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Abstract
Recurrent wildfires constitute a major selecting force in shaping the structure of plant 

communities. At the regional scale, fire favours phenotypic and phylogenetic 

clustering in Mediterranean woody plant communities. Nevertheless, the incidence of 

fire within a fire-prone region may present strong variations at the local, landscape 

scale. This study tests the prediction that woody communities on acid, nutrient-poor 

soils should exhibit more pronounced phenotypic and phylogenetic clustering 

patterns than woody communities on fertile soils, as a consequence of their higher 

flammability and, hence, presumably higher propensity to recurrent fire. Results 

confirm the predictions and show that habitat filtering driven by fire may be detected 

even in local communities from an already fire-filtered regional flora. They also 

provide a new perspective to consider a preponderant role of fire as a key 

evolutionary force in acid, infertile Mediterranean heathlands.
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Introduction

The ecological advantage conferred by a trait (or set of traits) on individual members 

of a species under a given set of environmental conditions allows the species to 

occupy that particular habitat (i.e. environmental or habitat filtering). This habitat 

filtering is one of the key processes structuring community assemblages (van der 

Valk 1981, Keddy 1992, Webb et al. 2002). 

In many ecosystems, recurrent wildfires constitute a major selecting force in 

shaping the structure and function of plant communities (Bond and van Wilgen 1996; 

Bond and Keeley 2005; Pausas and Keeley 2009). All Mediterranean-climate 

regions, except the Chilean, include fire-controlled plant communities (Cowling et al. 

1996), which are characterized by species having traits that ensure the persistence 

of populations under recurrent fires (Keeley 1986). In woody plants, two basic fire-

associated traits have been traditionally described: resprouting ability (R+/R-; 

resprouter/nonsprouter), and fire-induced germination (P+/P-; fire-induced/non-fire-

induced) (Pausas et al. 2004, Pausas and Verdú 2005). Fire-induced germination 

(P+) is widely accepted as an adaptive trait state to the recurrent presence of fire 

(Bond and van Wilgen 1996; Keeley and Bond 1997; Pausas et al. 2006). 

At the regional scale, frequent fires favour an over-representation of P+ 

species in woody plant communities of the Mediterranean basin (Verdú and Pausas 

2007). This over-representation of a particular phenotype (i.e., phenotypic clustering) 

is a consequence of habitat filtering of those species having the focal trait state (P+). 

When the trait is evolutionarily conserved, phenotypic clustering subsequently 

determines phylogenetic clustering (Webb et al. 2002). Indeed, the fire-induced 

germination trait (P+/-) is strongly conserved in the woody flora of the Mediterranean 

Basin and woody plant communities under high fire frequency show both phenotypic 

and phylogenetic clustering (Verdú and Pausas 2007; Pausas and Verdú 2008). 

Cavender-Bares et al. (2004) found in Floridian oak communities strong phenotypic 

clustering among co-occurring Quercus species sharing fire related traits, thus 

evidencing habitat filtering.

Although this pattern of fire-driven phenotypic and phylogenetic clustering of 

Mediterranean plant communities has been reported at the regional scale, little is 
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known at the local, landscape scale, where marked differences in the fire regime may 

also occur (e.g. van Wilgen et al. 1990; Clarke 2002). At this scale, soil features such 

as rockiness (Clarke and Knox 2002) or fertility (e.g. Kellman 1984) may cause 

heterogeneous burn patterns and thus determine divergent fire regimes. Indeed, soil 

fertility decreases fire propensity of plant communities by decreasing the flammability 

of their plant fuels (Kellman 1984; Bowman 2000; Orians and Milewski 2007). On the 

contrary, plants on acid, nutrient-poor soils plants accumulate large amounts of 

polyphenolic compounds (Northup et al. 1998; Kraus et al. 2003), most of which are 

flammable (Orians and Milewski 2007). They hinder litter decomposition rates and 

may constitute a chemical defence against herbivory (Hättenschwiler and Vitousek 

2000; Kraus et al. 2003), thus favouring the accumulation of flammable plant fuel.

Here, we test the prediction that, at the landscape level within a region 

characterized by the recurrent occurrence of fire, woody plant communities on acid, 

infertile soils should exhibit more pronounced phenotypic and phylogenetic clustering 

patterns than neighbouring communities on non-acid, fertile soils. This may be so 

because of a presumably higher fire-propensity of infertile plant communities owing 

to their higher flammability. We focused on Mediterranean shrubland communities 

from two markedly different soil types frequent in Los Alcornocales Natural Park, at 

the northern side of the Strait of Gibraltar (S Spain). These shrub communities occur 

in coastal and subcoastal mountains under mild Mediterranean conditions and the 

region is characterized by a high fire incidence (Ojeda et al. 1995, 2000). They are 

thus assembled from a fire-filtered flora at the regional scale (Verdú and Pausas 

2007). This scenario provides an excellent opportunity to explore whether (1) a 

presumably spatial variability in fire incidence at the landscape scale is reflected in 

differences in the phenotypic and phylogenetic structure of local communities and, if 

so, whether (2) fire may still act as a filter in an already fire-filtered regional flora. By 

using detailed inventories and functional information of the woody flora and soil data 

in local community samples we compare the structure of shrubland communities in 

two edaphically contrasting habitats under the hypothesis that acid, nutrient-poor 

soils shape the phenotypic and phylogenetic community structure through fire.
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Methods

Study area

The northern (European) side of the Strait of Gibraltar region, at the westernmost of 

the Mediterranean Basin, stands out within the Mediterranean for the singularity of its 

plant biodiversity (Rodríguez et al. 2008). Most of this region lies inside Los Alcor-

nocales Natural Park (ca. 1700 Km2) and has a rugged topography, albeit no high el-

evations (500 to 1100 m asl). These mountain chains are mainly formed by folded 

siliceous Oligo-Miocene sandstone (González-Donoso et al. 1987). In mountain tops 

and ridges, this sandstone gives rise to very acid, weathered soils, characterized by 

a high content of soluble aluminum (Ojeda et al. 1995, 1996), an indicative of severe 

nutrient deficiency (Woolhouse 1981; Prasad and Power 1999; Schroth et al. 2003). 

These acid, infertile soil patches are found in the region as edaphic islands surroun-

ded by a matrix of non-acid and more fertile limestone and/or marl derived soils 

(Ojeda et al. 1996). Acid and infertile sandstone soils harbour open heathlands, dom-

inated by fine-leaved, low shrubs, whereas marl and limestone soils are mostly 

covered by broad-leaved, sclerophyllous shrublands and thickets (Ojeda et al. 1995, 

2000).

Floristic, edaphic and functional data

We selected 16 plots, eight on acid, nutrient-poor, sandstone soils (hereafter LowFer) 

and eight on non-acid, fertile, limestone and marl soils (HiFer) from two previous 

studies (Ojeda et al. 1995; Garrido and Hidalgo 1998). Data on woody species 

composition in 100-m line transects were obtained for each plot from these two 

sources, as well as soil pH and soluble aluminum, as surrogates for soil fertility (see 

above; see also Ojeda et al. 1995). LowFer plots were open heathlands while the 

HiFer plots were sclerophyllous shrublands and thickets. Each species was classified 

as P+/- depending on the ability of its seeds to resist the action of fire and present 

fire-cued recruitment on the basis of published information (Paula et al. 2009) and 

field observations (see Fig. 1). Based on flammability tests of Mediterranean woody 

species by Elvira-Martín and Hernando-Lara (1989; see Appendix) we were able to 
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ascertain that flammability levels were higher in LowFer community samples 

(average 79% of high-flammable species) than in HiFer ones (average 53% of high-

flammable species; t-test=-5.24, p-value = 0.0002).

Phenotypic and phylogenetic structure

The phenotypic structure of each community was evaluated by testing whether 

species with similar P phenotypes co-occurred more often than expected by chance 

(i.e. phenotypic clustering). The co-occurrence matrix was calculated as the pairwise 

binary distances between species occurrence in the sixteen samples; the phenotypic 

distance matrix was computed as the pairwise binary distances between P states of 

the species. A Mantel test correlating co-occurrence and phenotypic distance 

matrices was run and significance obtained after 1000 iterations (Legendre et al . 

1994; Cavender-Bares et al . 2004) in the ADE4 software for R (Thioulouse et al. 

1996; R Development Core Team 2007).

The phylogenetic relationships between the 133 species of the woody flora of 

Los Alcornocales Natural Park (Coca-Pérez 2001) were established with the help of 

the Phylomatic2 components (http://www.phylodiversity.net/phylomatic/). These 

components consist of a database of phylogenetic trees which can be assembled 

into a megatree by means of a GAWK script named makemega. We used all the 

trees stored in the phylomatic2 repository plus other trees resolving the relationship 

within Cistaceae (Guzman and Vargas 2005), Asteraceae (Bayer et al. 2000), 

Oleaceae (Wallander and Albert 2000), Ericaceae (Kron and Chase 1993) and 

Rosaceae (Dickinson's Lab +homepage at 

http://www.botany.utoronto.ca/faculty/dickinson/DickinsonLab.html).

The ordinal level trees were based on the Angiosperm Phylogeny Group data 

(Stevens 2001). Once we had assembled the megatree, we adjusted its branch 

lengths with the help of the phylocom BLADJ algorithm, which takes the age 

estimates for major nodes in the tree from Wikström et al. (2001) and distributes 

undated nodes evenly between nodes of known ages. Finally, our working 

phylogenetic tree was obtained after matching the genus and family names of our 
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study species to those contained in the angiosperm megatree. All these analyses 

were run with the Phylocom 4.0 package (Webb et al. 2005).

The phylogenetic community structure was assessed by testing whether the 

mean phylogenetic distance (MPD) of the species living in each site was significantly 

different from the MPD values obtained under a null model (i.e., reshuffling the 

species labels across the phylogenetic tree). An observed MPD significantly lower 

than the null expectation indicates phylogenetic clustering, while an observed MPD 

significantly higher than the null expectation indicates phylogenetic over-dispersion 

(Webb et al. 2005). MPDs were standardized to allow comparison among plots by 

calculating the Net Relatedness Index (NRI, Webb et al . 2005), as NRI = − (MPD – 

rndMPD)/sd.rndMPD, where sd.rndMPD is the standard deviation of the 999 random 

MPD (rndMPD) values. NRI increases with increasing phylogenetic clustering (Webb 

et al. 2002). We also used the Mean Nearest Neighbour Distance (MNND), and its 

standardized form, the Nearest Taxon Index (NTI=-(MNND – 

rndMNND/sd.rndMNND,) as another metric to test for the phylogenetic structure of 

the community. All these analyses were run with the help of the comstruct algorithm 

implemented in Phylocom 4.0.1b (Webb et al. 2005). To ensure the robustness of our 

results against the topological uncertainty contained in the phylogenetic tree, we 

randomly resolved the polytomies and re-run the analyses 100 times. We also 

accounted for the uncertainty in the branch length estimation by adding random noise 

to the branch lengths; the noise was normally distributed, with variance proportional 

to current branch length. A variance multiplier of 0.1 was entered to add to branch 

lengths. 

We explored which taxa were responsible for clustering in each community by 

testing which nodes in the phylogenetic tree had more species than expected by 

chance. This test was run with the help of phylocom NODESIG algorithm. 

Results

The number of woody species in the plots ranged from 7 to 27 (Table 1), with an 

overall of 72 species occurring in the 16 plots (Fig. 1). The percentage of P+ species 

in LowFer community samples (83.98% ± 12.0%, Mean ± SD) was four times higher 

than in HiFer ones (21.45% ± 7.5%; change in deviance = 110, df = 1, p-value = 
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0.0001, binomial test) (Table 1, Figure 2a). The species with the same P trait state 

tended to co-occur more often than expected by chance, as indicated by the 

significant positive correlation between the phenotypic and co-occurrence distance 

matrices (r = 0.253, p = 0.0009; Mantel test).

Regarding the phylogenetic structure of the community, species co-occurring 

in LowFer samples were more phylogenetically related (lower MPD and MNND, Table 

1) than expected under the null model, while this was not true for HiFer samples. 

Indeed, NRI and NTI values were significantly higher in LowFer than in HiFer 

communities (t = -7.58, p < 0.0001 for NRI and t = -6.24, p < 0.0001 for NTI, Figure 

2b). Differences between HiFer and LowFer in both NRI and NTI remained significant 

in all the 100 runs accommodating topological and branch length uncertainty.

Clades responsible for the clustering in LowFer plots were families dominated 

by P+ taxa, such as Ericaceae (5 out of 8 plots), Cistaceae (3 out of 8 plots), and 

Fabaceae (2 out of 8 plots). Only one LowFer plot showed a clade of P- species 

(Fagaceae) contributing significantly to phylogenetic clustering. 

Discussion

In this study, we have detected a differential occurrence of P+ species in woody plant 

communities from contrasting soil fertility conditions in such a way that P+ species 

are over-represented in communities on acid, infertile soils. This phenotypic 

clustering of a fire-related trait allows us to suggest that fire may be acting as an 

ecological filter by limiting P- and favouring P+ species to enter the LowFer 

community under high fire frequency. Another independent evidence that soil fertility 

shapes communities through fire is the differential flammability of woody communities 

found under different soil fertilities in our study area (see above; see also Ojeda 

2001). Indeed, the existence of differences in fire incidence at the landscape scale 

tightly associated with soil fertility levels has been reported in other regions (e.g. 

Kellman 1984; van Wilgen et al. 1990; Bowman 2000). According to this scenario, 

our results show clearly that the occurrence of recurrent fires not only acts as a 

strong habitat filtering force structuring plant communities but, more importantly, that 

this process may also operate at the local, landscape scale. Similar phenotypes (e.g., 

P+) co-occur more often than expected by chance in local communities from low 
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fertility soils in a landscape where high and low fertility soils are intermixed. As P is 

an evolutionarily conserved trait (Verdú and Pausas 2007), such strong phenotypic 

filtering is reflected in the phylogenetic structure of local communities, in such a way 

that shrub communities on acid, nutrient-poor soils are phylogenetically clustered, 

whereas those on non-acid, fertile soils are not.

Finally, we shall emphasize that the habitat filtering by fire reported in this 

study has been detected in local communities from an already fire-filtered regional 

flora (e.g. see Verdú and Pausas 2007). To our knowledge, this is the first evidence 

in which the same environmental factor is found to drive community assembly at two 

different spatial scales. Previous attempts to separate the determinants of community 

structure have demonstrated the importance of scale but without considering the 

environmental factors or traits driving the pattern (Swenson et al. 2006, Helmus et al. 

2007).

The extent at which fire may structure plant communities at the local scale 

depends on the variability of fire persistence traits in the regional flora from which 

species are assembled into communities. Regional floras may have low variability in 

fire traits either by a strong culling effect of fire-sensitive phenotypes or by rapid 

diversification. For instance, there is an overwhelming dominance of the P+ trait state 

in mediterranean floras of South Africa and Australia (Pausas et al. 2004; Pausas 

and Bradstock 2007) as a likely consequence of a high incidence of fire in these 

regions, at least since the Late Tertiary (Cowling et al. 1996). By contrast, an overall 

lower incidence of fire in the Mediterranean Basin (Cowling et al. 1996) provides its 

flora with a higher variability in fire persistence traits from which local communities 

can sample. Thus, fire may act simultaneously at different spatial scales (i.e. within-

regional and between-regional floras) as a major habitat filtering process shaping the 

phenotypic – and phylogenetic – structure of plant communities.

The incidence of fire in the south-western Iberian Peninsula, dominated by 

nutrient-poor, acid substrates seems to have been high at least since the Late 

Pleistocene and not related to human activity (Daniau et al. 2007). Although the 

phenotypic and phylogenentic structure of local community has been traditionally 

treated as the output of the ecological sorting of species traits by the environment 
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(Webb et al 2002), the role of evolutionary diversification and trait divergence is 

starting to be considered in community-assembly theory (Prinzing et al. 2008). 

Hence, the results presented in this study, plus the fact that many P+ species from 

these poor-soil communities are narrow endemics (Rodríguez et al. 2008) invite to 

consider a preponderant role of fire as a key evolutionary force for species living in 

nutrient-poor Mediterranean heathlands.
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Table 1. Soil pH values (pH) and concentration of soluble aluminum (Al, in ppm) and 

percentage of P+ species (%P+) in the eight LowFer and eight HiFer plots. Soil data 

have been obtained from Ojeda et al. (1995) and Garrido & Hidalgo (1998). 

Plot pH Al %P+

LowFer
L1 4.9 239 76.2

L2 4.7 486 100.0

L3 4.7 49 81.3

L4 4.7 263 88.9

L5 4.9 48 92.3

L6 4.8 69 85.7

L7 5.4 82 60.0

L8 4.3 310 87.5

HiFer
H1 6.0 0 31.6

H2 6.0 0 18.8

H3 6.4 0 14.3

H4 6.6 0 11.5

H5 6.5 0 30.8

H6 6.5 0 27.3

H7 6.6 0 17.4

H8 7.0 0 20.0
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Table 2. Number of taxa (n), observed mean phylogenetic distances (MPD), mean 

nearest neighbour distances (MNND), and the corresponding standardized indices, 

i.e., the net relatedness index (NRI) and nearest taxon index (NTI), for the eight 

LowFer and eight HiFer plots. The p-value reflects the departure of the observed 

MPD and MNND values from the null model.

Plot n MPD NRI p MNND NTI p

LowFer
L1 21 219.42 1.18 0.08 95.02 1.89 0.02
L2 10 198.58 1.25 0.02 81.66 2.38 0.01
L3 16 209.84 1.33 0.02 86 2.42 0.00
L4 18 212.14 1.37 0.03 85.82 2.36 0.01
L5 13 219.08 1.02 0.11 121.15 1.38 0.08
L6 14 215.83 1.17 0.06 119.01 1.46 0.07
L7 11 198.28 1.35 0.01 54.46 3.24 0.00
L8 16 217.75 1.14 0.07 95.61 2.05 0.01

HiFer
H1 19 232.29 0.6 0.37 135.9 0.25 0.41
H2 17 249.16 0.14 0.52 161.96 -0.47 0.69
H3 7 231.79 0.38 0.49 164.17 0.47 0.33
H4 26 252.83 0.02 0.5 120.18 0.61 0.28
H5 27 240.09 0.6 0.31 133.17 -0.08 0.54
H6 23 250.52 0.14 0.47 125.7 0.55 0.31
H7 23 238.37 0.59 0.36 142.79 -0.21 0.59
H8 15 250.63 0.14 0.57 199.16 -1.45 0.91
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Fig.1. Phylogenetic tree of the woody species considered, including their P trait states (P+ and P- 

in solid and open squares, respectively) and the presence-absence matrix (solid and open 

squares, respectively) for the eight LowFer and the eight HiFer sites.
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Figure 2. Percentage of P+ species (%P+, top panel) and net relatedness index (NRI, 

bottom panel) of communities living under high (HiFer) and low (LowFer) soil fertility 

regimes.
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Appendix
Flammability assignment based on the summer flammability tests performed by Elvira-Martín 

and Hernando-Lara (1989). Two measures were combined, the time to produce a flame (TF, 

seconds) and the proportion of flammability test that successfully produced a flame (PF, %). 

Table 1

PF

TF 95-100 90-94 85-89 80-84 <79

<12.5 High High High High Low

12.5-17.5 High High High Low Low

17.5-22.5 High High Low Low Low

22.5-27.5 High Low Low Low Low

>27.5 Low Low Low Low Low

Table 2

Species Flammability
Pistacia lentiscus Low
Cistus albidus High
Cistus crispus High
Arbutus unedo High
Calluna vulgaris High
Erica arborea High
Erica australis High
Erica scoparia High
Calicotome villosa High
Genista linifolia High
Genista tridentata Low
Stauracanthus boivinii High
Quercus coccifera High
Quercus suber Low
Lavandula stoechas High
Phlomis purpurea High
Olea europaea Low
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Phillyrea angustifolia High
Rhamnus alaternus Low
Rhamnus lycioides Low
Rubus ulmifolius Low
Daphne gnidium Low


