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Abstract. Although characterization of piezoceramics from resonance is a customary
technique, the works dealing with the determination of the ten elastic, dielectric and
piezoelectric coefficients that are needed in the full matrix characterization of such 6mm
symmetry materials are rather scarce. Even more, if the complex characterization is foreseen,
thus accounting with the three types of losses, few are the methods avaliable to obtain the
material linear coefficients. This work deals with such complex characterization by the use of
Alemany et al. automatic iterative method. This method has been applied to the four modes of
resonance that are sufficient for the purpose: (1) the length extensional mode of long rods,
length poled, (2) the thickness extensional mode and (3) the radial mode of a thin disk,
thickness poled, and (4) the thickness shear mode of a thin plate. Recent work of the authors
has shown the limits in characterizing materials that arise from the use of the Standard shear
geometry and, therefore, and alternative geometry is used here. This work presents the matrix
characterization of some piezoceramics and the Finite Element Analysis (FEA) simulation based
on such characterization, of the samples used as a reliability criteria of the results obtained by
comparison of the experimental and simulated values at resonance of the electrical
parameters.

Introduction

The modeling and design of new piezoelectric devices by, among other
numerical methods, the finite element analysis, relies on the accuracy of the dielectric,
piezoelectric and elastic coefficients of the active material used, commonly an
anisotropic ferroelectric polycrystal, or piezoelectric ceramic. The polarization in the
randomly oriented grains of an as-processed ferroelectric ceramic can be oriented in
the direction of an external electric field, in the so-called “poling” process (Fig.1),

giving as a result an induced anisotropy of the properties and a piezoelectric effect [1].



The accurate description of piezoceramics involves the evaluation of the dielectric,
piezoelectric and mechanical losses, accounting for the out of phase material response
to the input signal, which is not always accomplished despite of their important role in
the material performance. Losses in piezoceramics have inconvenient consequences
for positioning actuator applications, since they lead to hysteresis in the field-induced
strain, and for resonance applications, such ultrasonic motors, since they are the cause
of heat generation. On the other hand, they can be an advantage for force sensors and
acoustic transducers, since they widen the frequency band for receiving signals. The
description of the material parameters by complex values (P* =P"-iP"") is a convenient
way to separately account for the dielectric, piezoelectric and mechanical losses (tané=
P’/ P’). The origin of the losses in ferroelectric ceramics has been analyzed in
numerous works [2-5].

Poled ferroelectric ceramics in their normal operating range show substantially
linear relations between the stress (Tj;) and the strain (S;), which are tensor
magnitudes, on the one hand and between the electric field (E;) and the dielectric
displacement (D;), which are vector magnitudes, on the other. Besides, the
piezoelectric coefficients provide relations between mechanical and electrical
magnitudes [1]. These relationships can be written making use of different sets of
coefficients in reduced matrix form. One of these sets, frequently used, is:

S=s" T+ d: E (1)

D=dT+e€'E
where s is the matrix of elastic compliance, d is the matrix of piezoelectric charge
coefficients and dk its transposed (changing rows by columns) matrix, and €' the
dielectric permittivity matrix. Superindex E means constant (zero) field and superindex

T means constant (zero) stress.

The resonance method

Characterization methods for bulk piezoceramics from impedance
measurements at the electromechanical resonances, providing their full dielectric,
piezoelectric and elastic complex coefficients matrices in the linear range, have been
used since early times of the development of these materials in the 60’s [1,7], and

become a widespread practice. In the frequency range of an electromechanical



resonance, the resonator of a given geometry has electrical impedance, Z, which
depends on the frequency, the dimensions of the sample and its density, and a given
set of dielectric, piezoelectric and elastic coefficients. For this reason, the values of the
coefficients can be obtained from impedance measurements as a function of the
frequency (Fig. 1) on a suitable shaped sample, provided that the analytical solution of
the wave equation for the mode of motion of that sample is known. The first standard
procedures of measurements on piezoceramics date from 1961 [8] and were issued by
the North American “Institute of Radio Engineers (IRE)”. The aim of this Standard was
to adapt previous definitions, relations and measurement methods, developed for
piezoelectric crystals in general, to the characteristics of those new materials.

The electromechanical coupling factor, k, is defined as the square root of the
energy transformed by the resonator divided by the total energy input, and expresses
the ability of the resonator to transform electric energy into mechanical energy, and
vice versa. The resonator can be described by an LCR (inductance, capacitance,
resistance) resonant circuit. As it is well known, the complex impedance of the
resonator is Z= R + iX, where X is the reactance. The mechanical quality factor, Q.,, is
defined as the expression of the internal mechanical damping of the resonator and by
the ratio between the circuit reactance and resistance. The higher the mechanical
quality factor, the lower the mechanical losses of the resonator.

The complex admittance of the resonator is defined as the reciprocal of the
impedance and as Y=G+iB, where G is the conductance and B the susceptance.
Standard defines f, and f,, as the frequencies of maximum and minimum impedance,
respectively, in the neighborhood of the resonance, and also defines the procedures
(the so-called transmission line, or transmission circuit, method) to measure the
resonator impedance and determine these frequencies. Coupling coefficients and
quality factors of the resonator are calculated from the difference between these two
frequencies. Standard also defines other pairs of frequencies: fs and fp, the series and
parallel frequencies, as the frequencies for maximum G and maximum R, respectively,
and f, and f,, the resonance and antiresonance frequencies, as the frequencies of B=0
and X=0, respectively. The values of these frequencies are such that (Figure 2):

(fn - fm) > (fp - fs) > (fa - fr) (2)



The main piezoceramic characteristics considered in the development of 1961
Standard were the high symmetry (6mm), leading to simpler relations than for most
piezoelectric crystals, high electromechanical coupling constants, low mechanical
quality factors and noticeable dielectric loss factor (tand=€"’/ €”). If such conditions are
fulfilled, the following approximations are valid:

(fo = fm) = (fo =) = (fa— ) (3)

This first Standard was reviewed and updated several times, being the most
recent one issued by the North American institutions “American National Standards
Institute (ANSI)” and “The Institute of Electrical and Electronic Engineers (IEEE)” in
1987 [9]. Although with a clear explanation of their limitations, the 1987 IEEE Standard
still is based in the approximations given above in (3).

There is at present a general knowledge of these limitations, however, 1987
IEEE Standard is still widely in use. Their validity holds for many of the most widely
used commercial piezoceramics based on lead titanate zirconate (PZT) compositions,
which are low-Q, and high-coupling coefficients piezoelectric materials. But, there is a
general agreement that their use in many new piezoelectric materials, like porous
ceramics, piezoelectric polymers or piezoelectric composites leads, when applicable, to
important errors. Furthermore, IEEE Standard does not account for the complex nature
of the material coefficients, keeping the dielectric loss factor (tand) and the
mechanical quality factor (Q,,) as the only parameters accounting for the losses in
materials. The dielectric permittivity is “traditionally” obtained from the sample
capacitance measured at 1kHz. This is not a good practice. It is also well known that
there is a change in permittivity, elastic compliance and piezoelectric response with
frequency, which is more pronounced in ferroelectric materials. Variations between
such permittivity value at 1 kHz and that included in the analytical solution of the wave
equation corresponding to a resonance taking place at a given frequency (from 100kHz
to 10MHz) are, thus, assumed. Recommendation for the use of such low frequency,
also included in 1987 IEEE Standard for ETij, is made on the basis of avoiding interfering
with the capacitance measurement of the lowest resonance’s of plates, usually taking
place at f ~ 100 kHz. However, 1987 IEEE Standard contributions to the
characterization of piezoelectric ceramics are, of course, remarkable. The Standard

states the resonator geometries and the relationships among their dimensions for the



validity of the equations used in the IEEE Standard and all the relationships among the
coefficients needed to get all the independent coefficients for piezoceramics. Four
modes of resonance (Table 1) of three sample shapes are sufficient for this purpose

[10].

Iterative methods in the complex characterization of piezoceramics

One of the first attempts to treat losses in piezoceramics by considering
complex coefficients is due to Holland and dates from 1967 [11]. Already Holland and
EerNisse [12] proposed a gain-bandwidth method for length extensional mode of
thickness poled bars, which was valid for moderate losses and low electromechanical
coupling coefficient materials. Since then, many papers on the topic have been
published, some of which will be referred to in the following. Smits [13] published the
first iterative procedure for the accurate determination of complex materials
coefficients. The major drawback of the method is that it requires a skilled operator,
because the judicious choice of the 3 frequencies for measurement of Z is needed, in
order to avoid the determination of constants with large errors. From such Z values a
system of non-linear equations is established and solved in the corresponding
coefficients by an iterative procedure. The first automatization and the extension to
complex parameters of the procedure by Meitzler et al. [14], adopted in the 1987 IEEE
Standard [9], for a piezoelectric resonator in the radial mode of a thin disk, was
published by Sherrit et al. [15]. This is the most mathematically complex resonance
mode. These authors also introduced a refinement of the 1987 IEEE Standard method
by a polynomial fit, easier to implement in terms of automatization and more accurate,
instead of the linear interpolation, used in the IEEE Standard, for the data of the
Poisson ratio, op, as a function of the ratio of the first overtone to the fundamental
resonance frequencies, f(z)s/f(l)s, in the determination of o’. These authors also
proposed a non-iterative evaluation method, and applied it to thickness extensional
plate resonators [16]. This method implicitly predetermines that the phase
of the electromechanical coupling factor is only dependent on the mechanical loss. It is
only applicable for materials with low dielectric and piezoelectric losses. Sherrit et al.
accomplished as well the first complete material characterization in a complex form by

the resonance method of a commercial ceramic [17]. They used four geometries and



five resonance modes: the ones shown in Table |, and the length extensional mode of a
thickness poled bar. For that purpose they used their own, non-iterative, method for
the radial mode of a thickness poled thin disk resonator and the Smits method for the
rest of the modes.

Alemany et al. [18, 19] developed an automatic iterative method, based on
Smits one, that overcomes its main drawback by the automatization of the choice of
the frequencies for the measurement of Z (or Y depending on the resonance mode).
This method is the only iterative method that to date that was systematically applied
to all resonance modes needed for the full matrix characterization of piezoceramics
(Table 1). Alemany et al. method has been also applied to the determination of the
parameters from overtone resonances in the radial and thickness modes of thin disks
[20], thus accounting for a discrete determination of the dispersion of the complex
material parameters.

In 1997 Kwok et al. [21] published a comparative study, applied to thickness
extensional plate resonators. The methods compared were: a non-linear regression
method proposed by the authors (the Gauss-Newton fitting method), a commercial
software (the Piezoelectric Resonance Analysis Program (PRAP), based on Smits [13]
and Sherrit et al. [16] works), the 1987 IEEE Standard method, the Smits method and
the Sherrit et al. methods. Together with other moderate loss materials (copolymers,
lead metaniobate ceramics and composites), they characterized
polyvinylidene fluoride (PVDF), a high-loss piezoelectric polymer. They found the
already mentioned limitations of such methods, i.e. that 1987 IEEE Standard, Smits and
Sherrit et al. methods, although requiring skilled operators, are valid methods for
materials with moderate losses but fail in the characterization of high-loss materials.
As for any other fitting method, the proposed non-linear regression method has the
drawback of being sensitive to the choice of the data segment used. Each calculated
material parameter represents an average within the frequency range where data
points are used for the calculation. The narrower the fitting range the closer are the
calculated average values to the actual values of the parameters.

The interest that the topic of the characterization of piezoelectric materials

with losses drags nowadays is shown by the very recent publications on new fitting



methods, although just applied to length extensional mode of thickness poled bars [22,

23].

Iterative automatic method developed by C. Alemany et al. at ICMM-CSIC

In this method the coefficients are calculated as the solution — obtained by an
automatized iterative numerical method - of the set of non-linear equations that
results when experimental impedance, (or admittance) data are introduced into the
analytical solution of the wave equation for the mode of motion of the sample. Such
impedance or admittance data are taken at four given frequencies in the
neighborhood of the resonance, being the determination of such frequencies also
automatic. This analytical solution exists for all the four resonance modes (Table I)
needed for the determination of the complete set of parameters and given in Figure
12. The impedance for the thickness resonance of a disk poled and excited along its

thickness is given by the equation:
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where S = (D/2)? (Figure 12) is the electroded surface area and p is the ceramic

density.
The admittance for the radial resonance of a disk poled and excited along its

thickness is given by:
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where t is the thickness of the disk (Figure 12), o' is the Poisson ratio, o'=- sle/ sllE,
cii'is a relationship among constants, cih =5t [(sEll)2 - (sElz)z]'l, and 3 is the Onoe

function [15] defined as:

=J (z) (6)




being J, and J; the Bessel functions of the first kind and zero and first orders,
respectively.
The impedance for the shear resonance of a plate poled across and excited

along its thickness is:
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where S = Lw (Figure 12) is the electroded surface area.
The impedance for the length resonance of a bar poled and excited along its

length is given by:
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where S = (D/2)? (Figure 12) is the electroded surface area.

Only the dimensions and density of the sample, together with the value of the
complex admittance or impedance at such four frequencies around the resonance are
required to get the dielectric, elastic and piezoelectric complex coefficients that rules
in each mode of resonance. Just in the radial mode of thin disks it is additionally
needed to know the value of f%; of the first overtone. In practice, an experimental
data file of absolute values of admittance, |Y;|, and its phase angle, 6, at each
frequency, f;, is obtained in a frequency interval around the resonance. From these
values, the corresponding values of conductance, Gi=|Y|;cos 6i, and resistance
Ri=cos 6; |Y|{1 are obtained. Two of the four frequencies involved in the calculation, f;
and f,, are determined by location of the maximum values of R; and G; in the measured
interval, and the values of complex impedance at such frequencies introduced in the
system of non-linear equations to be solved, in the so-called central iteration of the
method. The determination of the other two frequencies involved in the calculation of
the central iteration, f; and f,, constitutes a second iterative process, called peripheral
iteration of the method, which finish when the convergence of f; fulfills the criteria:
| f.(final)-f,(initial) | <0.05%. The details concerning the two iterations of Alemany et al.

method are given in references 18 and 19. As a quality criteria of the results obtained



by the method, both the G and the R profiles are reconstructed by insertion of the
obtained complex coefficients in the analytical solution of the wave equation of the
given resonance mode and by variation of the frequency. Typically, when the
experimental results are free of spurious resonances, corresponding to a single
resonator, the regression factor between the experimental and reconstructed values is
higher than 0.99.

In the first publications on the method, the complex characterization of a
number of commercial piezoceramics (Ferroperm Piezoceramics A/S), with high (PZ27,
lead zirconate titanate) and low (PZ34, modified lead titanate, and PZ45, bismuth
niobate) coupling coefficients and with high (PZ27) and low (PZ35, lead metaniobate)
mechanical quality factors, was accomplished. Although still fully valid, some of the
calculation details given in the first works have benefited from the long experience of
application of the method to a wide number of ceramic materials [24-27] and has
been refined to be easier to use in the research and industrial characterization and

quality control laboratories.

Matrix Characterization of Piezoceramics using Non-Standard Shear Samples

Widely used for device modeling, the Finite Element Analysis (FEA) has been
scarcely used in materials science. The strong potential of this tool in the study, for
example, of the modes of motion of the material resonators remains unexplored,
among other reasons, by the lack of complete set of data, including losses, for the
piezoceramics of industrial interest. The modeling has been restricted to consider
these as materials without losses [28] and isotropic media [29].

Difficulties in getting a coherent set of material parameters from resonance
data on different sample shapes arise on the dispersive character of the piezoceramics
and the dependence of their properties on the polarization level [1]. Whereas the
radial and longitudinal extensional resonances of thin disks and long rods, respectively,
take place typically in the range of hundreds of kHz, the thickness extensional and
shear resonances of thin disks and shear plates can be currently found in the range
of few MHz. Besides, to achieve the saturation level of polarization in a long bar or in
an in-plane poled shear plate is frequently more difficult than in a thin disk. The

resonance method for these reasons has suffered criticisms and alternative methods



to obtain the full ensemble of coefficients were developed using ultrasonic
spectroscopy [30], a method not responsive to all losses.

Despite of all this, careful poling and accurate determination of complex
properties by the systematic use of Alemany et al. method to the three sample shapes
and four resonance modes of Table 1, have recently lead to a reliable full complex
characterization of a soft, Navy lI-type, lead zirconate titanate commercial
piezoceramic (PZ27 Ferroperm Piezoceramics A/S)[10] and a high sensitivity Mn-doped
Morphotropic Phase Boundary 0.655Pb(Mg;,3Nb;/3)03-0.345PbTiO3 ceramic [27].

The availability of the full set of coefficients, including all losses, has allowed
the modeling by 3-D FEA of PZ27 piezoceramic items [31,32] of the three geometries
used for the matrix characterization. This work have the double purpose of assess the
validity of the material constants, by comparing modeled and experimental impedance
data, and to study the modes of resonance of the three Standard samples used in the
characterization (Fig. 2). Secondary resonance peaks (Fig. 3) appearing in resonance
spectra of the in-plane poled Standard shear plate (Fig. 2(b)) are commonly
observed, independently of the composition and dimensions of the shear sample,
while keeping the Standard dimensional ratios L, w210t, and often related to material
inhomogeneities, such as those due to inhomogeneous poling caused by edge effects.
The results of the FEA analysis, corresponding to an elastically, dielectrically and
piezoelectrically homogeneous item of PZ27, shows [31] that in fact this explanation is
not correct and that secondary modes can also be modeled at frequencies in good
agreement with the measured ones (Fig. 3-left). Secondary peaks take place due to the
occurrence of non purely-shear modes in such a Standard sample geometry and
dimensional ratios. FEA modeling reveals that, for this particular shear sample, at
f=1790 kHz the mode of motion resembles a composition of a thickness shear and an
asymmetric Lamb wave modes of motion with perpendicular propagation directions,
whereas at f=1440 kHz, the mode of motion is even more complex [31]. The shear
coefficient d15 reported for PZ27 seems to be underestimated, dis=(396-26i) pC.N", by
the iterative calculation from impedance measurement at resonance of the Standard
sample [10] when compared to the actual value quoted by the manufacturer (d;5=500
pC.NY), which is obtained from direct measurements on accelerometers working with

shear elements [33]. FEA results also show that, at the mode of motion for the main



resonance, the shear displacement in the center of the sample is much higher than the
one at the edges of the Standard shear item, showing that the sample is dynamically
clamped (Fig. 3-right). Measurements of normal displacement to the surface of the
Standard shear resonator by laser interferometry have confirmed that the modes of
motion of the Standard shear sample are a composition of plane waves and the
inhomogeneous shear displacement [34]. These results also reveal the dynamical
clamping as the source of the underestimation of the material parameters when using
Standard shear items. The poling problem may be an additional difficulty when
characterizing piezoceramics using Standard shear samples, because they result in
resonance spectra with double peaks that cannot be treated as a single resonance,
using formula (7). This was observed for PZT based ceramics with close porosity [35]
and some PMT-PT ceramics (Fig. 4(up)) [27]. The use of a non-Standard shear sample
(Fig. 2(f)), to make use of the second thickness shear resonance suggested by
Berlincourt [7], is at present under test. Unwanted multiple resonances are avoided
using this sample (Fig. 4(down)) and higher piezoelectric shear coefficients are
obtained. Additionally, this non-standard shear sample allows characterization from
identically poled samples at the thickness and at the radial resonances of thin disks

(Fig. 2(d)) and shear resonance of shear plate (Fig. 2(e)).

Summary

A critical literature review of methods for characterization of piezoceramics of
commercial interest is presented, from the 1961 Standards to the most recent fitting
and iterative methods, taking into account material losses. Alemany et al. automatic
iterative method is to date the only one systematically applied to all sample shapes
and resonances needed for the determination of the full ensemble of characteristic
complex material parameters. Matrix material characterization, including losses, allows
the study of material resonators by Finite Element Analysis. The modes of motion of
the satellite and principal resonances of the Standard shear item were analyzed. The
dynamical clamping of the Standard shear main resonance was found to explain the
underestimation of the piezoelectric material shear coefficients. A proposal of an
alternative, non-Standard, shear sample, making use of the second thickness shear

mode of resonance, is made aiming to enhance the coherence and reliability of the



matrix characterization using the Alemany et al. method from three samples and four

modes of resonance.
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Table 1. Resonance modes, sample shapes, and corresponding directly obtained
coefficients for each mode, needed for the determination of the full characteristic

matrices of a piezoelectric ceramic.

Sample geometry Resonance mode Directly obtained
coefficients
« thin disks, thickness poled « thickness extensional mode of thin plates ® h33, €7 33, c” 13
(Diameter=20xthickness) « radial mode of thin disks eds, € 33,851,852
e shear plates « thickness shear mode of thin plates ehis, €544, ¢ ee

(Length, width> 10xthickness)

* long bars, length poled « length extensional resonance of long bars © 933, € 33,5 3
(Length > 10xDiameter)




Figue captions

Figure 1. Left: Schematic view of grains of a ferroelectric ceramic showing the polarization
direction before (up) and after (down) the poling process. The 3 direction is arbitrarilly chosen
as the one of the applied electric field. Right: Impedance (modulus, |Z|, real, R, and imaginary,
X, parts) dependence on frequency in the vicinity of an electromechanical resonance.

Figure 2. Above: The three sample shapes (a,b,c) used in the Standards for matrix
characterization. Below: Process to obtain, from a thickness poled disk (d) or plate (e), a non-
standard shear sample (f).

Figure 3. (Left) Experimental and FEA generated resistance, R, and conductance, G, for the
fundamental shear thickness resonance of the plate of PZ27. (Right) Grey level shows shear (X)
displacement of the Standard shear element with in-plane polarization at 1572 kHz.

Figure 4. Experimental R and G curves (symbols), and reconstructed profiles (lines) after
Alemany et al. calculations, at the resonance of (a) an Standard shear plate and (b) non-
Standard shear plate of Mn-doped 0.655Pb(Mg;/3Nb,/3)03-0.345PbTiO; ceramic.
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