile regions

is defined by τd = R2/Dim with R2 the radius of the immobile zone and Dim

the immobile diffusion coefficient. The characteristic reaction time scale for

is defined by τr = 1/kim. The first-order mass transfer time is denoted by

τ . The characteristic time scale of the power-law residence time distribu-

tion (24) is denoted by τ0. The advective peak breakthrough time is defined

by τa = φmx1/q. The results for the breakthrough curves in the following

subsections are obtained by numerical inverse Laplace transform of the ex-

plicit Laplace space solutions given in Appendix D. Furthermore, times are

non-dimensionalized by the advective peak time τa, length are normalized by

the position of the control plane x1 = L. The Peclet number is defined by

Pe = qL/Dm.

3.1. Multirate Mass Transfer and Uniform Reaction Rate Constant

Here we consider a situation where the sizes and diffusion coefficients of

the immobile regions and thus residence times can vary while the porosity

and reaction rate constants are the same for all immobile regions. Spatial

heterogeneity is represented by a distribution of residence times. Thus, we

identify the continuous variable α with the time scale τ(α), α = τ , so that

P(α) is equated to the distribution of residence times, Pτ (τ). The memory
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kernels, (18b) and (18c), simplify to

ϕr(t) = φim exp [−kimt]

∞∫
0

dτPτ (τ)ϕ(t|τ), (19)

κ(t) = φmkmδ(t) + kimϕr(t), (20)

In order to extract the behavior of ϕr(t) depending on the specific form of

Pτ (τ), we observe that the memory functions for diffusive as well as first-

order mass transfer can be written as

ϕ(t|τ) =
φ [t/τ ]

τ
, (21)

see, e.g., (15) and (16). Thus, (19) can be rewritten as follows

ϕr(t) = φim exp [−kimt]

∞∫
0

dxx−1Pτ (t/x)φ(x) (22)

with x = t/τ . We note that φ(x) decreases exponentially fast for x � 1 and

Pτ (t/x) goes to zero faster than x (because Pτ (τ) is normalized).

3.1.1. Diffusive Mass Transfer into Uniform Spherical Immobile Regions

First we consider diffusive mass transfer between the mobile region and

a single type of spherical immobile regions with a memory function given

by (16) and residence time τd so that

Pτ (τ) = δ(τ − τd). (23)

where τd = R2/Dim is the diffusion time scale, which measure the time for

complete mixing in the immobile zone of radius R. Therefore, a Damköhler
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number to compare the reaction time with the time for complete mixing in the

immobile zone is Dad = kimτd. Lichtner and Kang (2007) studied the steady

state limit of this model. Note that diffusive mass transfer characterized

by a single diffusion time scale can be represented by a first-order multirate

mass transfer model characterized by a distribution of first-order residence

times (e.g., Haggerty and Gorelick, 1995).

Figure 3 shows breakthrough curves of the reactive solute at a control

plane at x1 = 1 for different reaction times τr. It is clear that the reaction

time acts as a cut-off time scale. In fact, the problem contains two cut-off

times, namely the residence time scale τd and the reaction scale τr. The BTC

peaks at the advective travel time τa = φmx1/q. Thereafter, we observe

the characteristic 3/2 slope, which is typical for transport under diffusive

mass transfer between mobile and immobile regions (e.g., matrix diffusion in

fractured media). This behavior is cut off at the minimum of τr and τd. In

short, if immobile regions are uniform, the role of precipitation kinetics is to

add a cut-off time.

3.1.2. Distribution of Residence Times

Second, we consider a power-law distribution of residence times

Pτ (τ) =
τβ−1
0

Γ(β − 1)

exp (−τ0/τ)

τβ
, (24)

where β > 1. This distribution leads to the power law behavior often ob-

served for the tail of BTC, but does not contain a cut-off. We use (30) to

represent cases in which the distribution of immobile regions is very broad.

In this case, we cannot define a Damköhler number as for the single immobile
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zone, which compares the time for complete mixing with the reaction time.

At any time, there will be immobile regions which are not completely mixed.

Thus, strictly speaking, a Damköhler number cannot be defined. Neverthe-

less, in the following we define the Damköhler number as Da1 = kimτ0, which

compares the reaction scale to the characteristic scale τ0 in (24), which peaks

for τ0/β. For times τ � τ0 the distribution Pτ (τ) decreases as τ−β.

Let us consider the memory function ϕr(t) for the power-law (24). In-

serting (24) into (22) gives

ϕr(t) = φim exp [−kimt]

(
t

τ0

)β
1

τ0Γ(β − 1)

∞∫
0

dxxβ−1 exp (−τ0x/t) φ(x).

(25)

In the limit of t � τ0, ϕr(t) can be approximated by

ϕr(t) = φim exp [−kimt]

(
t

τ0

)β

Aφ, (26)

where the constant Aφ is given by

Aφ =
1

τ0Γ(β − 1)

∞∫
0

dxxβ−1φ(x). (27)

Note that for times larger than τ0, the behavior of ϕr(t) depends on the

specific mass transfer mechanism (diffusive or first-order), only in terms of

the constant Aφ. For the power-law model, we will be interested in the

transport behavior for times that are larger than τ0. The behavior will be

the same irrespective of the particular mass transfer mechanism. Thus, for

the power-law model, we choose for simplicity φ(x) = exp(−x) corresponding
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to first-order mass transfer. The memory function then reads as

ϕr(t) =
φimΓ(β)

τ0Γ(β − 1)

exp [−kimt]

(1 + t/τ0)β
. (28)

Note that the exponential term in (28) truncates ϕr(t) by the reaction

time τr = k−1
im . Figure 4 shows the flux-averaged concentration at a control

plane at x = 10 for the above power-law distribution of first-order residence

times with β = 3/2 and different reaction time scales τr. For τr = 104 (a)

and 105 (b) we can clearly observe the characteristic power-law tail of the

breakthrough curves cf (x1, t) ∝ t−1−β. Note that the peak is significantly

delayed with respect to the advection scale x1φm/q = 0.1 in Figure 4, which

reflects that the early arrival solute has mixed within the fast exchange im-

mobile regions. This is consistent with the field observations of Guimera and

Carrera (2000) and supports the realism of (24). For decreasing τr, the BTCs

display a cut-off at the reaction time scale. All breakthrough curves show a

peak at τa.

3.2. Distribution of Kinetic Rate Parameters and Single Rate First-Order

Mass Transfer

We now consider cases in which the reaction rate constants are variable

while the immobile diffusion coefficients, immobile domain sizes and the im-

mobile porosities are constant. This means that the residence time is constant

τ(α) = τ so that the memory function ϕ(t|τ) is the same for all immobile

regions. Therefore, we identify the label α with the immobile reaction rates,

α ≡ kim(α), as the immobile regions are uniquely characterized by their
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reaction rate constants. The distribution of the immobile regions then is

described by the distribution of kim, Pk(kim). In this case the kernels (18b)

and (18c) simplify to

ϕr(t) = ϕ(t|τ)φim

∞∫
0

dkimPk(kim) exp [−kim(α)t] (29)

κ(t) = kmδ(t) + ϕ(t|τ)φim

∞∫
0

dkimPk(kim)kim exp [−kimt] , (30)

For simplicity, we consider single rate first-order mass transfer between

mobile and immobile regions as characterized by the memory function (16).

Furthermore, we consider a power-law distribution of reaction rate constants

similar to (24)

Pk(kim) =
kβ−1

im

kβ
0 Γ(β)

exp (−kim/k0) . (31)

where 1/k0 denotes the characteristic reaction time. Inserting the latter

into (29) and (30), we obtain for the memory function and reaction kernel

ϕr(t) =
ϕ(t|τ)φim

(1 + k0t)β
(32)

κ(t) = kmδ(t) +
Γ(1 + β)

Γ(β)

ϕ(t|τ)φimk0

(1 + k0t)1+β
, (33)

Figure 5 illustrates breakthrough curves at the control plane at x1 = 1

for different exponents in the power-law distribution (31) of reaction rates.

All breakthrough curves show a maximum at τa because this time is much

smaller than the characteristic transfer times, which are τ = 103 in (a) and

104 in (b). For late times, the breakthrough curves are cut-off at τ and

decay exponentially fast to zero. At intermediate times φm � t � τ the
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breakthrough behavior depends on the exponents in the power-law distribu-

tion (31) of the reaction rate constants. Note that the tail also display a

power law behavior with the same exponent as that of the reaction rate con-

stants. The smaller the exponent, the larger is the weight of the distribution

on small kim-values and the less solute precipitate, that is, the larger is the

value of the flux concentration and the flatter is the breakthrough curve.

The mass transfer time scale τ acts as a cut-off scale also in the case of

distributed reaction rates, as illustrated in Figure 6, which shows the break-

through curve for β = 1/2 for different mass transfer scales τ . The faster the

mass exchange between mobile and immobile regions, the less reaction takes

place at early times. All curves have a maximum on the advection scale τa

and decrease then exponentially fast to a point, where the power law behav-

ior starts up. For increasing residence time, the concentration value at this

point is decreasing, indicating that less reaction takes place initially if mass

exchange is fast. For slow mass transfer, there is more reaction initially. At

late times, the concentration decreases slowly according to a power-law that

is given by the exponent in (31).

4. Effective Coefficients

An effective (time-dependent) retardation coefficient and an effective re-

action rate coefficient can be defined by the time integrals of (18b) and (18c),
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respectively

Re(t) = φm +

∞∫
0

dαP(α)φim(α)

t∫
0

dt′ϕ(t′|α) exp [−kim(α)t′] (34)

ke(t) = φmkm +

∞∫
0

dαP(α)φim(α)kim(α)

t∫
0

dt′ϕ(t′|α) exp [−kim(α)t′] . (35)

Figure 7 illustrates the behavior of the effective rate coefficients (35)

for uniform kinetic rate coefficient kim, uniform immobile porosity φim and

km = 0 with (i) first-order MRMT characterized by the residence time dis-

tribution (24) for β = 3/2, and (ii) diffusive mass transfer into spherical

immobile zones, see Appendix E. For the power-law first-order mass transfer

model (24), we defined the Damköhler number Da1 = kimτ0 (see section 3.1),

where τ0 is the characteristic time scale of the power-law distribution. For

mass transfer between the mobile and spherical immobile regions, we defined

the Damköhler number by Dad = kimτd, where τd = R2/D is the diffusion

time scale in the immobile zone.

The effective rate parameters evolve from 0 at time t = 0 to asymptotic

values which depend on the value of the respective Damköhler number and

are smaller than the volume averaged reaction rate constant

kv = φmkm +

∞∫
0

dαP(α)φim(α)kim(α) (36)

which would be the value measured without mass transfer restrictions, that

is, in the limit of very small Damköhler numbers. The time evolution of

ke(t) is determined by the interplay between the characteristic mass transfer
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scales and the reaction scales. In Figure 7, time is measured in units of

the characteristic transport scales. The ke(t) evolves on a non-dimensional

scale given by the inverse Damköhler number. The dependence of ke(t) on

travel time reflects a scale behavior of the reaction process. The value of the

effective rate parameter depends on the measurement scale, that is, on the

size of the structures that have been sampled by the solute, which increases

with increasing time.

In the long time limit, transport can be described by the advection-

diffusion-reaction equation characterized by the effective retardation and re-

action rates

Ra ∂cm(x, t)

∂t
+∇ · [q(x, t)cm(x, t)−Dm∇cm(x, t)] =

− ka [cm(x, t)− ceq] , (37)

where the asymptotic long-time limits Ra and ka are given by

Ra = φm +

∞∫
0

dαP(α)φim(α)ϕ̂ [kim(α)|α] (38)

ka = φmkm +

∞∫
0

dαP(α)φim(α)kim(α)ϕ̂ [kim(α)|α] . (39)

Specifically for a uniform kinetic rate coefficient in the immobile regions and

the power-law model (24) of mass transfer times, the asymptotic rate is given

by

ka = φmkm + φimkim exp(Da1)Daβ−1
1

Γ(β)

Γ(β − 1)
Γ(1− β, Da1). (40)
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For uniform kinetic rate and diffusion into spherical immobile regions, it is

given by

ka = φmkm + φimkim
3√
Dad

[
coth

(√
Dad

)
− 1√

Dad

]
. (41)

Figure 8 shows the behavior of the asymptotic rates (40) and (41) as a func-

tion of Da. In both cases ka decreases with increasing Damköhler. For

the diffusion into a single immobile region this reflects the fact that the so-

lute during the reaction time τr can only penetrate to a layer of thickness
√

2τrDim, the rest of the immobile zone cannot contribute to the reaction.

For the power-law model this is similar. Only structures with a typical res-

idence time smaller or equal to τr contribute to the bulk reactivity. The

evolution of the effective rate parameter with travel time, Figure 7, and the

dependence of the asymptotic value on the Damköhler number, Figure 8,

reflect the scale dependence of the processes. These results quantify the dis-

parity between laboratory and effective field reaction rates. Depending on

the Damköhler number; the effective rate can be virtually any fraction of

the local rate, which is consistent with the fact that laboratory measured ki-

netic rates can be order
::::::
orders

:
of magnitudes larger than their field measured

counterparts (e.g., White and Brantley, 2003; Li et al., 2008).

The effective reaction rate re(x, t) is expressed in terms of the right side

of (18a) as

re(x, t) =

t∫
0

dt′κ(t− t′) [cm(x, t′)− ceq] . (42)
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The total precipitated mass at a position x is given by

M(x, t) =

t∫
0

re(x, t), (43)

which in the limit of time to infinity is

M(x) = lim
t→∞

M(x, t) = ka [ĉm(x, λ)− ceq]λ=0 . (44)

The behavior of the total precipitated mass is identical to the one found in a

reactive transport system that is characterized by the effective rate constant

ka.

5. Conclusions

We presented analytical solutions to the problem of transport in a multi-

continua medium combined with kinetically controlled reaction using an ef-

fective non-local in time transport formalism. The objective was to study

the combined effect of physical and chemical heterogeneity (as expressed by

distributions of residence times and reaction coefficients in the immobile con-

tinua) on the effective reactive transport behavior. The latter was quantified

in terms of breakthrough curves of the reacting species as well as in terms

of upscaled reaction and transport coefficients (i.e., effective Darcy scale co-

efficients) that characterize transport and reactions in rocks where mobile

and immobile regions can be defined. In short, it turns out that heterogene-

ity in the transport and reaction parameters cannot be upscaled separately.

Upscaled reaction characteristics depend on the physical heterogeneity and
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upscaled transport characteristics are impacted on by the chemical hetero-

geneity.

For first-order or diffusive mass transfers the ’physical’ memory function,

which quantifies the trapping time distribution in the immobile zone of a non-

reactive tracer is replaced by the ’reactive’ memory function, ϕr(t) accounting

for the reactions in the immobile zones,

ϕr(t) =

∞∫
0

dαP(α)φim(α)ϕ(t|α) exp [−kim(α)t] , (45)

where P(α) is the distribution of immobile zones characterized by the poros-

ity φim(α), the effective kinetic coefficient kim(α) and the ’physical’ local

memory function ϕ(t|α). This expression emphasizes that the effective mem-

ory function for reactive transport integrates the effects of the physical and of

the chemical heterogeneity: their upscaling cannot be performed separately.

The effective coefficients that characterize retardation, Re(t), and reaction

rate, ke(t), are obtained as

Re(t) = φm +

∞∫
0

dαP(α)φim(α)

t∫
0

dt′ϕ(t′|α) exp [−kim(α)t′] (46)

ke(t) = φmkm +

∞∫
0

dαP(α)φim(α)kim(α)

t∫
0

dt′ϕ(t′|α) exp [−kim(α)t′] . (47)

Equation(46)
:
(46) shows that, while diffusion into immobile zones causes

retardation in solute transport (with an asymptotic value scaling as φim+φm),

the effective retardation can be greatly reduced in the case of reactive solute.

It follows that the breakthrough curves (i.e. the time-resolved concentration
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measured at a given distance from the inlet) depend on both the distribution

of the residence times due to diffusion and the distribution of the kinetic

rate coefficients. As a result it is not straightforward to infer parameters

for a reactive tracer test from a non-reactive one because the mass transfer

memory function for the reactive problem cannot be obtained independent

from the reaction and the reactive part cannot be obtained independent from

mass transfer.

The dependence of ke(t) on travel time reflects a scale behavior of the

reaction process. The value of the effective rate parameter depends on the

measurement scale, that is on the size of the structures that have been sam-

pled by the solute. The size of the structures sampled by the solute increases

with increasing time. The concentration of the chemical reactions in immo-

bile regions, which may occur in many natural rocks displaying complex pore

structures, explains the often observed discrepancy between the effective ki-

netics deduced from field scale data (as approximated by our multicontinuum

approach) and those measured at laboratory scale using grinded material. As

the rock is grinded it is expected that mass transfer limitations due long last-

ing incomplete mixing in the immobile domain are reduced. This situation

corresponds to the decrease of the diffusion time scale τd triggered by the

decrease of the immobile zone radius R (τd ∝ R2). The reaction rate con-

stant deduced from laboratory experiments klab tends to equal the volumetric

average kv of the distributed kim values (km = 0):

klab ≈ kv =

∞∫
0

dαP(α)φim(α)kim(α) < ke, (48)
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where kv � ke (compare (48) with (39)). Hence, as grounding rocks acts

as decreasing
:::::::::
grinding

::::
the

:::::::
rocks

:::::::::::
decreases

:
the effective Damköhler number,

this scaling must be taken into account when using kinetic coefficient values

measured using laboratory reactors for parameterizing mass transfers models

at reservoir scale.
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Appendix A. Linearization of the Reaction Rate

The objective of this Appendix is to discuss cases in which the rate of

a kinetic reaction can be approximated as a linear (affine, strictly speaking)

function. Linear approximations are quite frequently adopted for pollutants

degradation when the rate limiting factor is the pollutant concentration. Here

we analyze mineral dissolution precipitation reactions (4), where the rate (3)

can be approximated as:

r = −ϑσ
(
1− cAcB

K

)
=

ϑσcB

K

(
cA −

K

cB

)
, (A.1)

where K is the equilibrium constant for reaction (4) and cA and cB are

the concentrations of reacting species. This expression can be linearized in
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several cases. The most immediate one is the case where cB is very large,

so that its value will no be significantly affected by mineral dissolution or

precipitation. Assuming cB constant in (A.1) leads to:

r = k (cA − ceq
A ) , (A.2)

where k = ϑσcB/K and ceq
A = K/cB. In general, cB cannot be assumed con-

stant. In fact, both cA and cB may be affected by other reactions. In such

cases, the problem becomes multicomponent and linearization consist of the

following steps: (i) Decouple conservative and non-conservative components

using the approach of Molins et al. (2004); (ii) Solve for conservative com-

ponents; (iii) Write the transport equation for non-conservative components

using the approach of Donado et al. (2009); (iv) Linearize the reaction rates

by means of a Taylor series expansion; (iv) Test the validity of linearization.

The method is applied here for the case of brucite [Mg(OH)2] precipita-

tion, which can be simplified as consisting of two reactions:

H+ + OH−
r1−→ H2O, (A.3)

2OH− + Mg2+ r2−→ Mg(OH)2 (s), (A.4)

where r1 and r2 represent the rates (mol/s/m3
rock) at which the products (H20

and Mg(OH)2, respectively) evolve into reactants. The reactive transport

problem can be written as:

L(cH) = −r1 (A.5)

L(cOH) = −r1 − 2r2 (A.6)

L(cMg) = −r2, (A.7)
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where L(·) represents the transport operator. The first step (e.g., Molins

et al., 2004) consists of eliminating r1 and r2, which, in this case, simply

consists of subtracting (A.5) and (A.7), multiplied by 2, from (A.6), which

yields:

L(n) = 0, (A.8)

where n = c2Mg − cOH + cH, which can be solved by any transport solver.

Given n and using the mass action law for water, one can solve for cOH as:

cOH =

[
(2cMg − n) +

√
(n− cMg)

2 + 4Kw

]
/2, (A.9)

where Kw = ceq
H ceq

OH = 10−14 is the equilibrium constant for reaction (A.3).

Let us now look at the reaction rate

r = −ϑσ

(
1− cOH

2cMg

Kbr

)
. (A.10)

A Taylor expansion in cMg about a certain concentration c
(0)
Mg gives

r ≈ r(0) +
∂r(0)

∂cMg

(
cMg − c

(0)
Mg

)
, (A.11)

where Kbr is brucite equilibrium constant and r(0) represents the reaction

rate for c
(0)
Mg. Using (A.9) for cOH, derivatives of (A.10) with respect to

cMg to obtain ∂r(0)

∂cMg
, and substituting the resulting expression in the Taylor

expansion (A.10), yields:

r ≈ C ′c(0)
n − Cc(0)

n ϑσ
[
cMg − c

(0)
Mg

]
, (A.12)

where C and C ′ are constants and c
(0)
n = c

(0)
2Mg − c

(0)
OH + c

(0)
H . Performing the

Taylor expansion for c
(0)
Mg ≡ ceq

Mg gives:

r ≈ −C(ceq
n )ϑσ

(
cMg − ceq

Mg

)
(A.13)
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with ceq
n = ceq

2Mg − ceq
OH + ceq

H , where the equilibrium concentrations (ceq
i ) are

given by the mass action laws, given the equilibrium constants Kbr and Kw.

Appendix B. Diffusive Mass Transfer: Concentration in the Im-

mobile Regions

In order to solve (10) for the immobile concentration, we express gim(r, t|α)

as

gim(r, t|α) = h(r, t|α) exp [−k(α)imt] + ceq, (B.1)

where h(r, t|α) satisfies

∂h(r, t|α)

∂t
−Dim(α)∇2h(r, t|α) = 0 (B.2)

with the initial boundary conditions

h(r, t = 0|α) = 0, h(r, t|α)|r∈∂Ω(α) = [cm(x, t)− ceq] exp [kim(α)t] . (B.3)

h(r, t|α) can be expressed by the Green function f(r, t|α) of the diffusion

equation (B.2) for the initial condition f(r, t = 0|α) = 0 and the boundary

condition f(r, t|α)|r∈∂Ω(α) = δ(t) as

h(r, t|α) =

t∫
0

dt′f(r, t− t′|α) [cm(x, t′)− ceq] exp [kim(α)t′] . (B.4)

Using (B.1) and (B.4), we can write gim(r, t|α) as

gim(r, t|α) =

t∫
0

dt′f(r, t− t′) [cm(x, t′)− ceq] exp [−kim(α)(t− t′)] + ceq,

(B.5)
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Inserting (B.5) into (12) gives (14). The memory function ϕ(t|α) is defined

in terms of the Green function f(r, t|α)

ϕ(t|α) =
1

Vim(α)

∫
Vim(α)

drf(r, t|α), (B.6)

which is identical to the definition for a non-reactive tracer.

Appendix C. Mobile Concentration

In the following, we derive some solutions for the one-dimensional non-

local advection-diffusion-reaction equation (18a). To this end, we define the

auxiliary function hm by

cm = exp

(
−kmt

φm

)
hm + ceq. (C.1)

We obtain by inserting (C.1) into (18a)

φm
∂hm

∂t
+ q

∂hm

∂x1

−Dm
∂2hm

∂x2
1

=

−
∞∫

0

dαP(α)φim(α)

[
∂

∂t
+ kim(α)

] t∫
0

dt′m(t− t′|α)hm(x1, t
′), (C.2)

where we defined the memory function

m(t|α) = ϕ(t|α) exp [−∆k(α)t] (C.3)

and ∆k(α) = kim(α)− km/φm. The Laplace transform of the latter is given

by

m̂(λ|α) = ϕ̂(λ + ∆ki|α). (C.4)
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Appendix C.1. Pulse-Injection Into the Mobile Region

We specify vanishing mobile concentration at the domain boundaries at

infinity and the initial condition cm(x1, t = 0) = ρ(x1) + ceq. The initial

condition for hm is given by hm(x1, t = 0) = ρ(x1).

The latter equation reads in Laplace space as

φmλĥm + q
∂ĥm

∂x1

−Dm
∂2ĥm

∂x2
1

= ρ(x1)

−
∞∫

0

dαP(α)φim(α) [λ + kim(α)] m̂(λ|α)ĥm(x1, λ), (C.5)

For a delta initial injection we obtain

ĥδ
m(x1, λ) =

exp

− q

2D


√

x2
1 + 4x2

1

M̂(λ)Dm

q2
− x1




q

√
1 + 4

M̂(λ)Dm

q2

, (C.6)

where we defined

M̂(λ) = φmλ +

∞∫
0

dαφim(α) [λ + kim(α)] m̂(λ|α) (C.7)

For a square-pulse, i.e.,

ρ(x1) = C0θ(a− |x′1|), (C.8)

the solution for ĥm is given by

ĥm(x1, λ) = C0

∞∫
−∞

dx′1h
δ
m(x1 − x′1, λ)θ(a− |x′1|) = C0

a∫
−a

dx′1h
δ
m(x1 − x′1, λ).

(C.9)

The Laplace space solution of the mobile concentration then reads as

ĉm(x1, λ) = ĥm(x1, λ + km/φm) + ceq/λ. (C.10)

35



Appendix C.2. Flux Boundary Conditions

The flux boundary conditions are given by[
c−Dm

∂cm

∂x1

]
x1=0

= j(t) (C.11)

and in Laplace space as [
qĉm −Dm

∂ĉm

∂x1

]
x1=0

= ĵ. (C.12)

For the auxiliary function hm(x1, t) this implies[
qhm −Dm

∂hm

∂x1

]
x1=0

= [j(t)− ceqq] exp(−kmt/φm) (C.13)

and in Laplace space[
qĥm −Dm

∂ĥ

∂x1

]
x1=0

= ĵ(λ− km/φm)− qceq

λ− km/φm

. (C.14)

The solution for hm in Laplace space is given by

hm = B exp(Ax1), A =
q

2Dm

1−

√
1 +

4DmM̂(λ)

q2

 (C.15)

The parameter B we obtain by inserting the latter into (C.14)

B =
ĵ(λ− km/φm)− qceq

λ−km/φm

q − q
2

[
1−

√
1 + 4DmM̂(λ)

q2

] (C.16)

As in the previous section, we consider a pulse flux input of duration τ

j(t) = ceqq + (cB − ceq)qτδτ (t), (C.17)

where δτ (t) is the unit impulse function defined by (D.8).
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Thus, we obtain for the mobile concentration the following expression

ĉm(x1, λ) = (cB − ceq)
2 [1− exp(−λτ)]

λ

{
2−

[
1−

√
1 + 4DmM̂(λ+km/φm)

q2

]}

× exp

 qx1

2Dm

1−

√
1 +

4DmM̂(λ + km/φm)

q2

 +
ceq

λ
. (C.18)

Appendix D. Flux-Averaged Concentration

In the following we will focus on the flux averaged concentration at a

control plane Ωc perpendicular to the mean flow at the position x1. It is

defined by Kreft and Zuber (1978)

cf (x1, t) =

[
1− DL

q

∂

∂x1

] ∫
Ωc

dd−1xcm(x, t). (D.1)

The flux concentration satisfies the one-dimensional version of (18a) as can

be verified by inspection. Explicit Laplace space solutions for cf (x1, t) are

given in the following for flux-boundary conditions in a semi-infinite transport

domain.

We consider the semi-infinite plain x1 > 0. We consider the flux-boundary

conditions (C.11). According to (D.1), this implies for the flux averaged

concentration cf (x1, t)

cf (x1 = 0, t) = C(t), lim
x1→∞

cf (x1, t) = ceq (D.2)

and the initial condition cf (x1, t = 0) = ceq. As outlined above, cf (x1, t)

satisfies the same equation as the mobile concentration cm(x1, t). Thus, in

order to solve for cf (x1, t) we employ the same method as above and express
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cf (x1, t) in terms of the auxiliary function hm(x1, t), see (C.1). The boundary

conditions for the auxiliary function hm(x1, t) then are given by

hm(x1 = 0, t) = [C(t)− ceq] exp(km/φmt), lim
x1→∞

hm(x1, t) = 0 (D.3)

and the initial condition is hm(x1, t = 0) = 0.

We then obtain for the Laplace transform ĥm(x1, λ)

M̂(λ)ĥm(x1, λ) + q
∂ĥm

∂x1

−Dm
∂2ĥm

∂x2
1

= 0. (D.4)

The boundary conditions are

ĥm(x1 = 0, λ) = Ĉ(λ− km/φm)− ceq

λ− km/φm

, lim
x1→∞

ĥm(x1, λ) = 0. (D.5)

Using the exponential Ansatz hm = B exp(Ax1), we obtain the solution

ĥm(x1, λ) = [Ĉ(λ− km/φm)− ceq

λ− km/φm

]

× exp

 qx1

2Dm

1−

√
1 +

4DmM̂(λ)

q2

 . (D.6)

As boundary conditions, we consider pulse of cB = const. in the time interval

interval [0, τ ] and C(t) = ceq for t ≥ τ ,

C(t) = ceq + (cB − ceq)τδτ (t), (D.7)

where δτ (t) is the unit impulse function defined by

δτ (t) =


0, t < 0

1
τ
, 0 ≤ t < τ

0, t > τ

(D.8)
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The Laplace transform of the unit impulse function is given by

δ̂τ (λ) =
[1− exp(−λτ)]

λτ
. (D.9)

Thus, we obtain for the Laplace transform of the mobile concentration

by combining (C.10), (D.6), and (D.9)

ĉf (x1, λ) = (cB − ceq)
1− exp(−λτ)

λ

× exp

 qx1

2Dm

1−

√
1 +

4DmM̂(λ + km/φm)

q2

 +
ceq

λ
. (D.10)

Appendix E. Effective Reaction Rate Coefficient

The time behavior for the effective rate coefficients displayed in Figure 7

was obtained as follows. First, the local rate coefficient kim is set constant.

For the first-order MRMT model with the power-law residence time distribu-

tion (24) and β = 3/2, the resulting expression can be integrated explicitly

and gives

ke(t) = φimkim − φimkim
exp(−Da1t/τ0)√

t/τ0 + 1

+ φimkim

√
πDa1 exp(Da1)

[
erf

(√
Da1

)
− erf

(√
t/τ0 + 1

√
Da1

)]
.

(E.1)

For diffusive mass transfer into spherical regions, we set α = τd and

use for ϕ(t|α) expression (17). Thus, we obtain the following Laplace space

expression for the effective rate ke(t)

k̂e(s) = φimkim
3√

sτd + Da1

[
coth

[√
sτd + Dad

]
− 1√

sτd + Dad

]
. (E.2)
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The results displayed in Figure 7b are obtained by inverse Laplace transform

of this expression.
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Figure 1: X-ray microtomography cross section of a pure calcite limestone imaged at dif-

ferent resolutions. Left, porosity map (diameter 1 cm; resolution 5µm). Right, processed

image (600 × 600 µm, resolution 1µm) showing the mobile domain (in white) and the

micro-porosity distribution in the immobile domain formed by clusters of distinctly dif-

ferent size (grey scale). Zones in black are areas unconnected with the immobile domain

(porosity lower than the percolation threshold, see also Gouze et al. (2008).

Figure 2: Conceptual models of matrix diffusion and reaction. The two directions indi-

cated in the figure stand for chemical (P(kim), distribution of kinetic rate coefficient) and

physical heterogeneity (P(R) and P(φim), the distributions of inclusion sizes and poros-

ity). The CT scan of the rock illustrates the non-resolved subscale. The different sphere

sizes stand for the different types of heterogeneity that are unified in the medium, as indi-

cated by the ellipse in the lower left corner. The two limiting cases discussed in Section 3,

consider (1) a medium characterized by a distribution of residence times (e.g. distributed

sphere sizes and/or porosity) and a single kinetic rate constant and (2) medium charac-

terized by a distribution of reaction rate constants with a single residence time (e.g. all

the spheres have the same radius and porosity).

Figure 3: Breakthrough curves for transport under diffusive mass transfer into immobile

regions with uniform chemical properties characerized by the single reaction time scale

τr = 1/kim. (a) Diffusion in the immobile region is characterized τd = 104, porosities

are φm = 10−1, φim = 10−2, and the reaction times are τr = 105, 102, 1; (b) τd = 105,

porosities are φm = 10−2, φim = 10−1, and the reaction times τr = 106, 103, 10. BTCs

are computed at x1 = 1 for Pe = 102. The curves with (a) τr = 105 and (b) τr = 106 are

practically indistinguishable from the ones for a conservative solute.
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Figure 4: Breakthrough curves for transport in a medium characterized by immobile

regions, whose residence time distribution follows (24) with β = 3/2 and (a) τ0 = 10−2

and (b) τ0 = 10−1. The chemical properties in the immobile regions are uniform and

characterized by the single reaction time τr. Results are presented for (a) φm = 10−1

and φim = 10−2, characteristic reaction times of τr = 104, 102, 1; (b) φm = 10−2 and

φim = 10−1 τr = 105, 103, 10. BTCs are computed at x1 = 1 for Pe = 102. In the

displayed time range, the curves with (a) τr = 104 and (b) τr = 105 are practically

indistinguishable from the ones for a conservative solute.

Figure 5: Breakthrough curves for transport in a medium characterized by immobile

regions, whose physical properties are uniform (mass transfer modeled as first-order with

residence time (a) τ = 103 and (b) τ = 104), and whose chemical properties are distributed.

The kinetic rate coefficients are distributed according to (31) for β = 1/4 and 3/4 with

(a) k0 = 102 and (b) k0 = 10. Results are presented for (a) φm = 10−1 and φim = 10−2,

(b) φm = 10−2 and φim = 10−1. BTCs are computed at x1 = 1 for Pe = 102. The dashed

line denotes the breakthrough curve for a non-reactive solute.

Figure 6: Breakthrough curves for transport in a medium characterized by immobile

regions whose chemical properties are distributed. The kinetic rate coefficients are dis-

tributed according to (31) for β = 1/2, (a) k0 = 102 and (b) k0 = 10. The physical prop-

erties are uniform, which is modeled by a single rate first-order mass transfer. Results are

presented for (a) φm = 10−1 and φim = 10−2, and residence times τ = 10, 102 103 and (b)

φm = 10−2 and φim = 10−1 and residence times τ = 102, 103 104. BTCs are computed at

x1 = 1 for Pe = 102.
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Figure 7: Effective reaction rate coefficients for uniform reaction rate coefficient and (a)

the first-order mass transfer model for the power-law distribution (24) for β = 3/2 and

Da = 10−3, 10−2, 10−1 and (b) the diffusive mass transfer model for Da = 1, 10, 102.

Figure 8: Asymptotic effective reaction rate coefficients for uniform kinetic rate coefficient

and (solid line) first-order mass transfer with the power-law residence time distribution (24)

with β = 3/2, (40), and (dashed line) the diffusive mass transfer model as a function of

the Damköhler number, (41).
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