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A B S T R A C T 2 

 3 

Promoter-probe and terminator-probe plasmid vectors make possible to rapidly 4 

examine whether particular sequences function as promoter or terminator signals 5 

in various genetic backgrounds and under diverse environmental stimuli. At 6 

present, such plasmid-based genetic tools are very scarce in the Gram-positive 7 

pathogenic bacteria Streptococcus pneumoniae and Enterococcus faecalis. 8 

Hence, we developed novel promoter-probe and terminator-probe vectors based 9 

on the Streptococcus agalactiae pMV158 plasmid, which replicates autonomously 10 

in numerous Gram-positive bacteria. As reporter gene, a gfp allele encoding a 11 

variant of the green fluorescent protein was used. These genetic tools were shown 12 

to be suitable to assess the activity of promoters and terminators (both 13 

homologous and heterologous) in S. pneumoniae and E. faecalis. In addition, the 14 

promoter-probe vector was shown to be a valuable tool for the analysis of 15 

regulated promoters in vivo, such as the promoter of the pneumococcal fuculose 16 

kinase gene. These new plasmid vectors will be very useful for experimental 17 

verification of predicted promoter and terminator sequences, as well as for the 18 

construction of new inducible expression vectors. Given the promiscuity exhibited 19 

by the pMV158 replicon, these vectors could be used in a variety of Gram-positive 20 

bacteria.   21 
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1. Introduction 1 

Identification of promoters and transcriptional terminators on the bacterial 2 

genomes is essential to understand the regulation of gene expression. In bacteria, 3 

numerous genes are organized in operons and, therefore, they are transcribed 4 

from the same promoter into a single polycistronic mRNA molecule. Moreover, 5 

many genes in known operons are transcribed from internal promoters, which are 6 

located at intergenic regions or within adjacent genes. Several highly accurate 7 

computational methods have been devised for detection of operons in bacterial 8 

genomes (for recent methods see Chuang et al., 2010; Taboada et al., 2010). As 9 

an example, operon predictions for 300 sequenced prokaryotic genomes are now 10 

available in the Operons database (http://operons.ibt.unam.mx/OperonPredictor/). 11 

Many algorithms have also been developed for the prediction of promoter 12 

sequences in genomic DNAs (Askary et al., 2009; Jacques et al., 2006). However, 13 

as pointed out by Ross and Gourse (2009), although bioinformatics can predict 14 

some promoters correctly, definitive identification of promoters requires the use of 15 

several experimental approaches, both in vivo and in vitro. These may include 16 

identification of the in vivo transcription start site using purified RNA, detection of 17 

promoter activity in vivo using promoter-reporter fusions and characterization of 18 

RNA polymerase-promoter complexes (in vitro transcription and DNA-binding 19 

assays). 20 

The bacterial RNA polymerase (RNAP) holoenzyme is a complex of six 21 

subunits (α2ββ´ωσ). During initiation of transcription, most of the sequence-specific 22 

contacts of the RNAP with the promoter region are made by the σ subunit. In 23 

general, bacterial genomes encode diverse forms of the σ factor, and each of 24 

them confers promoter specificity to the RNAP (Gruber and Gross, 2003; 25 
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Wigneshweraraj et al., 2008). Most transcription in exponentially growing bacterial 1 

cells is initiated by RNAP carrying a housekeeping σ factor similar to the 2 

Escherichia coli σ70. Promoters recognized by this holoenzyme are characterized 3 

by two main sequence elements, the –35 and –10 hexamers, whose consensus 4 

sequence is 5´-TTGACA-3´ and 5´-TATAAT-3´, respectively. The optimum spacer 5 

length between these elements is 17 nucleotides (for a review see Haugen et al., 6 

2008). Additionally, some of these promoters contain the extended –10 element, 7 

which is located one nucleotide upstream of the –10 hexamer. This element is 8 

more conserved in Gram-positive bacteria (5´-TRTG-3´ motif) than in E. coli (5´-9 

TG-3´ motif) (Mitchell et al., 2003; Sabelnikov et al., 1995; Voskuil and Chambliss, 10 

1998). Promoter-probe plasmid vectors, in which DNA fragments containing a 11 

putative promoter are fused to a promoter-less reporter gene (transcriptional 12 

fusions), are useful tools to demonstrate promoter activity in vivo. They are 13 

particularly necessary when dealing with bacterial genomes that have a high A+T 14 

content, as it is the case of Streptococcus pneumoniae (pneumococcus) and 15 

Enterococcus faecalis (enterococcus), whose genomes have about 60% of A+T 16 

content. In these genomes, stretches resembling –10 elements (5´-TATAAT-3´) 17 

are frequent and, therefore, definitive identification of promoters from sequence 18 

information alone remains more difficult.   19 

The bacterial RNAP can terminate transcription efficiently at Rho-independent 20 

signals, which are active in the nascent transcript. These signals (also known as 21 

intrinsic terminators) typically consist of a G:C-rich stem-loop structure, followed by 22 

a short stretch of U residues. The stem-loop structure halts the RNAP and leads to 23 

its release. Thus, transcription termination occurs near the end of the poly(U) 24 

region. Furthermore, transcription attenuation is a highly conserved regulatory 25 
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mechanism used by bacteria. Attenuators are usually located at the 5´ 1 

untranslated regions of genes or operons and combine an intrinsic terminator with 2 

an RNA element that senses specific environmental stimuli (Merino and Yanofsky, 3 

2005; Naville and Gautheret, 2009). Several algorithms are able to detect intrinsic 4 

terminators in genomic DNAs (de Hoon et al., 2005; d´Aubenton-Carafa et al., 5 

1990; Kingsford et al., 2007; Lesnik et al., 2001). Nevertheless, some intrinsic 6 

terminating sequences deviate from the common motif and, consequently, the 7 

availability of terminator-probe plasmid vectors makes possible to rapidly test 8 

whether a particular sequence functions as a terminator signal in vivo.  9 

The Gram-positive bacteria S. pneumoniae and E. faecalis are a leading 10 

cause of nosocomial infections. S. pneumoniae is normally found as a harmless 11 

commensal of the human upper respiratory tract. However, when the immune 12 

system weakens, it is also a major cause of life-threatening infections, such as 13 

pneumonia, meningitis and septicemia (Bogaert et al., 2004; Scott 2007). E. 14 

faecalis is a usual inhabitant of the gastrointestinal tract of humans and animals, 15 

but it can become an opportunistic pathogen and cause serious diseases, 16 

including bacteraemia, endocarditis and urinary tract infections (Amyes 2007; 17 

Murray and Weinstock, 1999). Pathogenic bacteria encounter diverse 18 

environments during the infectious cycle. Their ability to adapt efficiently to a new 19 

niche requires coordinated changes in the expression of multiple genes. In this 20 

context, promoter-probe and terminator-probe plasmid vectors are useful systems 21 

to investigate the expression of specific genes in a variety of genetic backgrounds 22 

and environmental stimuli. Despite this fact, such plasmid-based genetic tools are 23 

still very scarce in both S. pneumoniae and E. faecalis. In the present work, we 24 

describe the construction of novel promoter-probe and terminator-probe vectors 25 
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based on the S. agalactiae plasmid pMV158, which replicates autonomously in 1 

numerous Gram-positive bacteria (streptococci, enterococci, staphylococci, bacilli 2 

and lactococci). As reporter gene, we have used a variant of the gfp gene from the 3 

jellyfish Aequorea victoria (Miller and Lindow, 1997). We show that these vectors 4 

are suitable to assess whether particular sequences function as promoter or 5 

terminator signals in S. pneumoniae and E. faecalis. In addition, we show that the 6 

promoter-probe vector constitutes a valuable tool for the study of regulated 7 

promoters in vivo and, therefore, for the design of new inducible-expression 8 

vectors. 9 

 10 

2. Materials and Methods 11 

2.1. Bacterial strains and plasmids 12 

S. pneumoniae 708 (trt-1, hex-4, end-1, exo-2, malM594) (Espinosa et al., 13 

1982) and E. faecalis JH2-2 (resistant to rifampin and fusidic acid) (Jacob and 14 

Hobbs, 1974) were used as hosts for the plasmids constructed in this work. 15 

Genomic DNA was isolated from S. pneumoniae R61, a derivative of the R6 16 

sequenced strain (Hoskins et al., 2001), and from E. faecalis V583, a clinical 17 

isolate resistant to vancomycin (Paulsen et al., 2003). In addition to the plasmids 18 

constructed in this work (see below), we used plasmid pLS1 (Lacks et al., 1986), a 19 

derivative of the streptococcal plasmid pMV158, the E. coli plasmid pGreenTIR 20 

(Miller and Lindow, 1997), a pUC1813 derivative that carries a gfp allele fused to 21 

an optimized translation initiation region, and the Bacillus subtilis plasmid pPR54 22 

(Serrano-Heras et al., 2005), which carries the transcriptional termination sites of 23 

the E. coli rrnB ribosomal RNA operon (Brosius et al., 1981). 24 
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2.2. Growth and transformation of bacteria 1 

The AGCH medium used for growth of S. pneumoniae was based on that 2 

described by Lacks (1966). It contains, per liter, 5 g acid-hydrolyzed casein 3 

(Difco), 1 g enzymatic casein hydrolysate (Pronadisa), 40 mg L-cysteine.HCl, 6 mg 4 

L-tryptophan, 50 mg L-asparagine, 10 mg L-glutamine, 5 mg adenine, 5 mg 5 

choline chloride, 1.2 mg calcium pantothenate, 0.3 mg nicotinic acid, 0.3 mg 6 

pyridoxine.HCl, 0.3 mg thiamine.HCl, 0.14 mg riboflavine, 0.6 µg biotin, 8.5 g 7 

K2HPO4, 2 g NaC2H3O2, 0.4 g NaHCO3, 0.5 g MgCl2.6H2O, 6 mg CaCl2, 0.5 mg 8 

FeSO4.7H2O, 0.5 mg CuSO4.5H2O, 0.5 mg ZnSO4.7H2O, 0.2 mg MnSO4.4H2O, 9 

0.5 g bovine albumin (Fraction V, Sigma), and 3000 units catalase (from 10 

Aspergillus niger, Calbiochem). For routine growth the AGCH medium was 11 

supplemented with 0.2% yeast extract (Difco) and 0.3% sucrose (Sigma). When 12 

indicated, other carbon sources were used. For the cultivation of E. faecalis, 13 

BactoTM Brain Heart Infusion (BHI) medium was used. This medium was 14 

supplemented with 1.25% glycine when enterococcal cultures were grown for 15 

genomic DNA isolation. Pneumococcal and enterococcal cells containing pLS1-16 

derivatives were grown in media supplemented with tetracycline at 1 and 4 µg/ml, 17 

respectively. All the experiments were performed at 37ºC. Procedures for 18 

competence development and transformation of S. pneumoniae were reported 19 

(Lacks et al., 1986). The protocol used to transform E. faecalis by electroporation 20 

was described (Shepard and Gilmore, 1995).  21 

2.3. Total RNA preparations and primer extension 22 

The Aurum Total RNA Mini Kit (BioRad) was used to isolate total RNA from S. 23 

pneumoniae. Plasmid-containing cells were grown as indicated above to an optical 24 

density at 650 nm (OD650) of 0.2. Then, 3 ml of culture were processed as 25 
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specified by the supplier, except that the lysis solution was supplemented with 1 

0.2% deoxycholate. The integrity of rRNAs was checked by agarose gel 2 

electrophoresis. The RNA concentration was determined using the NanoDrop ND-3 

1000 Spectrophotometer. For primer extension, the ThermoScript Reverse 4 

Transcriptase enzyme (Invitrogen) and [α-32P]-dATP (3000 Ci/mmol; Hartmann) 5 

were used. The reaction mixture was incubated at 50ºC for 45 min. Non-6 

incorporated nucleotide was removed using MicroSpin G-25 columns (GE 7 

Healthcare). Samples were dried in a Speed Vac, resuspended in loading buffer 8 

(95% formamide, 20 mM EDTA, 0.05% bromophenol blue, 0.05% xylenecyanol), 9 

and subjected to electrophoresis in a 8 M urea / 6% polyacrylamide gel. Dideoxy-10 

mediated chain-termination sequencing reactions using DNA from M13mp18 11 

(Yanisch-Perron et al., 1985) and the –40 M13 primer (5´-12 

GTTTTCCCAGTCACGAC-3´) were run in the same gel.  13 

2.4. Isolation of DNA 14 

For small-scale preparations of purified plasmid DNA, the High Pure Plasmid 15 

Isolation Kit (Roche Applied Science) was used. The Suspension Buffer of this kit 16 

was supplemented with 50 mM glucose and 0.1% deoxycholate in pneumococcus, 17 

or with 50 mM glucose, 700 µg/ml lysozyme and 240 units/ml mutanolysin in 18 

enterococcus. Genomic DNA from S. pneumoniae was prepared as previously 19 

described (Lacks, 1966). To isolate genomic DNA from E. faecalis, cultures at an 20 

OD650 of 1.2 were concentrated 10-fold in buffer A (25% sucrose, 0.1 M NaCl, 50 21 

mM Tris-HCl, pH 8.0, 28 µg/ml RNase A, 10 mg/ml lysozyme). Then, mutanolysin 22 

(150 units) was added to 1 ml of the concentrated culture. After 20 min at 37ºC, 23 

SDS was added at a final concentration of 1%. The lysate was treated with 24 

proteinase K (240 µg/ml) for 15 min. DNA was further purified by extraction with 25 
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phenol/chloroform, dialyzed against buffer TE (10 mM Tris-HCl, 1 mM EDTA, pH 1 

8.0), and recovered by precipitation with ethanol. 2 

2.5. Polymerase chain reaction (PCR) conditions 3 

Phusion High-Fidelity DNA Polymerase (Finnzymes) was used for all PCR 4 

applications. The Phusion HF Buffer provided by the manufacturer was used as 5 

reaction buffer. The reaction mixtures (50 µl) contained 5-30 ng of template DNA, 6 

20-30 pmoles of each primer, 200 µM of each dNTP and 1 unit of DNA 7 

polymerase. An initial denaturation step was performed at 98ºC for 1 min. Then, it 8 

was followed by 30 cycles that included the next steps: (i) denaturation at 98ºC for 9 

10 s; (ii) annealing at around 55ºC (depending on the primer Tm) for 20 s and (iii) 10 

extension at 72ºC for 40 s. A final extension step was performed at 72ºC for 10 11 

min. 12 

2.6. Construction of plasmids pAS and pSA 13 

To construct the terminator-probe vector pAS, an 833-bp region of the 14 

pGreenTIR plasmid (Miller and Lindow, 1997), which contains the gfp reporter 15 

cassette, was amplified by PCR with the F-gfp and R-gfp oligonucleotides (Table 16 

1). Both of them include a HindIII restriction site. Then, the PCR-amplified DNA 17 

was purified and digested with HindIII, generating an 802-bp DNA fragment. The 18 

QIAquick PCR Purification Kit (QIAGEN) was used to purify DNA from both PCR 19 

and restriction endonuclease digestion. The 802-bp HindIII fragment was mixed 20 

with HindIII-linearized pLS1 DNA (Lacks et al., 1986). The mixture was treated 21 

with T4 DNA ligase (New England Biolabs) and used to transform competent S. 22 

pneumoniae 708 cells. Transformants were selected for tetracycline (1 µg/ml) at 23 

37ºC. Subsequently, plasmid DNA was isolated and analyzed by restriction 24 
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mapping. In the recombinant plasmid pAS, the tetL (resistance to tetracycline) and 1 

gfp genes are located on the same DNA strand. Plasmid pSA carries the inserted 2 

fragment in the opposite orientation. To confirm the constructions, the inserted 3 

fragment and the regions of pLS1 that are flanking the insert were sequenced. 4 

Dye-terminator sequencing was carried out at Secugen (Centro de Investigaciones 5 

Biológicas, Madrid). 6 

2.7. PCR-amplification of transcriptional terminator regions 7 

Primers used for PCR-amplification of terminator regions are listed in Table 1. 8 

For PCR-amplification of a 286-bp region that contains the transcriptional 9 

termination sites T1T2 of the E. coli rrnB ribosomal RNA operon (Brosius et al., 10 

1981), we used the pPR54 plasmid (Serrano-Heras et al., 2005) as template and 11 

the F-T1T2rrnB and R-T1T2rrnB oligonucleotides as primers. The PCR-12 

synthesized DNA was further digested with SalI, and the 246-bp digestion product 13 

was inserted into the SalI site of plasmid pAS in both orientations: plasmid pAST 14 

(orientation T1T2rrnB; promoter-probe vector) and plasmid pAS-T2T1rrnB 15 

(opposite orientation). For the construction of plasmid pAS-TpolA, a 278-bp region 16 

of the pneumococcal genome containing the terminator of the polA gene (López et 17 

al., 1989) was amplified with the F-TpolA and R-TpolA primers. After SalI 18 

digestion, the generated 238-bp fragment was cloned into the SalI site of the pAS 19 

vector. For the construction of plasmid pAS-TrsiV, a 305-bp region of the 20 

enterococcal genomic DNA that contains the putative terminator of the sigV-rsiV 21 

operon (Benachour et al., 2005) was amplified with the F-TrsiV and R-TrsiV 22 

primers. Then, the PCR-amplified DNA was digested with SalI, and the 265-bp 23 

generated fragment was inserted into the SalI site of the pAS vector.  24 
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2.8. PCR-amplification of promoter regions 1 

Primers used for PCR-amplification of promoter regions are listed in Table 1. 2 

Using pneumococcal genomic DNA as template, two regions of 199-bp and 195-3 

bp containing the promoter of the sulA (Lacks et al., 1995; López et al., 1987) and 4 

ung (Méjean et al., 1990) genes, respectively, were amplified with the F-PsulA and 5 

R-PsulA primers or the F-Pung and R-Pung primers. The PCR-synthesized DNAs 6 

were further digested with BamHI. The 166-bp (PsulA promoter) and 159-bp (Pung 7 

promoter) digestion products were inserted into the BamHI site of the pAST vector, 8 

generating plasmids pAST-PsulA and pAST-Pung, respectively. From the 9 

enterococcal genome, two regions of 192-bp and 190-bp containing the promoter 10 

of the uppS and EF2493 genes (Hancock et al., 2003), respectively, were 11 

amplified with the F-PuppS and R-PuppS primers or the F-P2493 and R-P2493 12 

primers. After SacI digestion, the 164-bp (PuppS promoter) and 160-bp (P2493 13 

promoter) restriction fragments were cloned into the SacI site of the pAST vector, 14 

generating plasmids pAST-PuppS and pAST-P2493, respectively. Moreover, to 15 

construct plasmid pAST-P2962, a 191-bp region of the enterococcal genome that 16 

contains the putative promoter of the EF2962 gene was amplified with the F-17 

P2962 and R-P2962 primers. After BamHI digestion, the 158-bp restriction 18 

fragment (P2962 promoter) was inserted into the BamHI site of the pAST vector. 19 

Concerning the pneumococcal PfcsK promoter, a 150-bp region was amplified 20 

using genomic DNA as template and the oligonucleotides F-PfcsK and R-PfcsK as 21 

primers. After XbaI digestion, the 117-bp restriction fragment (PfcsK promoter) 22 

was cloned into the XbaI site of the pAST vector in both orientations: plasmid 23 

pAST-PfcsK (gene gfp under the control of the PfcsK promoter) and plasmid 24 

pAST-oPfcsK (opposite orientation). 25 
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2.9. Fluorescence assays 1 

Pneumococcal and enterococcal cells carrying plasmid were grown as 2 

indicated to an OD650 of 0.3 (logarithmic phase), except in the study of the 3 

pneumococcal PfcsK promoter. In this case, bacteria were grown to an OD650 of 4 

0.6 (late logarithmic phase), since fucose-induced expression from the PfcsK 5 

promoter was reported to increase strongly during such a phase (Chan et al., 6 

2003). Then, different volumes of the culture (25 µl to 1 ml) were centrifuged, and 7 

cells were resuspended in 200 µl of PBS buffer (10 mM Na2HPO4, 1 mM KH2PO4, 8 

140 mM NaCl, 3 mM KCl, pH 7.2). Fluorescence was measured on a LS-50B 9 

Luminescence Spectrometer (Perkin-Elmer) by excitation at 488 nm with a slit 10 

width of 15 nm and detection of emission at 515 nm with a slit width of 7.5 nm. In 11 

each case, three independent cultures were analyzed. The fluorescence 12 

corresponding to 200 µl of PBS buffer without cells was around 40 arbitrary units.  13 

2.10. Western blots 14 

Plasmid-carrying pneumococcal cells were grown as indicated to late 15 

logarithmic phase (OD650 = 0.6). Media contained 0.3% sucrose and different 16 

concentrations of fucose (0.1% to 1%) as carbon source. To prepare whole-cell 17 

extracts, bacteria were concentrated 40-fold in buffer L (50 mM Tris-HCl, pH 7.6, 1 18 

mM EDTA, 50 mM NaCl, 0.1% deoxycholate), and incubated at 30ºC for 10 min. 19 

Then, a sample (8 µl) of each cell extract was mixed with 2 µl of 5x loading buffer 20 

(250 mM Tris-HCl, pH 6.8, 10% SDS, 25% β-mercaptoethanol, 50% glycerol, 0.5% 21 

bromophenol blue), and total proteins were separated by SDS-polyacrylamide gel 22 

electrophoresis (14% polyacrylamide). Thus, equivalent amounts of the cell 23 

extracts (similar number of cells) were loaded onto the gel. Pre-stained proteins 24 



 13 

(Invitrogen) were run in the same gel as molecular weight markers. Proteins were 1 

transferred electrophoretically to Immun-blot PVDF membranes  (BioRad) using a 2 

Mini Trans Blot (Bio-Rad) at 100 mA and 4ºC for 90 min. Transfer buffer contained 3 

25 mM Tris, 192 mM glycine, 20% methanol. Anti-GFP (Roche Applied Science), a 4 

mixture of two mouse monoclonal antibodies against the green fluorescent protein, 5 

was used as specified by the supplier. Antigen-antibody complexes were detected 6 

using peroxidase-conjugated AffiniPure Goat Anti-Mouse IgG (H+L) (Jackson 7 

ImmunoResearch), the Immun-StarTM HRP Substrate Kit (BioRad), and the 8 

Luminescent Image Analyzer LAS-3000 (Fujifilm Life Science). The intensity of the 9 

bands was quantified using the QuantityOne software (BioRad).  10 

11 
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3. Results and Discussion 1 

3.1. Transcription through the HindIII site in plasmid pLS1 2 

The streptococcal plasmid pMV158 (5540 bp), which is the prototype of a family 3 

of rolling-circle replicating plasmids, is able to replicate in a broad variety of 4 

bacterial hosts (del Solar et al., 1998). Moreover, it confers resistance to 5 

tetracycline (tetL gene) in both Gram-positive and Gram-negative bacteria. 6 

Sequence analysis of the region located just downstream of the tetL gene 7 

revealed the existence of an inverted-repeat (IR in Fig. 1) followed by a short 8 

stretch of thymine residues (Lacks et al., 1986). This sequence element has the 9 

features of a Rho-independent transcriptional terminator and is also present in 10 

plasmid pLS1 (Fig.1), a pMV158-derivative that lacks the 1132-bp EcoRI 11 

restriction fragment (Lacks et al., 1986). To analyze the efficiency of the tetL 12 

inverted-repeat as transcriptional terminator, we investigated whether continuation 13 

of transcription occurs at the tetL inverted-repeat in S. pneumoniae cells. If this 14 

were the case, mRNA molecules containing the sequence termed INT in Fig. 1 15 

should be synthesized. Such molecules could form a stem-loop structure followed 16 

by a poly(U) region. To this end, the INTc oligonucleotide (Table 1), whose 17 

sequence is complementary to the INT region, was used as primer for extension 18 

on total RNA isolated from pLS1-carrying S. pneumoniae cells. As shown in Fig. 1, 19 

two cDNA extension products of 106 and 107 nucleotides were detected. These 20 

products are likely generated by reverse transcriptase pausing at the base of the 21 

potential RNA stem-loop structure rather than by reverse transcriptase running off 22 

at 5´ ends of newly initiated transcripts. In fact, promoter sequences just upstream 23 

of the poly(T) region are not predicted. Transcription through the INT region was 24 

further confirmed by cloning a gfp reporter cassette into the HindIII site of plasmid 25 
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pLS1 (Fig. 2). The cassette was inserted in both orientations (plasmids pAS and 1 

pSA). In plasmid pAS, the tetL and gfp genes are located on the same DNA 2 

strand. The gfp reporter cassette contains a multiple cloning site (MCS) followed 3 

by a promoter-less gfp allele, which encodes a green fluorescent protein (GFP) 4 

that carries the F64L and S65T mutations (Cormack et al., 1996; Heim et al., 5 

1995). The F64L mutation increases GFP solubility, while the S65T mutation 6 

increases GFP fluorescence and causes a red shift in the excitation spectrum. In 7 

addition, the gfp allele carries translation initiation signals (SD in Fig. 2) that are 8 

optimal for its expression in prokaryotes (Miller and Lindow, 1997). Plasmid pSA 9 

carries the gfp reporter cassette in the opposite orientation. First, we analyzed gfp 10 

expression in S. pneumoniae 708 cells carrying the pAS or pSA plasmid by 11 

measuring the intensity of fluorescence at 515 nm (excitation at 488 nm) (Fig. 2). 12 

No gfp gene expression was observed in pSA-harbouring cells, which confirms the 13 

absence of promoter signals within the gfp reporter cassette. However, the 14 

fluorescence increased as a function of the culture volume in cells harbouring 15 

plasmid pAS. The fluorescence corresponding to 0.8 ml culture (OD650 = 0.3) was 16 

3-fold higher than the background level (pSA-containing cells). Plasmids pAS and 17 

pSA were further introduced into E. faecalis JH2-2 cells. As expected, gfp 18 

expression was detected only in pAS-carrying cells. Specifically, the fluorescence 19 

of 0.8 ml culture (OD650 = 0.3) was 4.5-fold higher than the background level. From 20 

these results, we conclude that both the pneumococcal and enterococcal RNA 21 

polymerases are able to transcribe through the tetL inverted-repeat of the pLS1 22 

plasmid (Fig. 1) and, therefore, to transcribe the gfp reporter cassette inserted into 23 

its HindIII site (Fig. 2). This fact and the presence of a MCS between the HindIII 24 
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site and the promoter-less gfp gene make plasmid pAS a useful terminator-probe 1 

vector (see below). 2 

3.2. Use of plasmid pAS as a terminator-probe vector in S. pneumoniae and E. 3 

faecalis 4 

To analyze whether plasmid pAS (5210 bp) is useful for the detection of 5 

transcriptional terminator signals, we selected some predicted or experimentally 6 

determined Rho-independent terminators from different bacterial genomes. 7 

Specifically, we inserted independently the following DNA sequences (Fig. 3) into 8 

the SalI site of the pAS plasmid (see Fig. 2): (i) a 246-bp SalI restriction fragment 9 

containing the tandem terminators T1 and T2 of the E. coli rrnB ribosomal RNA 10 

operon (Brosius et al., 1981). Such a fragment was inserted in both orientations 11 

(herein termed T1T2rrnB and T2T1rrnB fragments, respectively). These 12 

terminators have been used frequently in the construction of plasmid vectors 13 

(Brosius, 1984; Serrano-Heras et al., 2005; Simons et al., 1987); (ii) a 238-bp SalI 14 

restriction fragment containing the transcriptional terminator of the S. pneumoniae 15 

polA gene (referred to as TpolA fragment). By mapping with S1 nuclease, it was 16 

shown that transcription of the polA gene terminates at the palindrome shown in 17 

Fig. 3 (López et al., 1989); and (iii) a 265-bp SalI restriction fragment containing 18 

the putative Rho-independent terminator of the E. faecalis sigV-rsiV operon 19 

(herein termed TrsiV fragment). The sigV and rsiV genes encode members of the 20 

extracytoplasmic function subfamily of eubacterial RNA polymerase sigma and 21 

anti-sigma factors, respectively (Benachour et al., 2005). All the recombinant 22 

plasmids (named pAST, pAS-T2T1rrnB, pAS-TpolA and pAS-TrsiV) were 23 

introduced into S. pneumoniae 708 and E. faecalis JH2-2 cells. The efficiency of 24 

the inserted fragments as transcriptional terminators was evaluated by monitoring 25 
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gfp gene expression (Table 2). The fluorescence in pneumococcal and 1 

enterococcal cells carrying the control plasmid pSA (background level) was 46.32 2 

± 2.24 and 58.08 ± 0.64, respectively. Compared to pAS-carrying cells, the 3 

T1T2rrnB and TrsiV fragments reduced the intensity of fluorescence to 4 

background values in both S. pneumoniae and E. faecalis. In the case of the 5 

T2T1rrnB fragment, the fluorescence decreased 1.8 and 1.5-fold in pneumococcus 6 

and enterococcus, respectively. However, the TpolA fragment reduced the 7 

fluorescence in E. faecalis (3-fold) but not in S. pneumoniae. A further analysis of 8 

the TpolA fragment using the BPROM prediction program (Softberry, Inc.) 9 

revealed a near-consensus –10 hexamer (TAgAAT) located 5 nucleotides 10 

downstream of the TpolA palindrome, as well as a near-consensus extended –10 11 

element (TGTa) (see Fig. 3). Thus, activity of this predicted promoter in S. 12 

pneumoniae but not in E. faecalis might explain why the terminator activity of the 13 

TpolA palindrome was only detected in E. faecalis. In conclusion, these results 14 

demonstrate that plasmid pAS can be used to examine whether particular 15 

sequences (homologous or heterologous) function as transcriptional terminators in 16 

S. pneumoniae and E. faecalis. Moreover, we have shown that the predicted TrsiV 17 

terminator of E. faecalis is active in both bacteria. In our system, it is as efficient as 18 

the tandem terminators T1 and T2 of E. coli. 19 

3.3. Use of plasmid pAST as a promoter-probe vector in S. pneumoniae and E. 20 

faecalis 21 

Promoters recognized by RNAP holoenzymes that carry a σ-factor similar to E. 22 

coli σ70 are characterized by two elements, the –35 (consensus 5´-TTGACA-3´) 23 

and –10 (consensus 5´-TATAAT-3´) hexamers (Haugen et al., 2008). In addition, 24 
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some of these promoters contain an extended –10 element (5´-TRTG-3´ motif in 1 

Gram-positive bacteria) (Sabelnikov et al., 1995; Voskuil and Chambliss, 1998). 2 

Since the sequence elements at numerous promoters have evolved to diverge 3 

from the consensus, definitive identification of a promoter target for RNAP requires 4 

the use of diverse experimental strategies, such as the use of promoter-probe 5 

plasmid vectors (reviewed in Minchin and Busby, 2009; Ross and Gourse, 2009).  6 

Cloning of the E. coli T1T2rrnB terminator region into the SalI site of the pAS 7 

terminator-probe vector generated plasmid pAST (5456 bp; see above). This 8 

derivative conserves unique restriction sites (XbaI, BamHI, SmaI, SacI) between 9 

the T1T2rrnB region and the promoter-less gfp gene (see Fig. 2). To investigate 10 

whether plasmid pAST is suitable as a promoter-probe vector, we selected several 11 

DNA fragments containing a predicted or experimentally tested promoter from S. 12 

pneumoniae or E. faecalis (Fig. 4). These promoter regions were independently 13 

inserted into the BamHI or SacI site of the pAST plasmid (for details see Materials 14 

and Methods). The recombinant plasmids were then introduced into S. 15 

pneumoniae 708 and E. faecalis JH2-2 cells, and promoter activity was evaluated 16 

by monitoring gfp expression (fluorescence assays) (Table 3). Regarding 17 

pneumococcal promoters, we analyzed the promoter region of the sulA 18 

(dihydropteroate synthase) and ung (uracil-DNA glycosylase) genes. The PsulA 19 

promoter, which was identified by primer extension (Lacks et al., 1995; López et 20 

al., 1987), has a near-consensus –10 hexamer and a consensus –10 extension 21 

(Fig. 4). In the case of the ung gene (Méjean et al., 1990), the BPROM prediction 22 

program (Softberry, Inc.) revealed a consensus –10 hexamer, which is located 28 23 

nucleotides upstream of the translation initiation codon, and a near-consensus –10 24 

extension (Fig. 4). In pneumococcus, and compared to pAST-containing cells 25 
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(46.08 ± 3.99 units), the intensity of fluorescence increased 10-fold when the Pung 1 

promoter region was inserted into pAST (plasmid pAST-Pung) (Table 3). The 2 

activity of such a promoter was 1.9-fold higher than that of the PsulA promoter. 3 

Different results were obtained in enterococcus. In this case, and compared to 4 

cells carrying pAST (58.92 ± 2.64 units), the fluorescence increased only 2-fold in 5 

cells harbouring the pAST-Pung recombinant plasmid. Moreover, the activity of the 6 

Pung promoter was slightly lower than that of the PsulA promoter. We further 7 

analyzed the promoter region of three genes from E. faecalis V583 (Paulsen et al., 8 

2003): uppS (or cpsA; undecaprenyl diphosphate synthase) (Hancock and 9 

Gilmore, 2002; Thurlow et al., 2009), EF2493 (or cpsC; putative teichoic acid 10 

biosynthesis protein) (Hancock and Gilmore, 2002) and EF2962 (putative LacI 11 

family transcriptional regulator). The PuppS and P2493 promoters were identified 12 

by primer extension (Hancock et al., 2003). The PuppS promoter has a consensus 13 

–10 hexamer and shows a 4/6 match at the –35 element, whereas the P2493 14 

promoter has near-consensus –10 and –35 hexamers (Fig. 4). In the case of the 15 

EF2962 gene, the BPROM program predicted a –10 hexamer (four consensus 16 

bases) located 56 nucleotides upstream of the initiation codon. This promoter has 17 

a near-consensus –10 extension and shows a 3/6 match at the –35 element (Fig. 18 

4). As shown in Table 3, the P2493 promoter was the strongest enterococcal 19 

promoter in both S. pneumoniae and E. faecalis. In pneumococcus, the activity of 20 

the P2493 promoter was 1.6 and 2.3-fold higher than that of the PuppS and P2962 21 

promoters, respectively. In enterococcus, and compared to the P2493 promoter, 22 

the activity of the PuppS and P2962 promoters was 5.2 and 3.2-fold lower, 23 

respectively. Therefore, plasmid pAST can be used to assess the activity of 24 

specific promoter sequences (homologous and heterologous) in S. pneumoniae 25 
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and E. faecalis. Among the analyzed promoters, we have shown that two 1 

predicted promoters, Pung and P2962, are active in both bacteria. Furthermore, 2 

we have demonstrated that, under our experimental conditions, the strongest 3 

promoters (10-fold increase in fluorescence) are the Pung promoter in 4 

pneumococcus and the P2493 promoter in enterococcus. We conclude that 5 

plasmid pAST is a useful vector for in vivo studies of promoter sequences. 6 

3.4. Fucose-regulation of the pneumococcal PfcsK promoter cloned into the pAST 7 

vector 8 

The promoter of the pneumococcal fuculose kinase gene (fcsK), the first gene 9 

of the fucose operon, is induced by fucose (Chan et al., 2003). This promoter 10 

(PfcsK) has a canonical –10 hexamer and a near-consensus –35 sequence 11 

(TTGAaA). Both sequence elements are separated by 17 nucleotides. According 12 

to primer extension experiments, transcription of the fcsK gene starts at an 13 

adenine residue located 24 nucleotides upstream of the initiation codon (Chan et 14 

al., 2003). To determine whether plasmid pAST constitutes a valuable tool for the 15 

study of regulated promoters, a 117-bp XbaI restriction fragment containing the 16 

PfcsK promoter was inserted into the XbaI site of the pAST vector, generating 17 

plasmids pAST-PfcsK (gene gfp under the control of the PfcsK promoter) and 18 

pAST-oPfcsK (opposite orientation). Both recombinant plasmids were introduced 19 

into the S. pneumoniae 708 strain, which is thought to have a single chromosomal 20 

copy of the putative fucose regulator gene fcsR. Then, we examined whether 21 

fucose induces gfp expression in cells carrying the pAST-PfcsK plasmid. Cells 22 

harbouring pAST-oPfcsK were used as control. Since S. pneumoniae is unable to 23 

grow in media containing fucose as the sole carbon source (Chan et al., 2003), 24 

bacteria were grown in media containing 0.3% sucrose and different 25 
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concentrations of fucose to late logarithmic phase (OD650 = 0.6). The bacterial 1 

growth rate was similar under the various conditions assayed (not shown). In a 2 

first approach, gfp expression was analyzed by Western blotting using monoclonal 3 

GFP antibodies (Fig. 5A). A protein band was detected in cells carrying pAST-4 

PfcsK but not in control cells (plasmid pAST-oPfcsK). Since pre-stained proteins 5 

were run in the same gel, exposition of the blot to X-ray films allowed us to 6 

determine that such a band had the mobility expected for GFP (∼ 28 kDa) (not 7 

shown). The Western blot analysis revealed a basal level of gfp expression in cells 8 

grown without fucose, suggesting that a single chromosomal copy of the putative 9 

fucose regulator gene fcsR is not sufficient for total repression of the PfcsK 10 

promoter placed on a pLS1 derivative (pLS1 has ∼22 copies per genome 11 

equivalent, del Solar et al., 1993). However, compared to cells grown without 12 

fucose, the intensity of the GFP band was 4.5-fold higher in cells grown with 1% 13 

fucose. Hence, the PfcsK promoter cloned into the pAST vector is activated by 14 

fucose. These results were further confirmed by fluorescence assays (Fig. 5B). In 15 

the absence of fucose, the fluorescence in cells carrying pAST-PfcsK (64.66 ± 16 

5.95 units) was slightly higher than in cells harbouring pAST-oPfcsK (43.22 ± 2.30; 17 

control cells). Thus, there is a low basal level of gfp expression. Moreover, the 18 

fluorescence in cells carrying pAST-PfcsK increased as a function of the fucose 19 

concentration (from 0.1% to 1%). Specifically, a 5-fold increase in fluorescence 20 

was observed when the medium was supplemented with 1% fucose (Fig. 5B). 21 

Under those conditions, no changes were detected in the fluorescence of the 22 

control cells (41.15 ± 1.81 units with 1% fucose). Since the fucose operon and the 23 

putative fucose regulator gene fcsR are widely conserved in S. pneumoniae 24 

(Weng et al., 2009), it is to be expected that plasmid pAST-PfcsK will be valuable 25 
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as inducible-expression vector in pneumococcus. Our results concerning the 1 

PfcsK promoter support that the promoter-probe vector pAST can be used to 2 

detect growth conditions that favour the expression of a particular regulated 3 

promoter. 4 

To conclude, the promoter-probe and terminator-probe vectors described in this 5 

work are suitable to assess the activity of promoter and terminator signals (both 6 

homologous and heterologous) in S. pneumoniae and E. faecalis. These vectors 7 

are based on pMV158, which is one of the most promiscuous replicons reported 8 

so far. It has been established in nearly 30 different bacterial species (M. E., 9 

unpublished observations). Hence, it is very likely that these newly constructed 10 

plasmid-based genetic tools can be used in a number of Gram-positive bacteria. 11 

Furthermore, employment of some of the promoters tested here could be useful 12 

when constructing strains that would express a desired genetic trait. 13 
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Figure legends 1 

Fig. 1. Primer extension on total RNA isolated from pLS1-carrying pneumococcal 2 

cells. copG and repB are genes involved in plasmid DNA replication. The location 3 

of the replication origins dso (double-strand origin) and ssoA (single-strand origin) 4 

is indicated. The nucleotide sequence of the region spanning the translation stop 5 

codon (TAA) of the tetL gene and the HindIII site (H) is shown. IR: inverted-repeat, 6 

E: EcoRI site. The INTc oligonucleotide (see Table 1), whose sequence is 7 

complementary to the INT region, was used as primer. The asterisks indicate the 8 

3´-end of the cDNA products (P) generated by the reverse transcriptase. A, C, G, 9 

T sequence ladders were used as DNA size markers. Specifically, dideoxy-10 

mediated chain-termination sequencing reactions using DNA from M13mp18 and 11 

the –40 M13 primer (5´-GTTTTCCCAGTCACGAC-3´) were run in the same gel. A 12 

partial sequence of the M13mp18 DNA (Yanisch-Perron et al., 1985), beginning at 13 

the priming site, is given: 14 

5´GTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCATG15 

CCTGCAGGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATC16 

ATGGTCATAGCTGTTTCC-3´. 17 

 18 

Fig. 2. Left: Construction of the pAS terminator-probe vector. The gfp reporter 19 

cassette was inserted into the HindIII site (H) of the pLS1 plasmid. This cassette 20 

contains a multiple cloning site (MCS), translation initiation signals optimized for 21 

prokaryotes (SD) and a promoter-less gfp allele (Miller and Lindow, 1997). 22 

Plasmid pSA (control plasmid) carries the gfp reporter cassette inserted in the 23 

opposite orientation. Right: gfp gene expression in plasmid-harbouring cells. S. 24 

pneumoniae carrying plasmid pAS (black square) or pSA (white square). E. 25 
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faecalis carrying plasmid pAS (black circle) or pSA (white circle). The graph is the 1 

mean of three experiments.  2 

 3 

Fig. 3. Palindromic sequences at the terminator regions analyzed in this work. 4 

Arrows indicate nucleotide sequences corresponding to potential RNA hairpin 5 

structures. Complementary bases of the hairpin structures are shown in bold. 6 

 7 

Fig. 4. Main sequence elements at the promoter regions analyzed in this work. 8 

The –35 and –10 hexamers are indicated with brackets. The position of the 9 

extended –10 element (5´-TRTG-3´ motif) is shown. Conserved nucleotides are 10 

indicated in bold. 11 

 12 

Fig. 5. Fucose-induction of gfp expression in pneumococcal cells carrying plasmid 13 

pAST-PfcsK. Cells were grown in media containing 0.3% sucrose and the 14 

indicated amount of fucose to an OD650 = 0.6. Cells harbouring plasmid pAST-15 

oPfcsK were used as control. (A) Western blot analysis using antibodies against 16 

GFP. Total proteins from cell extracts were separated by SDS-PAGE (14% 17 

polyacrylamide). Pre-stained proteins (Invitrogen) were run in the same gel as 18 

molecular weight markers (not shown). (B) Intensity of fluorescence in cultures 19 

(400 µl) of pneumococcal cells carrying the pAST-PfcsK plasmid. The intensity of 20 

fluorescence in cultures of cells carrying the pAST-oPfcsK plasmid was 43.22 ± 21 

2.30 in the absence of fucose and 41.15 ± 1.81 in the presence of 1% fucose. In 22 

each case, three independent cultures were analyzed. 23 

24 
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